The Moduli Space of Cubic Threefolds

Daniel Allcock
February 6, 2001

Abstract.

We describe the moduli space of cubic hypersurfaces in CP* in the sense of geometric invariant
theory. That is, we characterize the stable and semistable hypersurfaces in terms of their singu-
larities, and determine the equivalence classes of semistable hypersurfaces under the equivalence
relation of their orbit-closures meeting.

§1. Introduction

Mumford’s geometric invariant theory provides a construction of complete moduli spaces of families
of varieties. In this paper we apply his methods to obtain a concrete description of the moduli
space of cubic hypersurfaces in CP%. More precisely, we work out which cubic threefolds are
stable, which are semistable, which of the semistable orbits are minimal, and which semistable
threefolds degenerate to which minimal orbits, all in terms of the singularities of the threefolds.
Many authors have treated stability and semistability in other settings. Hilbert treated point-sets
in the projective line, plane curves of degree < 6 and cubic surfaces [8]. Shah provided much more
detailed information about sextic plane curves [12] and analyzed quartic surfaces [13]. Mumford
and Tate treated point-sets in projective spaces of arbitrary dimension [10, chap. 3], Miranda
treated pencils of cubics in P2 [9], and Avritzer and Miranda have recently treated pencils of
quadrics in P* [3]. For further references, see [10]. After writing this paper we learned that Collino
made a partial analysis of the stability of cubic threefolds, as background for his work on the
fundamental group of the Fano surface of lines on a smooth cubic threefold [6]. In particular, he
established our lemma 6.1.

The reason this paper exists is the problem of uniformizing the moduli space by the complex
10-ball, much as the moduli space of cubic surfaces is uniformized by the complex 4-ball [1].
J. Carlson, D. Toledo and the author have constructed a period map that identifies the moduli
space of smooth cubic threefolds with a Zariski-dense subset of a quotient of the 10-ball by a
discrete group of finite covolume. The current work, together with refinements of the techniques
of [1], should provide much more detailed information, such as exactly which discrete group, which
periods arise from smooth threefolds, and how degeneration to singular threefolds is reflected in
the ball quotient.

We recall the basic definitions of geometric invariant theory in this context; for further back-
ground see [10] or [11]. The cubic threefolds are parameterized by CP3*, and a threefold 7' is
called semistable if there is an SL(5, C)-invariant hypersurface in CP3* which does not contain 7.
A semistable threefold is called stable if it has finite symmetry group and its orbit is closed (in
the space of semistable threefolds). If just the second of these conditions holds then its orbit is
called minimal. We say that one semistable threefold degenerates to another if the second lies in
the orbit closure of the first. The moduli space may be described topologically as the quotient
of the semistable threefolds by the relation that two are equivalent if their orbit closures meet
(in the space of semistable threefolds); every equivalence class contains a unique minimal orbit.
The moduli space is a projective variety in a natural way, and contains the orbit space of stable
threefolds as an open dense subset.

A hypersurface singularity in 4 variables is called an A,, singularity (n > 1) if it is locally
analytically equivalent to

it v i+ 23+l =0,

1



and a Dy singularity if it is locally equivalent to
wi’+$g+w§+wi =0.

The quadratic terms of any hypersurface singularity define a quadratic form on the tangent space
to CP*. The kernel of this form determines a linear subspace of CP*, which we call the null space
of the singularity; the dimension of this space is called the nullity of the singularity. The nullity of
an A, (n > 1) singularity is 1 and the nullity of a D4 singularity is 2.

Theorem 1.1. A cubic threefold is stable if and only if each of its singularities has type A1, As,
A3 or A4.

Semistable threefolds that are not stable are called strictly semistable. The corresponding
points of the moduli space turn out to form a rational curve and an isolated point. The isolated
point is given by the threefold A defined by

3 3
Fa =x2oz122 + 25 + 25,

which has exactly three singularities, each of type D4. Theorem 5.4 shows that A is the only cubic
threefold with three D, singularities, up to projective equivalence. The rational curve is given by
the threefolds T4, g defined by

Fa,p = Az3 + 2073 + 2724 — ToT224 + Br17273 (1.1)

where at least one of A and B is nonzero. By rescaling the variables one sees that if £ # 0 then
Ta,p is projectively equivalent to Ty2 4 ,p. When we want to refer to the projective equivalence
class of T4 p we usually just write T, where 8 = 44/B% € CU {oo}. If 8 # 0,1 then Tj has just
two singularities, both of type As. If B = 0 then T3 acquires a third singularity, of type A;. If
B =1 then T} is the secant variety of a rational normal curve of degree 4, which we call a chordal
cubic; its singular locus is the rational normal curve. We show in section 5 that T and T are
projectively equivalent if and only if 8 = ', and that any cubic threefold with two A5 singularities
is projectively equivalent to T3 for some 3 # 1.

Theorem 1.2. The minimal orbits of strictly semistable cubic threefolds are the orbits of A and
of the Tg, B € CU {oo}.

Theorem 1.3. A cubic threefold T is strictly semistable if and only if
(i) T contains a Dy singularity, in which case T' degenerates to A, or
(i) T contains an As singularity, in which case T degenerates to Tg for some 8 # 1, or
(iii) T contains an A, singularity (n > 6), but none of the planes containing its null line, in which
case T degenerates to a chordal cubic, or
(iv) T is a chordal cubic.

Theorem 1.4. A cubic threefold T is unstable (i.e., not semistable) if and only if
(i) T has non-isolated singularities and is not a chordal cubic, or

(ii) T contains an isolated singularity of nullity > 3, or

(iii) T contains an isolated singularity of nullity 2 other than a D4 singularity, or
(iv) T contains an A, singularity (n > 6) and also a plane containing its null line.

In section 2 we explain some singularity theory, which we will use throughout the paper. In
section 3 we apply the Hilbert-Mumford criteria for semistability and stability to establish necessary
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conditions for a cubic threefold to be unstable (resp. not stable). In section 4 we show that the
presence of certain singularities makes a threefold unstable (resp. not stable). In section 5 we
study the special threefolds A and T more closely, and in particular we characterize them by their
singularities. The final section assembles material from earlier sections to establish the theorems
above.

I am grateful to Jim Carlson and Domingo Toledo for their interest and encouragement, and
to Joe Harris and Jason Starr for several helpful discussions. This research was partly supported
by National Science Foundation grant DMS-0070930.

§2. Some singularity theory
One of our fundamental tools is a recognition principle for simple hypersurface singularities, given

by Bruce and Wall in [5]. The hypersurface singularities 4,, (n > 1), D,, (n > 4), Eg, E; and Eg
in m variables are given by

Ay ot el 4+l

D, : P+ T2 2+ + 2,

Eg : o+ a3 a2+ ol

Er:  alwotay i+l

Eg: 5+ Iy a5+ a2,
They are quasihomogeneous with weights (n%H, 1.3, (ﬁ, 2(”n—__21), 100, 4, %, 1.3,
(%, %, %, - %) and (%, %, %, ceey %), respectively. A power series f is called semiquasihomogeneous

(SQH) with given weights (w1, ..., wy,) if f has no terms of weighted degree < 1, and the terms of
weighted degree 1 define an isolated singularity.

Theorem 2.1. If an analytic function f(z1,...,%n) is SQH with respect to the weights of one of
the singularities given above, then f has a singularity of that type at the origin. O

Bruce and Wall treat the case of 3 variables by reducing it to results of Arnol’d, and the proof
in the general case is the same. The theorem lets one recognize many singularities immediately.
However, there are some cases where one can apply it only after a local coordinate change. As an
example we investigate the nature of the singularity

flxy,...,m4) = mg — ZToTa + m%m4 + Kz12924 + mgL(xg, Z4)

where K is a generic constant and L is a generic linear form. We would like to apply the theorem,
and we must clearly assign weight % to each of x5, 3 and z4. However, the largest n for which
all the terms of f have degree > 1 with respect to the weights (%, %, %, %) is n = 4, and then the
terms of degree 1 do not define an isolated singularity. The problem is the z2z4 term, and the
solution is to kill it with the substitution zo — zo + w%, which yields

f= :z;g — 2ox4 + Kz12974 + Kx‘;'m + (m% + 2.73%.’1)2 + :1;‘11) L(zs3,z4) -

Now we take weights (é, %, %, %), but again the degree 1 terms define a nonisolated singularity.

The problem is now the z3z4 term, which we kill by zo — x5 + Kz3. This yields
f =22 — zoxy + K2zizy + 210 (23, 24) + (terms of degree > 1)
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%) For generic K and L, the degree 1 terms define an isolated

with respect to the weights (%, %, %,
singularity, so f has type A7.

If a given isolated singularity has nullity 1 then this process terminates, so in practice it is
easy (if tedious) to identify such singularities. The reader may enjoy checking that the threefold
defined by

3 2 2 3
T5 + ToT3 + TIT4 — ToT2Ts — 2217273 + Ky

has an Ay singularity at P = [1,0,0,0,0] if K # 0. (This threefold is a linear combination of
a chordal cubic and the cube of a hyperplane that meets the rational normal curve at only one
point.)

An important invariant of a singularity is its milnor number, called its multiplicity in [2]. If
f : C* — C has a singularity at a point p, then the milnor number at p is defined as the vector
space dimension of the quotient of the local ring of C* at p by the Jacobian ideal of f. The milnor
number of an A,, D,, or E, singularity is the subscript n. More generally, a singular point is an
isolated singularity if and only if it has finite milnor number. An important property of the milnor
number is its semicontinuity: if a function fy is a limit of functions f;, and each f; has a singularity
of milnor number > n at p, then so does fy. For more information, see [2]. It follows immediately
that if f(z1,...,%,) has nullity 1 and has only terms of degree > 1 with respect to the weights
(%, %, . %), and the terms of degree 1 fail to define an isolated singularity, then the singularity
is worse than A, 1, in the sense that the milnor number is at least n. We also have:

Lemma 2.2. Suppose

f(x1,...,zm) = C(x1,22) + Q(z3,- .., Tm) + (terms of degree > 1)
with respect to the weights (%, %, %, - %), where C (resp. Q) is a cubic (resp. quadratic) form.
If C has a multiple root then f has milnor number > 5. If Q) is nondegenerate and C has only
simple roots then f has type Dy.

Proof: The second claim is part of theorem 2.1. To prove the first claim one shows that for f
generic among those for which C' has a multiple root, the singularity has type Ds. O

63. Necessary conditions for instability

In this section we identify certain singularities that a cubic threefold must have if it fails to
be semistable (resp. stable). In our analysis of a singular point of a cubic threefold 7' with
defining form F', we will almost always choose coordinates xg, ..., T4 so that the singularity lies
at P = [1,0,0,0,0]. We define L;; as the line defined by z; = 0 for all k£ # ,j. We will write
f(z1,...,z4) for the local defining equation for 7" at P obtained by substituting o = 1 in F.

If X is a subset of the 35 cubic monomials in z, ..., x4 then we say that a cubic form F' has
type X if all the monomials of F' with nonzero coefficients lie in X. The 35 monomials may be
arranged in the obvious way on a 4-dimensional simplex. A picture of the 4-simplex with the 35
monomials marked by empty or filled circles, such as any of the figures 3.1(a)—(f), denotes the
set of monomials marked by filled circles. The mnemonic is that an empty circle looks like 0.
We sometimes say that a cubic form has some type by referring to a figure, for example “F' has
type 3.1(a).” We apply the same terminology to T'.

Lemma 3.1. A cubic threefold is unstable if and only if it is projectively equivalent to a threefold

of one of the types 3.1(a)-(f). (See figures 3.1(a)—(f).)
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Proof: The Hilbert-Mumford criterion for semistability [10, theorem 2.1] says that 7" is unsta-
ble if and only if there exists a coordinate system with respect to which all the monomials of F’ with
nonzero coefficients lie strictly to one side of a hyperplane through the center of the 4-simplex.
We rephrase this criterion as follows. We regard each cubic monomial zg° ---z3* as the vector
(ag,-..,a4) € R®. For every nonzero vector v = (vg,...,v4) € R’ — {0} satisfying vg+---+v4 = 0,
we define H, to be the set of cubic monomials having negative inner product with v under the
usual inner product. Then T is unstable if and only if it is equivalent to a threefold of type H, for
some v.

To reduce this infinity of types to only six, we write Y for the union of the orthogonal comple-
ments of the 35 monomials, and observe that we may ignore those v that lie in Y, for near such a
v we may find v' ¢ Y with H, C H,,. Furthermore, we may restrict attention to one v from each
Ss-orbit, so that we may take vg > --- > vyq. This defines a Weyl chamber for S5, namely the cone
spanned by the vectors (1,1,1,1,—4), (2,2,2,-3,-3), (3,3,—-2,—2,—2) and (4,—1,—1,—-1,-1).
By multiplying v by a positive number we may suppose that v lies in their convex hull, which is a
3-simplex S. Finally, if both v and v’ lie in S —Y then H, = H, if and only if v and v’ lie in the
same component of S —Y . Therefore, to enumerate the possible H,, it suffices to compute the set of
polyhedra into which Y divides S, and then choose a vector v from the interior of each polyhedron.
By a computer calculation of less than a minute (see below) there are 72 of these polyhedra, so 72
types of cubic forms represent all unstable forms. It turns out that many of these are special cases
of each other (i.e., H, C H,/). It is easy for the computer to eliminate such redundancy, and every
one of the 72 types is a special case of one of the types 3.1(a)—(f). By construction, every form in
one of these families is unstable, and the lemma follows. O

Remarks on the computation: To perform the subdivision of S by Y, we wrote a computer
program in C++, using software for arbitrary-precision rational arithmetic developed by the GNU
project (GMP version 2.0.2 [7]). For £ > 0 we define a k-polytope in Q" to be a bounded set
whose affine span has dimension k& and which is the intersection of finitely many closed rational
half-spaces. A facet is one of its (k — 1)-dimensional faces. We encode a 0-polytope (a point) by
its coordinates, and for £ > 0 we encode a k-polytope by the set of its facets, which of course
are themselves encoded as (k — 1)-polytopes. We will describe an algorithm for checking if the
intersection of a k-polytope with a closed rational half-space is k-dimensional, and in this case for
computing the intersection. With such an algorithm, to divide S by Y one simply divides S by the
first hyperplane, then each of the resulting pieces by the next hyperplane, and so on. It is easy to
compute the set of vertices of a k-polytope K; the vectors given in figures 3.1(a)—(f) were obtained
by averaging the vertices of their polyhedra.

Suppose that K is a k-polytope and L is a rational hyperplane; we will show how to check if
K N L has dimension at least k¥ — 1, and in this case how to compute K N L. When k£ = 0 or 1 the
problem is trivial, so suppose k > 1. First we check if K C L (by checking whether the vertices
of K lie in L), in which case K N L = K and we are done. If K ¢ L then we check whether any
facet of K lies in L, in which case K N L equals that facet and we are done. Otherwise, we check
whether L meets the interior of K, by checking if it separates some pair of vertices. If it does not
then K N L has dimension < k£ — 1 and we are done. If it does then dim(K N L) = k — 1 and the
facets of K N L are the intersections K’ N L that have dimension k£ — 2, where K’ varies over the
facets of K.

Finally, suppose K is a k-polytope and L% is a closed rational half-space with bounding
hyperplane L. We will show how to check if K N LT has dimension k, and if so how to compute
KNL*. When k = 0 or 1 the problem is trivial, so suppose k > 1. We first check whether K lies in
LT; if it does then KN LT = K and we are done. Otherwise, we check whether L meets the interior
of K. If it does not then dim(K N LT) < k and we are done. If it does then dim(K N L*) = k and
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the facets of K N Lt are K N L and the intersections K’ N LT that have dimension k — 1, where
K' varies over the facets of K.

Next we will reduce the six types to four, and then find geometric features of the remaining
four types.

Lemma 3.2. A cubic form of type 8.1(f) is projectively equivalent to one of type 3.1(d), and one
of type 3.1(c) is projectively equivalent to one of type 3.1(b).

Proof: Studying figure 3.1(f) shows that linear substitutions fixing z3 and z, while mixing
zo, 1 and x5 together preserve the family. We focus on the z4 - quadratic(zg, z1,z2) part of F.
By a linear substitution we may suppose that these terms reduce to x4 - (Kz? + K'zoz3) for some
constants K and K’. We have marked these terms by diamonds ({») and the four killed terms by
spades (#). Since the lower two spades vanish, F' has type 3.1(d).

If F has type 3.1(c) then the proof is similar: mixing z2 and z3 preserves the family and mixes
the coefficients of the two marked monomials together. We can suppose that the one marked with
a spade vanishes, and then F' has type 3.1(b). O

Theorem 3.3. If a cubic threefold T is unstable, then either
(i) T contains a double line, or
(i) T contains a singularity of nullity > 3, or
(iii) T contains a singularity of nullity 2 and milnor number > 5, or
(iv) T contains a singularity of nullity 1 and milnor number > 7, and also a plane containing the
null line of the singularity.

Proof: Tt suffices to show that if T' is defined by a cubic form F' of one of the types 3.1(a),
3.1(b), 3.1(d) and 3.1(e) then T satisfies one of the conditions listed. If F' has type 3.1(a), then
f = Kzoz3 + cubic(zy,...,z4), so P has nullity > 3. If F has type 3.1(e) then T contains Lo; as
a double line. If F' has type 3.1(b) then its nullity at P is at least 2 by inspection of the diagram.
Also,

f = singular cubic(z1, z2) + quadratic(zs, z4) + (terms of degree > 1)

with respect to the weights (%, %, 1.1), so that the milnor number is at least 5 by lemma 2.2.

We claim next that a generic F' of type 3.1(d) has an A7 singularity at P. By genericity we
may assume that the £z, ToT224 and Tox3 terms (all marked <)) are nonzero, and by rescaling the
variables we may assume that the coeflicients are 1, —1 and 1, respectively. By a linear substitution
T3 — T3 + Ax4 we use the wmc% term to kill the zgxsz4 term, and then by x5 — x5 + Ax4 we use
the zgzox4 term to kill the xoﬂcﬁ term. Each killed term is marked with a spade. Then

flx1,...,mq) = x% — ToT4 + :vf:u + Kz1z074 + .TI%L(CE:;, Z4)
+ 21Q(23,%4) + 22Q' (23, 74) + C(x3,74)

where K is a constant and L (resp. @, @', C) is a linear (resp. quadratic, quadratic, cubic)
form. For generic K and L, the singularity has type A7; the computation is essentially the worked
example of section 2.

Now, if F' has type 3.1(d) then P has milnor number > 7, so if the nullity at P is more
than 1 then T falls into category (ii) or (iii). If the nullity is 1 then the null line is Ly; because
the xo - quadratic(zy,...,x4) terms of F are free of 1. Then T falls into category (iv) because T'
contains the plane z3 = x4 = 0. O

(3.1)

At this point it would be natural to prove that a threefold exhibiting one of these features
is unstable. We postpone this to the next section because we are about to study the non-stable
cubic threefolds, and the argument for the converse of theorem 3.3 also proves the converse of
theorem 3.5.



Lemma 3.4. A cubic threefold that is not stable is either unstable or projectively equivalent to a
threefold of one of the types 3.2(a)-(d). (See figures 3.2(a)-(d).)

Proof: This is similar to the proof of lemma 3.1. The Hilbert-Mumford criterion for stability
[10, theorem 2.1] asserts that 7" is not stable if and only if there exists a coordinate system with
respect to which all the monomials of ' with nonzero coefficients lie in a closed half-space whose
bounding hyperplane passes through the center of the 4-simplex. For each v € R% — {0} having
coordinate sum zero, we define H, to be the set of monomials having nonpositive inner product
with v. Then T is not stable if and only if it is equivalent to a threefold of type H, for some
v. Recall the 3-dimensional simplex S and its tessellation by Y. We choose one point from the
interior of each 0-, 1-, 2- and 3-dimensional face of the tessellation, and let v vary over these points.
It is obvious that every non-stable T is equivalent to a threefold of type H, for one of these v. A
computer calculation along the lines of the previous one yields 481 possibilities for v. For most
of them, the threefolds of type H, are obviously unstable: H, lies in one of the sets given in
figures 3.1(a)—(f). After eliminating these cases, only 6 possibilities for v remain. After eliminating
those that are special cases others, only the four we have shown remain. A solid block indicates a
monomial that lies on the bounding hyperplane. O

Theorem 3.5. If a cubic threefold is not stable then either
(i) it has a singularity of nullity > 2, or
(#) it has a singularity of nullity 1 and milnor number > 5.

Proof: It suffices to show that every unstable cubic threefold and every threefold of one of
the types 3.2(a)—(d) has one of these features. For unstable threefolds this follows immediately
from theorem 3.3. If F' has type 3.2(b) or 3.2(d) then the nullity at P is obviously > 2. If F' has
type 3.2(a) then we use the method of lemma 3.2: by mixing zy and z; together we can kill the
z314 term, reducing F to type 3.2(b). (One can also reduce type 3.2(d) to type 3.2(b) by mixing
together z3 and z4.)

To complete the proof, we claim that a generic F' of type 3.2(c) has an As singularity at P.
To see this, apply the proof of theorem 3.3 before (3.1). Then we have

f= wg — Toxg4 + $§w4 + Kw% + 2129 L(x3, T4)
+ 2L (3, 74) + 21Q (23, 74) + 22Q' (23, 4) + C(23,74)

After the substitution zo — x5 + :1:% we have

f =235 — zowy + K2l + 23 L(23,74) + (terms of degree > 1) (3.2)
with respect to the weights (%, %, %, %) For generic K and L the degree 1 terms define an isolated
singularity, and the claim follows from theorem 2.1. O

84. Sufficient conditions for instability

In this section we show that cubic threefolds with certain sorts of singularities are unstable (resp.
not stable). We begin with a treatment of the threefolds with a singularity of nullity > 2. It turns
out that the threefold A defined by

3 3
FA = zoz122 + 75 + 74

plays a central role. Calculation shows that A has three singularities of type D4 and no others. It
follows from theorem 3.3 that A is semistable, and A is strictly semistable because it has infinite
symmetry group.
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Theorem 4.1. The orbit of A is minimal. A cubic threefold with a D4 singularity is strictly
semistable and degenerates to A. A cubic threefold with any other singularity of nullity > 2 is
unstable.

Proof: We prove the last two claims first. Suppose that T is a cubic threefold with a singularity
of nullity > 2 placed at P. If the nullity is > 3 then we may choose coordinates so that

F = Kxz¢z2 + cubic(z1,...,24) .

Such an F has type 3.1(a) and is unstable by lemma 3.1. Now suppose the nullity is 2; we may
write
F = zoxsz4 + C(z1,22) + other cubic terms(x1,...,z4) .

With respect to the weights (%, %, %, %) we have
f(z1,...,24) = 2324 + C(x1,22) + (terms of degree > 1) .

If the singularity is not of type D4 then C has a multiple root by lemma 2.2. By a linear coordinate
change we may suppose that the z3 and 22z, terms vanish; then F has type 3.1(b) and is unstable.
If the singularity has type D4 then C has three distinct roots, and by a linear change of variables

we may suppose C = z3 + x3. Then F degenerates to Toz3z4 + 5 + 23 under the 1-parameter

group
(0, - - -, Ta) = (A 220, 71, T2, AT3, AT4) -

Finally, if A degenerates to some other threefold 7', then 7" must be semistable and also have
a singularity of nullity > 2. Therefore T degenerates to A. Since 7" and A degenerate to each
other they are projectively equivalent. O

The threefolds T'a,p defined in (1.1) play a similar central role for the threefolds with a
singularity of nullity 1. As mentioned in the introduction, if k¥ # 0 then T4 p and Ty24 xp are
projectively equivalent, and we write T, 8 = 44/B? for their projective equivalence class. When
B =1, Ty is a chordal cubic; in fact, T7,_o is the secant variety of the standard rational normal
curve of degree 4, which is the curve C of points [z, ..., z4] € CP* where the matrix

o X1 T2
Ty T2 I3
T2 X3 T4

has rank one. One can check that C is the entire singular locus of T} _». The singular points of a
chordal cubic are equivalent to each other under symmetries, each has rank one, and one can show
that the threefold does not contain any planes at all. It follows from theorem 3.3 that chordal
cubics are semistable. When 3 # 1, T3 has two As singularities, and when 8 = 0, T3 also has an
A; singularity. (The As singularities of the T4 p lie at [1,0,0,0,0] and [0,0,0,0, 1] with null lines
L1 and L3y, and the A; singularity of Tj p lies at [0,0,1,0,0].) There are no other singularities,
and it follows from theorem 3.3 that all the T3 are semistable. They are strictly semistable because
each T4 p is preserved by the 1-parameter group

ox: (Zoy--.,2a) = (Nxo, Az1, T2, X 3, A %2y) . (4.1)

Theorem 4.2. Suppose T is a cubic threefold with a singularity at P of nullity 1 and milnor
number u > 5. If the singularity is a double line then T is unstable. Otherwise,
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(i) if P has type As then T is strictly semistable and degenerates to some Tg, 5 # 1;
(i) if p > 6 and T contains no plane containing the null line, then T is strictly semistable and
degenerates to a chordal cubic;
(75i) if p > 6 and T contains a plane containing the null line, then T is unstable.

Proof: A double line makes T' unstable, because in suitable coordinates 7" has type 3.1(e). So
suppose henceforth that the singularity is not a double line. By choice of coordinates we may take

F = z(22 — zox4) + C(21,...,T4) . (4.2)

Probably the best way to follow the rest of this argument, and similar ones later, is to prepare a
large picture of the 4-simplex and place and remove coins to indicate coeflicients known to be zero,
or known to be nonzero, or unknown. This method makes it easy to tell what the result of one of
our linear substitutions is, and is how we discovered these arguments.

The z$ term must vanish, or else P is only an A, singularity. We write the terms divisible by
z? as x3(axy + bxs + cx4). At least one of a, b and c is nonzero, or else T would contain Lo; as a
double line. In fact, one of ¢ and ¢ must be nonzero because otherwise we would have b # 0 and
then P would be only an A3 singularity. By exchanging x5 and x4 if necessary we may take ¢ # 0,
and by rescaling the variables we may take ¢ = 1. By a substitution z4 — 24+ Az>+ )\ z3 we use the
z214 term to kill the 22z, and z2z3 terms. That is, a = b = 0. This has the side-effect of possibly
reintroducing the zoz3 and zozex3 terms, which we took to vanish in (4.2). By z3 — =3 + A2
we use the woxg term to kill the reintroduced zgz>x3 term. Then the other reintroduced term
vanishes automatically, for otherwise P is only an A3 singularity. For more convenient singularity
analysis, by a substitution z; — x1 + Az we use the a:%w4 term to kill the z12524 term. Now the
z173 term vanishes, for else P is only an A4 singularity.

We have killed so many terms that F' has type 3.2(c). In particular,

F = Awg + :voxg + x%m — ZoT2x4 + Brixoxs + terms marked by dots in figure 3.2(c)

for some constants A and B. The five terms given explicitly define F'4 g and are indicated by solid
squares in figure 3.2(c). This means that F' degenerates to F4 p under the 1-parameter group (4.1).
By the analysis leading to (3.2), with K = A and L(z3,z4) = Bzs, there are local coordinates
about P in which T is defined by

f(zy,. .. 2q) = 23 — 2024 — A2S — Br3z3 + (terms of degree > 1) (4.3)

with respect to the weights (%, %, %, %) If P has type As then the degree 1 terms must define an

isolated singularity, so that 44 # B? and T degenerates to T for 3 = 4A/B? # 1. Since T} is
strictly semistable, so is 7. On the other hand, if 4 > 6 then the degree 1 terms must not define an
isolated singularity, so 44 = B2. Suppose that T contains no plane containing the null line at P,
which is Lp;. Then A # 0, for otherwise T contains the plane z3 = £4 = 0. Therefore B # 0, and
by rescaling the variables we may take B = —2. Then A = 1, T degenerates to the chordal cubic
T1,_2, and T is strictly semistable. Finally, suppose T' contains a plane containing the null line.
Taking limits, we see that T4 g does also, and a calculation shows that this only occurs if A = 0.
This forces B = 0, so T has type 3.1(d) and is unstable by lemma 3.1. (Note: by the proof of
theorem 3.3, the milnor number at P is at least 7, so there is no cubic threefold containing an Ag
singularity and also a plane containing the null line. Our argument also shows that if 7' contains
an As singularity and a plane containing its null line, then A = 0 and 7" degenerates to Ty, the T3
with the extra singularity.) O
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85. Uniqueness theorems

In this section we characterize the special cubic threefolds A and T3 by their singularities. The
arguments are independent of the rest of the paper, and the only results given here that are used
later are the computations of the symmetry groups and projective equivalence classes of the 7.
Throughout this section, T denotes a cubic threefold with defining form F. We will begin with the
uniqueness of A.

Lemma 5.1. If one singularity of T lies in the null space of another, then T is singular along the
line joining them.

Proof: With no loss of generality we may suppose that one singularity lies at P = [1, 0,0, 0, 0],
that its null space contains the line Lg4, and that a second singularity lies at P’ = [0,0,0,0, 1].
Then all terms of F' divisible by x%, ToTy4 OT :1:?1 vanish, so T' contains Lg4 as a double line. O

Lemma 5.2. Suppose T has two isolated singularities of nullity 2. Then their null planes meet
along a line.

Proof: By the previous lemma, neither singularity lies on the null plane of the other. We need
only exclude the possibility that the null planes meet in a point. Suppose without loss of generality
that one singularity lies at P with null plane 3 = z4 = 0 and the other lies at P’ with null plane
9 = 1 = 0. Then all terms of F' divisible by :1:8, ToT1, ToT2, T3, T4To OF T4r3 vanish. Each
remaining term is divisible by a quadratic in z;, 2 and z3, so that T contains Lg4 as a double
line, contrary to hypothesis. O

Lemma 5.3. Suppose T has two isolated singularities of nullity 2. Then the hyperplane spanned
by their null planes contains no other singularities of T.

Proof: We suppose the singularities lie at P and P’, and that their null planes are zo = z4 =0
and zyp = z2 = 0. These planes span the hyperplane z5 = 0 and meet along the line Li3. All terms
of F' divisible by :cf, x;x1 or x;xs vanish for ¢ = 0 or 4, leaving

F = Kzorozy + 22(K'zog + K'24) + C(z1, 22, 3) .

Now, K # 0, or else T would contain Ly4 as a double line. By the substitution x4 — x4 + Az>
we use the zgzoz4 term to kill the xga:% term, and by zg — zg + Az2 we use the zyzox4 term
to kill the x3z4 term. These substitutions preserve the singularities and their null planes. After
rescaling to take K = 1, we have F' = zoxazs + C(z1, T2, z3). An extra singularity of T' lying in
the hyperplane o = 0 must have nonzero zy and z4 coordinates in order to avoid lying in either
null plane. But then its orbit under the 1-parameter group

(zgy.-.,x4) > (Amo,ml,mz,xg,/\_lm)

is a curve of singularities of 7" whose closure contains both the given singularities, contrary to the
hypothesis that they are isolated. O

Theorem 5.4. If T has three Dy singularities then T is projectively equivalent to A.

Proof: If the singularities are s;, s3 and s3, with null planes Ny, Ny and N3, then we claim
that Ny N Ny N N3 is a line. Otherwise, N3 N N; and N3 N N, are distinct lines, which forces
N3 and hence s3 to lie in the span of N; and N,, contrary to the previous lemma. We take
s1 =[1,0,0,0,0], s =[0,1,0,0,0] and s3 = [0,0,1,0,0], and suppose that the intersection of the
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null planes is Lz4. Then all terms of F divisible by z2, x;z3 or z;x4 vanish for i = 0, 1,2, leaving
F = Kzox122+C(z3,24). In order for the singularities to have type D4, K must be nonzero and C
must have three distinct roots. After a linear transformation we may take K = 1 and C' = z3 + z3.

O

Next we will characterize the T3. We begin by describing their symmetry groups and classifying
them up to projective equivalence. Each T4 p is preserved by the symmetries oy of (4.1), and also
by the coordinate reversal 7 : z; — x4_;. A tedious computation shows that if B # 0 and
4A # B? then this is the full symmetry group. (One considers the general linear transformation
that preserves each singularity and its null line and also acts trivially on the line spanned by the
Ajs singularities.) If B = 0 then the group is twice as large, containing the extra transformations

(T0y- -+ »m4) = (T0, £T1, T2, FT3,T4) -
If 44 = B2 # 0 then T4 p is a chordal cubic, with symmetry group PGL(2,C). Thus there are
three special values 8 can take: Ty has an extra singularity, T is the chordal cubic, and Ty, has
an extra symmetry.

Lemma 5.5. T3 is projectively equivalent to Tg: if and only if = B'.

Proof: Suppose Tg = Tg.. If either Tg or Ty is a chordal cubic then so is the other, so
we may suppose that 8 and B’ are different from 1. We choose A, B, A’, B’ with 8 = 4A/B?
and 8/ = 4A’/B'? and suppose that g € GL(5,C) carries Fa g to Far p. Since the connected
components of the stabilizers of these forms are the same subgroup of GL(5,C) and are conjugate
under g, g normalizes the 1-parameter group (4.1). After multiplying g by 7 we may even suppose
that g centralizes it. Then g is a diagonal matrix and it is easy to check that 44/B2 = 4A’/B"2. O

Lemma 5.6. Suppose T has a singularity of type A,, n > 4, and another singularity of any type.
Then the null spaces of the singularities do not meet.

Proof: We place the singularity known to have type A,, at P, with null line Ly;. By lemma 5.1,
the second singularity @ does not lie on this line, so we place it at [0, 0, 1,0, 0]. Again by lemma 5.1,
@Q’s null space misses P, so under the assumption that the null spaces meet we may suppose that
they meet at [0, 1,0,0,0]. Then L5 lies in the null space of Q. We will show that P is a non-isolated
singularity, which is a contradiction. All terms of F divisible by 3, zox1, 3 or z;7 vanish. By
mixing together z3 and z4 we may suppose that the zozox3 term vanishes. Then the zoz3 and
Tor2x4 terms must be nonzero, because the nullity at P is only 1. By rescaling the variables we
take the coefficients to be 1 and —1. By z3 — z3 + Az4 we use the xoa:§ term to kill the zpz314

term, and then by x2 — z2 + Ax4 we use the zoz2x4 term to kill the :Coa:Z term. This yields

F = $0(5B§ — Z2%4) + 22Q(z3,24) + C(z1,23,4) .

The 3 term must vanish, or else P is only an A, singularity. The z2z3 term must vanish, or else
P is only an A3 singularity. If the z2x4 term vanishes then T contains Ly; as a double line and we
are done. So suppose it does not vanish; by rescaling the variables we take the coefficient to be 1.
By 1 +— z1 + Az4 we use this term to kill the z;2% term, and by z; ~ x; + Az3 we use it to kill
the z1x374 term. Finally, by zg — z9 4+ Ax4 we use the zoz2x4 term to kill the :vgaci term, and by
To — To + Ar3 we use it to kill the zox3x4 term. We have reduced to the situation

F = a:o(xg — TaZ4) + m%m + wg(le + K'zy) + C(z3,74) -

We obtain a local defining equation for T at P by taking xo = 1 and then substituting o + 22 for
To. The result is
32 — zowy + 25 (K, + K'22 + K'zy) + C(2s, 24) ,

which is singular along the curve o = 3 = x4 = 0, so P is not isolated. O
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Theorem 5.7. If T has two As singularities then T is projectively equivalent to some Tg, f # 1.

Proof: We place the singularities at P and P’, and since their null lines are skew we may take
them to be Lg; and L34, respectively. All terms of F divisible by x2, z9z1, 3 or 473 vanish. Since
the nullity at P is only 1, the zoz2 and z¢z274 terms are nonzero, and the symmetric argument
shows that the :v4:1:§ and (again) zozox4 terms are nonzero. By rescaling the variables we take
the coeflicients of the xoxg, ToZ2T4 and :v%m terms to be 1, —1 and 1. Now we perform six linear
substitutions. First, by z¢ — x¢ + Az1 we use the xoacg term to kill the acla:g term. Second, by
T4+ T4 + Az3 we use the z4x? term to kill the z32? term. Third, by z3 — z3 + Azo we use the
zoz3 term to kill the zozoxs term. Fourth, by z; — z; + Azy we use the z%z4 term to kill the
T4xox1 term. Fifth, by 4 — x4 + Az we use the zgzox4 term to kill the xoxg term. Finally, by
To — To + Ax2 we use the x4x2x¢ term to kill the 1L'4£C% term. (Each even-numbered step differs
from the previous step by coordinate reversal.)

We have reduced to the situation

F = Aa:g + :cgarg + m%m — ToX2T4 + Brixzoxs3
+ (C2? + C'z3) + 72 (D23 + D'23) + 25 (Ex1 + E'z3)

for some constants A,...,E’. We have C' = 0, for otherwise P is only an Aj singularity. Then
D = 0, for otherwise P is only an Aj singularity. Finally, £ = 0, for otherwise P is only an A4
singularity. The symmetric argument proves C' = D' = E' = 0, so F = F4 p. We must have
4A # B? in order for the singularities to be isolated, so that 8 = 44/B? lies in CU{oc} and 8 # 1.

O

§6. The main results

In this section we prove the theorems stated in the introduction.

Lemma 6.1. The chordal cubics are the only semistable cubic threefolds with non-isolated singu-
larities.

Proof: Suppose T is semistable with non-isolated singularities. It follows from theorem 4.1
that each positive-dimensional component of the singular locus is a curve. We fix such a component
C and observe that C' is not a line by theorem 4.2. Since T has degree 3, it contains the secant
variety of C. C cannot lie in a plane, or else T" would contain this plane and be unstable by
theorem 4.2(iii). Since C does not lie in a plane, its secant variety is three-dimensional. If C
lies in a 3-space then T' contains this 3-space, and after a linear transformation we may take
F = z0Q(z1,...,24). Then T is unstable because of the 1-parameter group

(20, ..., 74) = (A" 30, AT1, AT2, AT3, AT4).

Therefore C does not lie in any hyperplane. Since a cubic surface can have at most 4 isolated
singularities [5], a generic hyperplane meets C in < 4 points, so that C' has degree < 4. It follows
that C is a rational normal curve of degree 4 and that 7' is its secant variety. O

Theorems 1.1, 1.3 and 1.4 follow from theorems 3.3, 3.5, 4.1, and 4.2 and lemma 6.1. To prove
theorem 1.2 we will need the following converse to theorem 4.2(ii).

Lemma 6.2. A cubic threefold that degenerates to a chordal cubic contains a singularity of nullity
one and milnor number > 6, but no plane containing its null line.
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Proof: Tt follows from the previous lemma that the chordal cubics form a minimal orbit.
Therefore Richardson’s relative form of the Hilbert-Mumford criterion applies [4, theorem 4.2].
That is, if T' degenerates to T7,_o then T is projectively equivalent to a threefold that degenerates
to T1,—o under some diagonalizable 1-parameter subgroup of SL(5,C) that stabilizes Ty _5. Since
all such subgroups are conjugate in the automorphism group of 77,5, we may take the group to
be (4.1). That is, we may suppose that 7" has type 3.2(c) and that

F =3+ wowg + 22x4 — zoToxy — 212973 + terms marked by dots in figure 3.2(c) .

The nullity at P is clearly one, the milnor number is at least 6 by the argument concerning (4.3),
and T cannot contain a plane because the chordal cubic does not. O

Proof of theorem 1.2: We showed in theorem 4.1 that the orbit of A is minimal. It follows
from theorems 4.1 and 4.2 that the only other possibilities for minimal strictly semistable orbits
are the Tg. We have just seen that the chordal cubics form a minimal orbit. The other T3 are
minimal because they cannot degenerate to chordal cubics by lemma 6.2, cannot degenerate to A
because they have singularities of milnor number > 4, and cannot degenerate to each other because
their symmetry groups all have the same dimension. O
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