A HOMOLOGICAL CHARACTERIZATION
OF HYPERBOLIC GROUPS

D. J. ALLCOCK AND S. M. GERSTEN

Abstract. A finitely presented group G is hyperbolic iff H;l)(G,R) =0 =

Hél)(G,R), where Hil) (resp. Hil)) denotes the ¢1-homology (resp. reduced £;-
homology). If I' is a graph, then every ¢1 1l-cycle in I' with real coefficients can be
approximated by 1l-cycles of compact support. A 1-relator group G is hyperbolic iff

HY(G,R) = 0.

§1. Introduction.

In [Gel] the second author showed that a finitely presented group G is word
hyperbolic iff a certain cohomology group vanishes, namely H (200)((}, ly) = 0.
G. A. Swarup asked whether there are analogous vanishing theorems in homol-
ogy. Our main result, Corollary 4.8, is that a finitely presented group G is word
hyperbolic (henceforth called hyperbolic) iff H fl)(G, R)=0= }_IQ(I)(G,R), where
Hil) denotes the (unreduced) ¢;-homology and where H'il) denotes the reduced
¢1-homology; their definitions are recalled in §2.

It is not clear whether there is any relation between vanishing theorems for /.-
cohomology and those for /;-homology, for while it is true that ¢, is the dual of
/1, the Banach space ¢ is not reflexive. For example, H (]‘OO) (G,R) and the reduced
group H (100)(G ,R) are both nonzero for every infinite finitely generated group G.

Our main technical tool, Theorem 3.3, states that every ¢; 1l-cycle with real
coefficients on a graph can be approximated by 1-cycles of compact support. We
give in 6.1 below an example due to E. Formanek, which shows that there is no
analog of Theorem 3.3 in general for higher dimensional cycles on a complex.

In §5 we show that if G is either a 1-relator group or the fundamental group of a
finite piecewise Euclidean 2-complex of nonpositive curvature, then H él) (G,R) =0.
It follows from this and from Theorem 4.5 that such a group G is hyperbolic iff
7Y (G R) =o.
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§2. The /;-homology and /.,-cohomology of a group.

A norm on an abelian group A is a function | |: A — R satisfying | — a| = |a|,
la+ a'| < |a| 4 |a’|, and |a| > 0 with |a| = 0 iff @ = 0, for all a,a’ € A.

We recall that a group G is said to be of type F,, if there is a CW-complex X’
of type K (G, 1) with finite n-skeleton. For example, G is of type F; iff it is finitely
generated and of type JF» iff it is finitely presented.

If G is a group of type F, 11, let X’ be a CW-complex of type K (G, 1) with finite
(n + 1)-skeleton and let X be the universal cover of X’. A summable i-chain f on
X with values in A is a skew-symmetric function from the oriented i-cells of X
with values in A (so f(€) = —f(e) where e is an i-cell and € is the same geometric
i-cell with the opposite orientation') such that Y__|f(e)| < oo, where the sum is
over all oriented i-cells e. It is convenient to think of the chain f as an infinite sum
Y cco f(e)e where O is an orientation on the i-cells, that is O contains precisely
one of the pair e, € for each oriented i-cell e. Then we define the ¢;-norm |f| of f
by

(2.1) If1=>_1f(e)l.

ecQ

If i < n+1 then because X’ has only finitely many i-cells, there is an upper bound
on the ¢;-norms of the boundaries de of i-cells e. This means that if CZ.(l)(X ,A)
denotes the set of summable i-chains with values in A, then the function 0 extends
to a continuous homomorphism 9 : C’Z-(l)(X JA) — C’i(i)l (X, A). One checks that
9% = 0, so we have a chain complex defined in a range of degrees ¢ < n+1. The /;-
homology Hi(l)(X, A) is defined in the usual way as Zi(l)(X, A)/BZ-(I)(X, A), where
Zi(l)(X , A) is the subgroup of summable i-cycles and where Bi(l) is the image of
d: C’Z-(Jlr)1 (X, A) — C’i(l)(X, A). This makes sense for i < n.

Now we consider the /., cohomology groups. We define C’(ioo) (X, A) to be the sub-
group of cellular i-cochains h such that there is a number M, > 0 with |h(o)| < M},
for all i-cells o. Tt follows from the finiteness of X’" "% that the coboundary dh lies
in C’E;l) (X, A) if i <n. One defines cocycles Zéoo)v coboundaries BEOO) = 5(02;01)),
and cohomology groups H Zoo) = Z(Zoo) / BEOO) in the usual way. This definition makes
sense for all 7« < n + 1, since one does not require the finiteness conditions on the
(n + 2)-cells to formulate the condition 6h = 0 for h € C’("O‘g)l (X, A).

The value of the ¢;-homology and /.,-cohomology groups arises from their quasi-
isometry invariance.? It is known that the condition that a group G have type F,, is
a quasi-isometry invariant [Al][Gr2]. It is also known that if X’ and Y’ are a K(G, 1)
and a K(G', 1), respectively, both with finite (n+1)-skeleta, and if the groups G and

G’ are quasi-isometric, then there are isomorphisms H Z-(l)(X JA) 2 H Z-(l)(Y, A) for

1Precisely, € is obtained from e by precomposing the characteristic mapping of e with some
fixed orientation reversing involution of the i-cell.
2For the notion of quasi-isometry of metric spaces and of finitely generated groups see [GH].
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i <n and H(ioo) (X, A) ¥ HZOO)(Y, A) for i <n+1; here X and Y are the universal
covers of X’ and Y respectively. A proof of these facts can be constructed along the
lines of [Ge2] §11. We may thus unambiguously define Hi(l)(G,A) as Hi(l)(X, A)
and Hi (G, A) as Hi (X, A), and we note that the vanishing of either of these
groups is a geometric property in the sense that it is an invariant of quasi-isometry
type.

In this paper we shall be interested mainly in the case A = R. For i <n + 1,
Zi(l) (X,R) is a closed subspace of C’i(l)(X ,R) since it is the kernel of the bounded
linear operator 9 : C’i(l)(X, R) — C’Z-(i)l (X,R). However, the image BZ-(I)(X, R) need
not be a closed subspace. It is usual to define the reduced ¢;-homology H Z-(l) (X,R)
to be Zi(l) (X,R)/B;(X,R), where B;(X,R) is the closure of B;(X,R) in the normed
linear space C’i(l)(X, R) under the ¢;1-norm, defined in (2.1) above. I:Ii(l)(X, R) is
defined for ¢ < n + 1 since the closure operation B,,11(X,R) does not depend on

the continuity of 0,2, and it is quasi-isometry invariant in the range where it is
defined.

§3. The approximation theorem for summable 1-cycles.

We will use Serre’s formulation of a graph I' as consisting of two sets, its vertices
V(T') and edges E(I"). The set E(T") is equipped with a fixed-point-free involution
e — e as well as the initial-vertex map ¢ : E(I') — V(I'). One defines the terminal
vertex 7(e) of an edge to be ¢(€). Serre’s notion of an edge corresponds to what
is usually called a directed edge, since one of its vertices is distinguished as its
initial vertex and the other as its terminal vertex. A path is a sequence (e;) of
edges satisfying Te; = te;4; for all <. A path is simple if the vertices te; are all
distinct. A circuit is a path (ey,...,e,) with 7e, = teq, up to the equivalence
relation that two paths represent the same circuit if one is obtained by the other
by cyclic permutation of its edges. Since our notion of edge includes a direction,
these concepts might also be called “directed paths” and “directed circuits”.

A real-valued 1-cochain is a function f : E(I') — R such that f(e) = —f(é)
(skew-symmetry) for all e € E(I"). For each vertex v of I" we define the divergence
of f at v to be

Divy(f) = Y fle),

Le=v

provided that the sum converges absolutely. The 1-cochain f is called a 1-chain if
f has finite support. If e is an edge of I" then e is identified with the 1-chain which
takes the value 1 on e, —1 on &, and is zero on all other edges of I.

A 1-cochain f is called, by a slight abuse of terminology, a summable (or ¢;)
1-chain if it is summable as a function on E(I"). (This definition of a summable
chain agrees with that given in §2.) In this case, Div,(f) is defined for all vertices
v, and we observe that f is a summable 1-cycle iff Div,(f) = 0 for all vertices v.
We will write I'; (f) for the set of edges on which f takes positive values.

Here is a geometric interpretation of these concepts. A cochain may be regarded
as a “flow” along the edges of ' (f), with the magnitude of the flow along an edge
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e given by f(e). An edge of I'y (f) is an edge of I" which points in the direction of
the flow. Div,(f) is the net flow out of the vertex v, and f is a cycle just if the
substance flowing is conserved. The following lemma is a combinatorial analog of
Stokes’ theorem.

Lemma 3.1. IfT is a graph and f is a summable 1-chain on T", then

> " Div,(f) =0.

Proof. For each e € E(T') the term f(e) occurs in the sum Div,.(f) and the term
f(€) = —f(e) occurs in the sum Div,.(f). By absolute convergence we may rear-
range terms freely; after doing so, all terms cancel.

Lemma 3.2. IfT is a graph and f is a summable 1-cycle on T' such that T (f)
contains no nontrivial circuits, then f = 0.

Proof. Suppose that f(eq) = A > 0 for some edge eg. Let I be the subgraph of T
defined by the condition that e, e € I if either e or € lies in a path of I'; (f) that
begins at teg; that is, IV is the smallest subgraph of I' that contains all edges of
all paths in T'; (f) which begin at eg. Let f’ be the summable 1-chain on T' which
coincides with f on I and vanishes elsewhere. If v is a vertex of I then an edge
of 'y (f) whose initial (resp. terminal) vertex is v does (resp. might) lie in ' (f7).
This shows that Div, (f’) > Div,(f) = 0 for all vertices v. Lemma 3.1 shows that
>, Divy(f") = 0, so we conclude that Div,(f’) = 0 for all v. Taking v = tey we see
that teqg must be the terminal vertex of some edge of I'y (f’) and hence of T', (f).
This contradicts the hypothesis that I'y (f) contains no circuits, completing the
proof.

We turn now to the main result of this section. We call a family F of 1-cocycles
coherent if for any two 1l-cocycles f and ¢ in F and for each edge e we have
f(e)g(e) > 0. That is, if both f(e) and g(e) are nonzero then they have the
same sign. If ¢ = (ey,...,e,) is a simple circuit in T' then we construct the 1-
cycle 3" e;, which we will also call ¢ and refer to as a simple circuit. This
duplicate definition of ¢ should cause no confusion, since the (simple) circuit may
be reconstructed from the 1-cycle.

Theorem 3.3. If T is a graph and f is a summable real valued 1-cycle on T', then
f can be approximated arbitrarily closely in the ¢1-sense by finite sums of simple
circuits with real coefficients. More precisely, there is a countable coherent family
C of simple circuits and a function g : C — [0,00) so that f =) g(c)c, where the
convergence of the sum is monotone.

Proof. The support of f is countable, since f is summable; this shows that the
family of simple directed circuits in 'y (f) is countable. We take C' to be this
family, which is obviously coherent. The space of functions from C' to [0,00) is
partially ordered in the obvious way: g > h if g(c) > h(c) for all ¢ € C. To
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each summable g : C' — [0, 00) there is associated the cocycle z, (not necessarily
summable) on I' defined by
Zg = Z g(c)c.

ceC

The convergence is monotone because g(c) > 0 for all ¢ and C' is a coherent family.
Consider the set S of functions g : C' — [0, 00) satisfying

(3.3.1) 0 < z4(e) < f(e) for all e € T (f).

A standard Zorn’s lemma argument shows that S has a maximal element, say g.
We will complete the proof by showing z, = f.

By (3.3.1), I's.(f — z4) is a subset of I';.(f). If ' (f — z4) contained a simple
circuit, say co, then letting a be the smallest value taken by f — 2z, on any edge of
co we would find that the function ¢’ : C' — [0, 00) defined by

‘o) g(c) + a, if ¢ = cg;

C) =

g g(c) otherwise,

lies in & and strictly dominates g, contradicting the maximality of g. Therefore
I't (f — z4) contains no simple circuits and thus no circuits. By lemma 3.2 we have
[ — 24 =0, completing the proof.

Remark. It is natural to ask whether theorem 3.3 admits generalizations, allowing

approximations of summable n-chains in CW complexes. Example 6.1 below, due
to E. Formanek, shows that this is not possible in general.

Corollary 3.4. If T is a tree, then every summable 1-cycle on T is zero.

If T is an arbitrary graph then Z;(I',R) is a closed subspace of Cy(T",R) for the
¢1-norm topology, so we can consider its completion Z;(I,R) ¢ C(I',R). The
continuity of the boundary map d : C1(I',R) — Co(T',R) shows that Z;(I',R) C
ZW(I',R). We have

Corollary 3.5. For every graph T, Zy(I',R) = Z()(I', R).

Proof. It f € Z (1)(F,R) then it follows from Theorem 3.3 that f can be approx-
imated by 1-cycles of compact support. Since Z;(I',R) is closed in C)(T, R), it
follows that f € Z;(T,R).

84. Hyperbolic groups.

A hyperbolic group G is a finitely presented group satisfying the linear isoperi-
metric inequality for fillings of edge-circuits in its Cayley graph [GH|[Gel]. If X is
a space of type K(G, 1) with finite 2-skeleton and X is the universal cover of X',
then G is hyperbolic iff there exists K > 0 (the isoperimetric constant) so that
for all z € Z1(X,Z) there exists ¢ € C3(X,Z) with 0c = z and |c| < K|z| [Ge5].
The norms here are both ¢1-norms, for a basis of oriented i-cells for C;(X,Z), for
i=1,2.

For the remainder of this section we abbreviate H;(X, R), Hz-(l)(X, R), Bi(X,R),
etc., by H;, Hi(l), B;, etc.
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Proposition 4.1. If G is a hyperbolic group, then Hfl) = 0.

Proof. Given f € Z;l) we must show that f = dc for some ¢ € C’él). By Theorem 3.3
we can write f = Y .., a;2; where {%; | i > 1} is a coherent family of compactly
supported integral 1-cycles on X and where a; > 0 for all 1.

By hyperbolicity there are ¢; € Co(X,7Z) with dc; = z; and |¢;| < K|z for all
i > 1, where K is the isoperimetric constant. Let ¢ = ). a;¢;. We calculate |¢| <
Yoiaile] < KDY ailz| = K|)Y ), a2 = K|f|, where the second-to-last equality
follows from the coherence of the z;. In particular this shows that ¢ is a summable
2-cochain and justifies the interchange of summation and boundary map in the

calculation d¢c = Z,L a;0c; = ZZ a;z; = f. This completes the proof that Hfl) =0.

The boundary map 0 provides a surjection j : Cy — By, which induces a norm,
called the filling norm, on B;. The completion of B; with respect to this norm is
denoted Bl, and j extends to a continuous map (in fact a surjection; see below)
R C’él) — Bj. The identity map i : By — Z; is continuous, where B (resp. Z1)
is equipped with the filling (resp. ¢;) norm, and therefore extends to a continuous
map i : By — Zgl).

Lemma 4.2. The sequence
4.2.1 0—2zW/2, - B, Lz gL g
2 1 1

of linear maps of vector spaces is exact. (The second map is induced by the restric-
tion to Zél) of the completion j of the bounday map j : Co — Bj.)

Proof. We will use several times the fact that if C is a normed vector space and
7 is a closed subspace, then the completion of C'/Z coincides with the quotient of
the completion of C' by the closure therein of Z, i.e. C/’/\Z — C/Z, where “’s denote
completions. The last paragraph of the proof of theorem 1.5.3 in [KR] is essentially
a proof of this assertion.

Since By = C4/Z;, passing to completions shows that the natural map
02(1)/22 — By is an isomorphism. Therefore the restriction of this map to Zél)/Zg
is injective, proving exactness at the term Zél)/Zg of 4.2.1.

The map 0 : Cy — Cy factors as the composition i 0 j : Cy N B, N Z; C (.
Therefore the completion d factors as 0 J. Since j is surjective (by the fact above),
we have the exact sequence

0 — Ker(j) — Ker(9) — Ker(i) — 0.

Since Ker(j) is the kernel of the completion j : C’él) — By, namely Z,, and Ker(é) =
Zfl) by definition, we have Ker(2) = Zél)/Zg, proving exactness of 4.2.1 at B.

Because 0 = i o j with j surjective, we see that Im(9) = Im(i). Therefore
Zgl)/Im(i) = Zfl)/Bf) = Hfl). This proves exactness at the terms Zfl) and Hl(l)
of 4.2.1, completing the proof.



Lemma 4.3. If G is of type F3, then there is an exact sequence
(4.3.1) 0— Z2/Bél) — H2(1) — Zél)/Zg — 0,

where 22 denotes the closure of Zs in C’él).
Proof. This follows from the filtration BS" € Z, € Z§V.

Remark. The term Zél) /Z5 in (4.3.1) represents the obstruction to approximating

a summable 2-cycle by 2-cycles of compact support. The term Zs / Bél), as we shall
see shortly, represents the obstruction to the linear isoperimetric inequality holding
for 2-cycles.

Proposition 4.4. If G is a hyperbolic group then HQ(I) =0.

Proof. By a result of Rips [GH] hyperbolic groups are of type Foo, so we can take

X" a K(G, 1) with finite n-skeleton for all n and let X = X’ as usual.

Now B; = Z; as normed linear spaces over R, where B; is equipped with the
filling norm, so By =27, = Zfl), where the last equality follows from Corollary 3.5.
Thus the map 7 in (4.1.1) is an isomorphism, and it follows that Zél)/ZAQ = 0. Thus
every summable 2-cycle can be approximated by 2-cycles of compact support. By
[AB] a hyperbolic group satisfies a linear isoperimetric inequality for fillings of
compactly supported 2-cycles. By approximation it follows that the linear isoperi-
metric inequality holds for fillings of summable 2-cycles. It follows that the term

ZQ/Bél) = 0. Thus Hg(l) = 0 by Lemma 4.3, and the proof is complete.
We can now state our main result

Theorem 4.5. A finitely presented group G is hyperbolic iff Hfl) = 0 and
ZM 12, =0
2 2 =Y.

Remark. The assertion that Zél) — 7, is that every summable 2-cycle on X can
be approximated by real 2-cycles of compact support. If G is of type F5 then
H’S)(G, R) is defined (see §2) even though Hél) may not be defined, and it is equal
to Zél)/Zg, where Zy = By = Zg is the closure of Z5 in C’él). If G is of type F3, then
Hél) is defined, and one has the exact sequence (4.3.1) exhibiting f_fél) = Zél)/Zg

as a quotient of Hél).

Proof of Theorem 4.5. The vanishing of Hfl) and Zél)/Zg for a hyperbolic group
follow from the preceding lemmas.

We assume now that G is of type Fo with H fl) = 0. The argument that follows is
a reduction to the main result of [Gel], that a finitely presented group is hyperbolic
iff H (200)(X ,R) “vanishes strongly”; this means that there is a constant K > 0 so
that for every f € Z(zoo)(X, R) thereisa c € C(loo)(X, R) so that f = dc and so that
|cloo < K| f]oo-
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Lemma 4.6. The vanishing of Hl(l) 18 equivalent to the linear isoperimetric in-
equality for summable 1-cycles. Formally, Hfl) =0 ff 4K > 0 Ve > 0 Vz €
Zil) dec. € C’Q(l) such that

(1) dcc = 2, and

(2) ledr < Kzl +e.

Proof. One direction is clear, since the linear isoperimetric inequality for summable
1-cycles implies a fortiori that they admit summable fillings. For the converse,

assume that H fl) = 0. It is obvious that the sequence
Cél) i Z%l) — Hl(l) — 0

is an exact sequence of linear maps between vector spaces. Because H fl) =0, we
have an algebraic isomorphism C’él) /Ker () Zfl). Since 9 is continuous, the Ba-
nach inversion theorem implies that the inverse of this bijection is also continuous,
so the /; and filling norms on Zil) = Bgl) are equivalent. This is just the linear
isoperimetric inequality for summable 1-cycles. The assertions (1) and (2) in the
proposition amount to interpreting this in terms of the definition of the filling norm
as a quotient norm (i.e., in terms of infima), and the proof is complete.

Suppose now that f € Z(200)- If z € Zy, we set (F,z) = (f,c), where c € Cél) is
such that dc = z. Note that X is contractible, so such ¢ certainly exist. The main
step of the argument is contained in the next result.

Lemma 4.7. The map F : 7, — R is well-defined, linear, and |F|x < K|f|co,
where K is the constant in Lemma 4.6.

Proof. Let ¢, € CSV be such that dc = d¢ = 2. Then ¢ — ¢ € Z{". Since

Zél) = 7, it follows that there is a sequence of elements 2z, € Zs, n > 1, so that
2z, — ¢ — ¢, where convergence is in the sense of the /;-norm. Since Z, = Bs,
there are elements y,, € C5 so that z,, = 0y, for all n. Now calculate (f,c— ) =
(f,limz,) = lim(f, z,,) = lim(f, Qy,) = lim(d f, y,,) = 0; the second equality holds
here since f € Z(Qoo)7 the convergence z,, — ¢ — ¢ is in the /1-sense, and /., is the
dual of ¢1. Thus (f,c) = (f,), and it follows that F is well-defined. A familiar
argument we omit shows that F'is linear.

Now with z € Z1, let ¢ > 0 and let ¢, € C’él) be such that de¢, = 2z and
lcel1 < K|z|1 + €; the existence of ¢ is guaranteed by Lemma 4.6. Now calculate
[(F, 2)| = |(f, ce)| < |floolCelt < |floo(K|2|1 + €). Since this holds for all € > 0, it
follows that |(F, z)| < K|f|so|z]1. It follows that |F|. < K|f|~, and the proof of
the lemma is complete.

Since F' : 71 — Ris a bounded linear functional, it follows from the Hahn-Banach
theorem that F' admits a bounded linear extension H to C; with the same norm.
Hence |H|sx < K|f|oo- Now calculate for ¢ € Csy, (0H,c) = (H,0c) = (F,0c) =
(f,c), and hence 6H = f. This establishes strong vanishing of H (200) (X,R), and it
follows that G is hyperbolic. This completes the proof of Theorem 4.5.
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Corollary 4.8. A finitely presented group G is hyperbolic iff Hfl) = ffél) =0. O

Remark. S. Weinberger has conjectured that a finitely presented group is hyperbolic

iff H fl) = 0. This assertion remains open at the time of writing. To establish it, in
view of Theorem 4.5, would be equivalent to showing that summable 2-cycles can

be approximated by 2-cycles of compact support if H fl) = 0.

Remark. The exact sequence (4.2.1) has a higher dimensional analog proved in the
same way when G is of type F, 11, namely, the exact sequence

0— I:[r(zljl — B, &R Zfll) — HT(ll) — 0.

To understand this better, one introduces the group Iy(bl) = Zn / By(bl) which is defined

for groups G of type F,4+1. Then one has from the filtration By(bl) - Zn C Zf(ll) the
short exact sequence
0— IT(LD — H,(LU — ﬂr(bl) — 0,

which is the analog of (4.3.1), and the exact sequence
0—>Ir[7(121 —>Ben—€>2n—>17(ll) — 0.

IT(LU should be thought of as the obstruction to linear filling of summable n-cycles

while HS) is the obstruction to approximating summable n-cycles by n-cycles of
compact support. Thus Corollary 4.8 says that the finitely presented group G is

hyperbolic iff both obstructions I fl) and P_IQ(U vanish.

§5. Vanishing theorems for Hél).

Proposition 4.4 established that HQ(I) vanishes for a hyperbolic group. In this
section we prove that for all 1-relator groups and for all fundamental groups of
finite piecewise Euclidean 2-complexes of nonpositive curvature one has vanishing

of H2(1). For these groups the hyperbolicity criterion of Corollary 4.8 reduces to the
vanishing of H fl) .

First let G be a 1-relator group, so G is defined by a presentation consisting of
a finite set of generators and a single defining relation. We shall prove

Theorem 5.1. If G is a I-relator group then H;l)(G, R) =0.

An immediate consequence of this result is

Corollary 5.2. The 1-relator group G is hyperbolic iff H{l)(G,R) = 0.

Proof. If G has nontrivial torsion, then it is known that G is hyperbolic; this is a
consequence of the “spelling theorem” of B. B. Newman [LS] p. 205. Thus Hl(l)

and H2(1) are both zero in this case.
If G is torsion-free, then by Lyndon’s identity theorem [LS] the 1-relator pre-
sentation for G is aspherical, so hyperbolicity of G is equivalent to the vanishing
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of Hfl) and H2(1) by Corollary 4.3. But HQ(I) vanishes by Theorem 5.1, so hyper-

bolicity is equivalent to the vanishing of H fl) , and the corollary follows from the
theorem.

Definition. Suppose that K is a subcomplex of the CW complex L such that K =
T x I, where T is a complex and I = [0,1] C R. We say that K is isolated in L if
L — (T x(0,1)) is a subcomplex of L.

Lemma 5.3. Suppose that the subcomplex K =T x I with T a tree is isolated in
the 2-complex L. If f is an {1 2-cycle on L, then f vanishes on all 2-cells of L of
the form e x (0,1), where e is an edge of T.

Proof. If e is an edge of T', we define F'(e) = f(e x (0,1)). It is readily checked that

F'is a summable 1-cycle on T". But Zil) (T, R) = 0 for every tree T', by Corollary 3.4.
It follows that F' = 0, and hence f(e x (0,1)) = 0 for all edges of T, and the lemma
is established.

Lemma 5.4. Suppose that G = H xp K (resp. G = Hxp) where F is a finitely
generated free group and H and K (resp. H) admit finite aspherical presentations.

Then HSY(G,R) = 0 iff HSV(H,R) = 0 = HSV(K,R) (resp. HS" (H,R) = 0).

Proof. We write out the proof in the HNN case, G = Hx*p; the amalgam case
involves only notational changes. Let X’ be a finite 2-dimensional K (H,1). Then
we can construct a K(G,1) by taking Y’ = X' U (T x [-1,2])/ ~, where I is a
finite connected graph, and I" x {i} is attached to X’ by cellular maps inducing the
given injective homomorphisms F' — H, 1 = —1,2. We can subdivide the interval
[—1,2] at points 0,1 and take the induced product cell structure on I' x [—1, 2],
so that I" x [0, 1] becomes a subcomplex of Y’. The proof that Y’ is a K(G,1) is
standard and makes use of the Mayer-Vietoris exact sequence in homology for Y,
the universal covering space of Y.

Note that the preimage of I' x I in Y is a disjoint union of isolated subcomplexes,
each isomorphic to T' x I, where T is the universal covering of I'. Furthermore, the
preimage of X’ in Y is a disjoint union of isomorphic copies of X, the universal
covering space of X’.

We suppose first that H2(1)(G, R) =0, and we let f be a summable 2-cycle on X.
Then f can be extended to a summable 2-cycle F' on Y by defining F' to be f on
one connected component of the preimage of X’ in Y and zero on all of the other
such connected components, as well as setting F' = 0 on all 2-cells of Y over those
of T x (=1,2). But HSV(Y,R) = Z"(V,R) = 0, so it follows that F = 0. Thus
f =0 as well.

Next suppose that H2(1)(H, R) = 0 and let F' be a summable 2-cycle on Y. By
Lemma 5.3 it follows that F' vanishes on all 2-cells of Y which map to those of
I' x (=1,2). But this means that F' is supported on the preimage of X’ in Y.
It follows from Hél)(H, R) = Zél)(X, R) = 0 that F restricted to each connected
component, of the preimage of X’ in Y is zero, and hence F' = 0. This completes
the proof.
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Proof of Theorem 5.1. 1t suffices to consider torsion-free 1-relator groups, as the
argument in the first paragraph of the proof of Corollary 5.2 shows. Given a 1-
relator presentation P whose relator R is cyclically reduced and not a proper power
in the free group of the generators, we shall prove that Hél) (G,R) = 0, where G
is the group defined by P, by induction on the length ¢(R) of the word R. The
induction starts when ¢(R) = 1, for in this case G is free.

For the inductive step, we need to recall the structure of 1-relator groups in
the form presented in [MS] (c¢f. also [LS| pages 198-200). We assume that G has
a l-relator presentation P with /(R) = n > 1. There are two cases, depending
on whether some generator of P actually occurring in R has exponent sum 0,
or the contrary case when none of the generators appearing in R has exponent
sum 0. In the first case G = Hx*pr where H is a l-relator group defined by a 1-
relator presentation whose defining relator S has ¢(S) < n and where F' is a finitely
generated free group. In the second case, there is an element 1 # g € G and a
number d > 0 so that K = G *,_,a (x), where K = Hx*p; here H admits a 1-relator
presentation whose defining relator S has £(S) < n, x is of infinite order, and F is
a finitely generated free group.

In either case it follows from Lemma 5.4 that Hél)(H, R) =0 iff Hél)(G, R) = 0.
But Hél)(H, R) = 0 by the induction hypothesis, so it follows that Hél)(G, R) = 0.
This completes the induction, and the proof that Hél)(G, R) = 0 is complete.

Example 5.5. 1t follows from Theorem 5.1 that Hfl)(ZQ,R) # 0. In fact, one can
give explicit examples of nonzero classes in this homology group. If z, denotes an
edge-circuit which goes once in the positive direction around a square of side n,

Zn . . .
then it is easy to check that 2 =3 -, — is a summable 1-cycle which admits no
='n

summable filling.

Remark. One of the open problems on 1-relator groups that has stimulated much
interest since the second author proposed it nearly a decade ago asks whether a
l-relator group is hyperbolic iff it contains no Baumslag-Solitar subgroups (x,y |
yzP = x2%), p,q > 0. One might ask whether the homological methods introduced
here can be of use in attacking this previously unapproachable question.

Theorem 5.6. If G is the fundamental group of a finite piecewise Euclidean sim-
plicial 2-complexr K of nonpositive curvature, then Hél)(G, R) =0.

Proof. For the definitions and properties of complexes of nonpositive curvature and
CAT(0) spaces we refer the reader to W. Ballmann’s article in [GH]. We need here
the fact that the universal cover K of K is a simply connected nonpositively curved
complex with finitely many isometry types of simplices, and hence, by the theorem

of M. Bridson [Br|, K possesses unique geodesic segments connecting any pair of
points. We need

Lemma 5.7. Let o be an open 2-simplex of K and let p € o. Then there is a
direction u in the tangent space of o at p so that no geodesic segment in K passing
through p with tangent directions +u passes through a vertex of K.
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Proof. There are only countably many vertices v € K so there are only countably
many tangent directions at p of the geodesic segments [p, v]. Choose u to avoid all
of these directions and their negatives.

Returning to the proof of the theorem, let f be a summable 2-cycle on K and let
o be an open 2-simplex of K. Let p € o and choose the direction u in the tangent
space to o at p as in the lemma. Consider 7', the union of all geodesic segments
through p in K whose tangent directions at p are +u. Then T is a tree with a
discrete set of vertices where T intersects the 1-skeleton of K. The edges of T' are
the nonempty intersections of 1" with 2-simplices of K. Such an edge e has a product
neighborhood in the 2-simplex ¢ in which it lies, and these product neighborhoods
fit together to give a product neighborhood N =1 x I of T in K which does not
meet K(©) (note however that one cannot choose N of uniform thickness in the
normal I-direction in general in the metric of K ). Having fixed an orientation on
I, giving an orientation on N No = e X Iis equivalent to giving an orientation on
the edge e. In this way we define a 1-cochain F on T so that F(e) = f(o), where
e = T'N o and where the orientations are compatible in the sense just described.
That F is a summable 1-chain on 7" follows from the summability of f and that F
is summable 1-cycle follows from the facts that f is a summable 2-cycle and that
T does not meet K(©. Tt follows from Corollary 3.4 that F' = 0, and hence in
particular f(o) = 0. Since o was an arbitrary 2-simplex, it follows that f = 0, and
the proof is complete.

Remark. For higher dimensional CAT(0) spaces it is certainly not the case that

Hél) vanishes (although the question of approximating summable 2-cycles by 2-
cycles of compact support remains open). For example, if X is the tesselation of
R3 by the unit cube lattice and z, is the 2-cycle which is the boundary of a cube of
side n with the orientation determined by the outward pointing normal, then it is

easy to see that znzl % is a summable 2-cycle which admits no summable filling;
thus H{ (73, R) # 0.

Corollary 5.7. The fundamental group G of a finite piecewise Fuclidean 2-complex
of nonpositive curvature is hyperbolic iff Hfl)(G,R) =0. O

§6. Examples. R

Theorem 3.3 says that if I is a graph, then elements of Ker(9) can be ¢;-
approximated by elements of Ker(9), where 0 : Cy(I', R) — Cy(T',R) is the bound-
ary map and 9 is its ¢;-completion. Equivalently, Zfl)(X ,R) = Zl(X ,R) for every
CW-complex X. It is natural to ask whether there is an analogous approximation

theorem for n-cycles, i.e. whether Z,Sl)(X, R) = Z,(X,R) for n > 2. The next
example shows that it is futile to look for general results of this type.

Example 6.1 (E. Formanek®). Let G be the free group with free basis {z,y}. Then
the row vector M = (2 — z,y — 2) defines a monomorphism of right RG-modules

Sprivate communication
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a
b

and b=1+ 1y +1y?+..., then (2—2)a = (2 — y)b = 2, so the induced map of

(RG)Q_)RGbY( )H(Q—I)a—l-(y—Q)b. However if a = 1+ Jo + 222 + ...

—

¢1-completions @2 — RG is not injective.

For each n > 2 one may use this to build a CW complex X of dimension n and a
summable n-chain thereon that cannot be /;-approximated by compactly supported
n-chains. Furthermore, we may take X to admit a cocompact free action of G and to
be simply connected (if n > 2) or aspherical (if n = 2). The topological construction
is standard: if n > 2 then take X as the universal cover of X’, where X' is the join
of two circles and an n — 1-sphere with a pair of n-cells attached in such a way that
boundaries of their lifts to X are given by the entries of Formanek’s matrix M.
Then M gives the boundary map C,, — C,,_1, so Z,(X) = 0 but ZT(LD(X) # 0.
The same basic construction yields a slightly different result for n = 2. Then X’
may be taken to be the 2-complex associated to the presentation

(w,y, 2|1 =22wz et =22y 1y 1)
and X to be the covering space of X’ associated to the normal closure of z; the
free group G is the group of covering transformations. X’ is aspherical because it is
the presentation complex of an iterated HNN extension of (z) = Z. The boundary
map C2(X) — C1(X) has image in a rank one G-submodule of C (X)), with matrix

given by M. As before, this shows that Z5(X) = 0 but Zél)(X) # 0.

Question. If X is a simply-connected 2-complex which admits a discrete cocompact
group action by cellular homeomorphisms, can summable 2-cycles on X be approxi-
mated by 2-cycles of compact support? This is for our purposes the most interesting
open case of the general question of approximating summable n-cycles by cycles of
compact support that is not already answered positively by Theorem 3.3 for n = 1
and negatively by examples constructed from Formanek’s example in the preceding
paragraph.

In the introduction we noted that the lack of reflexivity of the Banach space ¢4

has the peculiar effect that the vanishing theorems for hyperbolic groups are in
2

different degrees, H (50) and H fl). We complete this discussion by showing
Proposition 6.2. If G is an infinite finitely generated group then H(loo)(G, R) and
the reduced group FI(loo)(G, R) are both nonzero.

Proof. Let X’ be a K(G, 1) with finite 1-skeleton and let X be the universal cover
of X’. Choose a vertex vy of X as base point and give the one-skeleton X the
path metric d where each edge has length 1. For an oriented edge e of X set
A(e) = d(vg,Te) — d(vg,te). Then A is a 1-cocycle, and the triangle inequality
shows that |Al, = 1 (where |A| denotes the sup (or £,) norm of the cochain A).
Furthermore A ¢ B(loo) (X,R) since its potential function D : X(©) — R, given by
D(v) = d(vp,v), is unbounded, as follows since G is infinite.
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As for the reduced cohomology group H (100) (X, R), recall that this is the quotient
of Z(loo) (X, R) by the closure of B%oo) (X,R). We claim that the cocycle A is not in
the closure of B(loo) (X,R). To see this we need the following

Lemma 6.3. If f € Z(loo) (X,R) is in the closure of B(loo) (X,R), then every poten-
tial function F for f satisfies

lim F(v)

= 0.
d(vg,v)—00 d(Uo, 2))

Proof. Let € > 0 and let h € C?_,(X,R) be such that |f — dh|s < €. Let v =

(o0)
eres...e, be a geodesic edge-path starting at vy and ending at v. Then

n

F(v) = F(vo) = (h(v) = h(v0)) = Y _(f(es) — 6h(es)),

=1

|F'(v)]

so |F(v)| < ne+ |F(vo)| + 2|h|s, and hence < 2e¢ for n sufficiently large.

D(v)
d(vg,v)
tices v, so it follows from Lemma 6.3 that A is not in the closure of B(loo) (X,R).

Hence Ff(loo)(X, R) # 0.

= 1 for all ver-

Returning to the proof of the Proposition we see that

Appendix.

Let T" be a graph and let A be a normed abelian group. It is an open question
whether summable 1-cycles on I' with coefficients in A can be approximated by
cycles of compact support in general, although the case A = R was settled affirma-
tively by Theorem 3.3. Another special case will be established in this Appendix.

We recall that A is called ultrametric if |a + b| < max(|al, |b|) for all a,b € A.
We call the norm discrete if the set {|a|,a € A} has only 0 as a limit point. For
example the p-adic completion of the rational numbers is ultrametric with discrete
norm.

Theorem A1l. Let I' be a graph and let A be a ultrametric normed abelian group
with discrete norm. Then summable 1-cycles on T' with coefficients in A can be
approximated in the ¢1-sense by 1-cycles of compact support.

Proof. Let f be a nonzero summable 1-cycle on I with coefficients in A. Tt follows
from summability that for each r > 0 the set F,. of edges in I" so that |f(e)| > r is
finite, and consequently f is nonzero on at most a countable set of edges. Let M
be the maximum value of |f(e)| as e runs over the edges of T and let |f(ey)| = M.
We need
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Lemma A2. There exists a simple circuit z; so that |f(e)| = M for each edge e
m zq.

Proof. If v = Teq, then ) ___ f(e) = 0 from the cycle condition, and the term
f(e1) in the sum is of maximal norm. It follows from the ultrametric inequality
that there exists an edge ey with tes = v and so that |f(e2)| = M. Continuing
in this way, we produce by induction a path ejes...e, for each n > 1 so that
|f(e;)| = M. Since there are only finitely many edges e altogether with |f(e)| = M,
there must be exist a number k£ > 0 so that e; = e;1, for some ¢ > 1. Taking k
minimal produces a simple circuit z; satisfying the conclusion of the lemma.

Next let fi = f — ayz1, where ay is the value of f on one of the edges of z;
(it makes no difference for the argument which edge is chosen). It follows from
the ultrametric inequality that |fi(e)| < |f(e)| for each edge e and consequently
|f1l1 < |f|1, where | f|1 denotes the ¢1-norm of f, which, we recall from (2.1) above,
is the sum of the norms of the values of f on an orientation O of the edges of T'.
Also note that f; has at least one fewer edge than f with value of maximal norm.

Now repeat the process, replacing f by fi, finding a simple edge-circuit zo of
edges on which f; assumes values of maximal norm, defining f3 = fo — as29, where
as is value of f; on one of the edges of z5, and so forth, producing thereby the
sequence of summable 1-cycles fs, f3,.... The relevant facts about this sequence
are

(1) |faxi(e)] < |fn(e)] for every edge e of T', and |fnr1(€e)] < |fn(e)| for at least
one edge e on which f,, assumes its value of maximal norm, and
(2) |fax1lt < |fuhh < |f]1 for all n > 1.

It follows from (1) and the discreteness of the norm on A that lim,, . |fn(e)| =0
for each edge e while |f,|1 < |f|1 for all n > 1. But the Lebesgue dominated
convergence theorem (applied to the sequence of real valued functions g, on the
discrete measure space of edges of I', where g, is given by g,(e) = | fn(e)|) implies
that lim,, o | frn|1 = |limp—oo gnl1 = 0. If we set s, = ay21+aszo+- - -+anzy,, then
f =sn+ fn for each n > 1, s, is a 1-cycle of compact support, and lim,, ,~ s, = f
where the limit is taken in the sense of the /;-norm. Thus f can be approximated
by 1-cycles of compact support, and the proof of the theorem is complete.

Remark. 1t follows from arguments of [Mi| that if the graph I' is combable in
the sense of [EC], then approximation of summable 1-cycles by cycles of compact
support is possible for all normed abelian coefficient groups. Furthermore, it is a
result of [Fl] that a summable 1-cycle f with values in A on the connected graph T’
satisfying the stronger assumption that > _(d(vo,te) 4+ 1)|f(e)| < oo, where v is
the base point and d is the path metric assigning length 1 to each edge, can be
approximated by cycles of compact support. It is also not difficult to see that a
summable 1-cycle on a tree must necessarily be zero. However the general question,
of approximating summable 1-cycles on arbitrary graphs with values in an arbitrary
normed abelian group by 1-cycles of compact support, remains open.
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