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Abstract.

We show that under suitable conditions a branched cover satisfies the same upper curvature bounds
as its base space. First we do this when the base space is a metric space satisfying Alexandrov’s
curvature condition CAT(x) and the branch locus is complete and convex. Then we treat branched
covers of a Riemannian manifold over suitable mutually orthogonal submanifolds. In neither setting
do we require that the branching be locally finite. We apply our results to hyperplane complements
in several Hermitian symmetric spaces of nonpositive sectional curvature in order to prove that
two moduli spaces arising in algebraic geometry are aspherical. These are the moduli spaces of the

smooth cubic surfaces in CP? and of the smooth complex Enriques surfaces.
§1. Introduction

It is well-known that taking branched covers usually introduces negative curvature. One can see
this phenomenon in elementary examples using Riemann surfaces, and the idea also plays a role in
the construction [8] of exotic manifolds with negative sectional curvature. In this paper we work
in the setting of Alexandrov’s comparison geometry; for background see [3]. In this setting we will
establish the persistence of upper curvature bounds in branched covers. A simple way to build a
cover Y of a space X branched over A C X is to take any covering space Y of X — A and define
Y=YUA. Wecall Y a simple branched cover of X over A. Our first result, theorem 2.1, states
that if X satisfies Alexandrov’s CAT(r) condition and A is complete and satisfies a convexity
condition then the natural metric on ¥ also satisfies CAT (k).

The question which motivated this investigation is whether the moduli space of smooth cubic
surfaces in CP? is aspherical (i.e., has contractible universal cover). It is, and our argument also
establishes the analogous result for the moduli space of smooth complex Enriques surfaces. To
prove these claims, we use the fact that each of these moduli spaces is known to be covered by a
Hermitian symmetric space with nonpositive sectional curvature, minus an arrangement of complex
hyperplanes. In each case the hyperplanes have the property that any two of them are orthogonal
wherever they meet. In section 3 we show that such a hyperplane complement is aspherical.
The result (theorem 3.1) is more general because the symmetric space structure is not needed.
Theorem 5.3 of [4] morally contains this result and also suggests a substantial generalization of it.

However, there are some difficulties with the proof.
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If M is the symmetric space and H is the union of the hyperplanes, then the idea is to apply
standard nonpositive curvature techniques like the Cartan-Hadamard theorem to the universal
cover N of M = M — H. The problem is that IV is not metrically complete. One can pass to
its metric completion N , but this introduces problems of its own. First there is the issue of how
N and N are related. We resolve this by a simple trick that shows that the inclusion N — N is
a homotopy equivalence. The second problem is that N is not a manifold and not even locally
compact, so that one cannot use the techniques of Riemannian geometry. But it is still a metric
space and it turns out to satisfy Alexandrov’s CAT(0) condition locally. It is then easy to show
that N and N are contractible.

In order to understand this curvature bound for N , the reader should imagine a closed ball
B in C", equipped with some Riemannian metric, minus the coordinate hyperplanes. The metric
completion of the universal cover of the hyperplane complement can be obtained by first taking
a simple branched cover of B over one hyperplane, then taking a simple branched cover of this
branched cover over (the preimage of) the second hyperplane, and so on. If the hyperplanes are
mutually orthogonal and totally geodesic then theorem 2.1 may be used inductively to bound the
curvature of the iterated branched cover. Observe that the base space of each branched cover fails
to be locally compact except in the first step. This means that the inductive argument requires
a theorem treating branched covers of spaces more general than manifolds. We also note that
the condition of mutual orthogonality in branched covers has appeared before, for example for
the modified Deligne complexes of [5], which are certain metric polyhedral complexes of piecewise
constant curvature. In fact, in this polyhedral setting our results are already well-established. We
need to go beyond the piecewise constant curvature case for the applications to algebraic geometry.

For the reader’s convenience we recall some definitions from [3]. D, is the diameter of the
simply-connected complete surface of constant sectional curvature k. A metric space X is D,-
geodesic if any two points at distance < D,; are joined by a geodesic. A subset A of X is called
D,-convex if any two points of A at distance < D, are joined by a geodesic of X, and every
geodesic joining them lies in A. We say that X is CAT (k) if it is D-geodesic and any two points
on any geodesic triangle in X with perimeter < 2D, satisfy Alexandrov’s inequality. We write £(7y)
for the length of a path ~.

I would like to thank Jim Carlson and Domingo Toledo for their interest in this work, and for
the collaboration [1] that suggested these problems. I would also like to thank Richard Borcherds,
Misha Kapovich and Bruce Kleiner for helpful conversations, Brian Bowditch for pointing out
an error in an early version, and the referee for suggesting many improvements. This paper was

distributed in preprint form under the title “Metric curvature of infinite branched covers”.
§2. Branched covers

We begin by showing that a branched cover satisfies the same upper bounds on curvature as its
base space. We treat what we call simple branched covers. The idea is that one removes a closed

subset A from a length space X , takes a cover of what is left, and then attaches a copy of A in the
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obvious way. More precisely, if Y is any covering of X = X - A, then each component of Y carries
a unique length metric under which projection to X is a local isometry. We take Y =Y UA and

write 7 : ¥ — X for the obvious projection map. If x,z € Y then we define
d(z,z) = inf({ d(rx,my) +d(my,7z) |y € A} U {£(y) | v is a path in Y joining z and 2 }) .

One checks that d is a length metric, and we call Y a simple branched covering of X over A.
Theorem 2.1. If X is CAT(x) and A is complete and D,.-conver, then Y is also CAT(x).

This theorem was stated by Gromov [7, section 4.4], without the completeness hypothesis.
Without this, Y may fail to be Dy-geodesic. It may even happen that Y contains points having
no geodesic neighborhoods. On the other hand, every geodesic triangle in Y of perimeter < 2D,
still satisfies CAT (k). The same concerns arise for Reshetnyak’s gluing lemma (see for example [3,

p. 347]), to which this result is very similar.

Proof: We have obtained a proof in full generality, but here we make the additional assump-
tions that x < 0 and X is complete. This is sufficient for our applications. The idea is to realize
Y as a Gromov-Hausdorff limit of spaces which are obviously CAT(k). For € > 0 let A, be the
closed e-neighborhood of A, and let ?8 be obtained by gluing together a copy of A. and a copy
of Y, so that all preimages in Y of any given point of A, — A are identified. This space has a
natural path metric—in fact it is a simple branched cover of X over A.. It is obvious that Y is
a Gromov-Hausdorff limit of the Y. Since Y is complete it suffices by [3, Cor. 3.10] to show that
each ?g is CAT (k). Since }7'5 is complete and simply connected, it suffices to show that }/}5 is locally
CAT(k). If z € Y. lies at distance # ¢ from A then 2 admits a CAT(k) neighborhood because it
has a neighborhood isometric to an open subset of X. Now suppose d(z, A) = . We let U be the
closed £/2-ball about the image of x in X. Then z admits a neighborhood which is the union of
some number of copies of U, glued together along U N A.. This neighborhood of z is CAT(k) by

Reshetnyak’s lemma, since U N A, is complete and is convex in U. O

Next we define precisely what we mean by a branched cover which is locally an iterated
branched cover of a manifold over a family of mutually orthogonal totally geodesic submanifolds.
Then we show that such a branched cover satisfies the same upper bounds on local curvature as
the base manifold. We prove this only in the case of nonpositive curvature, and indicate what else
is needed in the general case.

We say that a finite set {S7,...,S,} of codimension-2 subspaces of an even-dimensional real
vector space A is normal if it is equivalent to some n of the m coordinate hyperplanes in C™ under
an R-linear isomorphism A — C™. If A is odd-dimensional then we call {57, ..., S,} normal if it
is equivalent to the products with R of some n of the m coordinate hyperplanes of C™, in C" x R.
We write § for U;S;. Now suppose Hy is a family of immersed submanifolds of a Riemannian
manifold M with union H. We say that Ho is normal at = € M if there is a set {S1,...,5,} of

mutually orthogonal subspaces of T, M that are normal in the sense above and have the following
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property. We require that there be an open ball U about 0 in T, M which the exponential map
carries diffeomorphically onto its image V, such that V NH = exp, (U N§), and such that each
exp,(S; NU) is a convex subset of V. We say that Ho is normal if it is normal at each z € M. In
this case, each element of Hj is totally geodesic and intersections of elements of H are orthogonal.

If € M then my(V — H) = 7y (U — 8) = my (T, M — 8) = Z". The first two isomorphisms are
obvious and the last follows from the fact that T, M — 8 is a product of n punctured planes and a
Euclidean space. We choose generators o1, ..., 0, for m (TxM — 8) by taking a representative for
o; to be a simple circular loop that links S; but none of the other S;. We say that a connected
covering space of T, M —S§ is standard if the subgroup of Z" to which it corresponds is generated by
Uill, .o, odn for some dy,...,d, € Z. We apply the same terminology to the corresponding cover
of V — H. In particular, the universal cover is standard. An arbitrary covering space of V — H is
called standard if each of its components is.

We write M for M — H. If 7: N — M is a covering space then we say that N is a standard
cover of M if for each 2 € M with V as above, 7 : 7=1(V — H) — V — H is a standard covering
in the sense above. In this case, we take N to be a certain subset of the metric completion of N,
namely those points which map into M under the extension of . In particular, if M is complete
then N is the completion of N. We denote the natural extension N — Mofr again by m, and
call N a standard branched covering of M over Hy. The simplest example of a standard branched

da dn

cover is m: C" — C", carrying (z1,...,2,) to (21", ..., 25

). We have just extended this by making

the definition local and allowing infinite branching.

Theorem 2.2. If a Riemannian manifold M has sectional curvature bounded above by k <0 and
7 N — M is a standard branched cover over a normal family Hy of immersed submanifolds of

M, then N is locally CAT (k).

Lemma 2.3. Let X be a length space with metric completion X. Then every open ball in X meets

X in a path-connected set.

Proof: Suppose given an open ball U about x € )?, and y,z € UN X. Choose 2’ € X near z
and join y and z to 2’ by paths in X that are short enough that they are forced to lie in U. O

Proof of theorem 2.2: We will write H for 7~ 1(H). Suppose & € N lies over z € M and let
S1,...,8,, U and V be as in the definition of the normality of Hy at . Let r be the common radius
of U and V. We write T; for exp,(UNS;) C V. It is clear that geodesics from Z to nearby points
are lifts of radial geodesics from x. By choosing r small enough we may suppose that 7~ !(V) is the
disjoint union of the r-balls about the points of 771(x). We also choose r small enough so that V'
and all smaller balls centered at z are convex. We write V for the open r-ball about z; lemma 2.3
assures us that V — 3 is a connected covering space of V' — H. Taking generators o1,...,0, for
m1(V — H) as above, the standardness of the cover assures us that the covering V-H-V-H
corresponds to the subgroup generated by 0‘111, ...,0% for some dy,...,d,. We take B (resp. E)

to be the closed r’-ball about = (resp. Z), where we will choose 7’ < r later. To show that z admits
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a CAT (k) neighborhood, it suffices to show that Bis CAT(r) under the metric induced by lengths
of paths in B. We will prove this by realizing B as an iterated simple branched cover of B.

For each k = 0,...,n, let Gi be the subgroup of G = 7 (B — H) generated by Ufl, .. ,agk,
Ok+1,---,0n. Welet By be the metric completion of the cover of B —J{ associated to Gy, equipped
with the natural path metric. Then Bj is the standard branched cover of B, branched over the
T; N B, with branching indices dy,...,dg,1,...,1. In particular, By = B and B,, = B. We write
pi for the natural projection By — B obtained by extending the covering map to a map of metric
completions. Because Gpy1 C Gy, there is a covering map Bjy1 — p,;_il_l(ﬂ-f) — By, — p,, ' (H)
whose completion giy1 : Bx+1 — By satisfies py o gg41 = pr+1. For each k = 0,...,n — 1 we
let Ap = pgl(TkH). It is easy to see that gry1 is a simple branched covering with branch locus
Ay C By.

In order to use theorem 2.1 inductively, we will need to know that Ay is a convex subset of By.
This requires us to choose r’ small enough so that the orthogonal projection maps from B to the
T; are well-behaved. By this we mean that for each 7, there is fiberwise starshaped (about 0) set in
the restriction to 71; N B of the normal bundle of T}, which is carried diffeomorphically onto B by
the exponential map. Then each projection B — T; has image in B NT;, and the projection may
be realized by a deformation retraction along geodesics. The retraction is distance non-increasing
since T; is totally geodesic and M has sectional curvature < 0. Because the T; are orthogonal to
T; for j # 1, the track of the deformation retraction to 7; starting at a point outside U;;T); misses
Uj+;T; entirely. Therefore the deformation lifts to a deformation retraction from By, — p,;l(U i#ily)
to Ay — plzl (Uj2iTj). This extends to a distance nonincreasing retraction By, — Ay, which we will
also call orthogonal projection.

Now we prove by simultaneous induction that By is CAT(k) and that Ay is convex in Bj.
The fact that By = B is CAT(k) follows from its convexity in M and the fact that M has sectional
curvature < k. The convexity of Ag = 11 N B in B follows from the convexity of 77 in V. Now
the inductive step is easy. If By is CAT(k) and Ay is convex in By then By is CAT(k) by
theorem 2.1. In particular, geodesics in By are unique. Then if v is a geodesic of By41 with
endpoints in Agyq, the orthogonal projection to Ayyq carries v to a path of length < £(v) with
the same endpoints. By the uniqueness of geodesics, 7 lies in A1, so we have proven that Agiq

is convex in Byy1. The theorem follows by induction. O

Remark: We indicate here the additional work required to prove the theorem when x > 0.
The projection maps B — BN T; may increase distances in the presence of positive curvature. All
that is important for us is that the length of a path in B with endpoints in Tj does not increase
under projection to Tj. Even this is not true, but we only need the result for paths of length < 27/,
One should choose 7’ small enough so that any path in B of length < 2r/, with endpoints in T},
grows no longer under the projection to Tj. Presumably this can be done but I have not checked
the details.

Theorem 2.2 has been widely believed, but this seems to be the first proof. As mentioned
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before, it is morally contained in theorem 5.3 of Charney and Davis [4], who consider locally finite
branched covers of Riemannian manifolds over subsets more complicated than mutually orthogonal
submanifolds. Unfortunately there are gaps in their proof which I do not know how to bridge.
(Lemma 5.7 does not seem to follow from lemma 5.6. Also, the techniques of [6] referred to in
passing to finish the proof of theorem 5.3 use properties of Riemannian manifolds, like continuous
dependence of sufficiently short geodesics on their endpoints, that are not established for branched
covers.) Nevertheless their infinitesimal CAT(x) condition (condition 3 of theorem 5.3) is very

natural, and their theorem surely holds and extends to the case of locally infinite branching.
§3. Asphericity of Moduli Spaces

In this section we solve the problems which motivated our investigation, concerning the asphericity
of certain moduli spaces. By using known models for the moduli spaces of cubic surfaces in CP3
and of Enriques surfaces we will show that these spaces have contractible universal covers. In both

cases the main ingredient is the following theorem, which is a sort of global version of theorem 2.2.

Theorem 3.1. Let M be a complete simply connected Riemannian manifold with sectional cur-
vature bounded above by k < 0. Let H be the union of a family of complete submanifolds which
is normal in the sense of section 2. Then the metric completion N of the universal cover N of

M —H is CAT(x), and N and N are contractible.

We will conform to the notation of section 2 by writing M for M — H, 7 for the covering map
N — M and its completion, and H for 7~ 1(H) C N.

Lemma 3.2. Suppose & € N lies over z € M and V is an open ball about x that meets none of
the submanifolds except those passing through x. If V is the ball of the same radius about X, then

V-—Hisa copy of the universal cover of V — H.

Proof: Since V — ¥ is connected (lemma 2.3), all we must show is that m (V — H) injects
into 7 (M — H). Writing J for the union in M of the submanifolds that pass through x, we have
homomorphisms

(V=9 > m(M-H) > m(M—-9) - (V=17),

where the first two maps are induced by inclusions and the third by a retraction of M — 7 into
V — 7 along geodesics from x. The composition is obviously the identity map, so the first map is

injective. O
Lemma 3.3. The inclusion N — N is a weak homotopy equivalence.

Proof: First we show that for each Z € N there is a homotopy of N to itself that (i) carries
some neighborhood of z into N, (i) carries N into itself, and (iii) fixes each point of N — N that
doesn’t get pushed into N. We write n for the number of submanifolds passing through x = 7 (z).

By the previous lemma there is a closed neighborhood V of # which is homeomorphic to (E)" X D,
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where A is the metric completion of the universal cover of a punctured disk and D is a closed
Fuclidean ball. It is easy to see that A is homeomorphic to a wedge in the plane, by which we

mearn
A={(0,00} U {(z,y) eR? ||y <z andz®+y? <1} .

There is obviously a homotopy of A into A — {(0,0)} which is supported on a small neighborhood
of (0,0). Using this it is easy to construct a homotopy of N satisfying (i) (iii).

Now, if f: ¥ — N represents any element of the homotopy group 7rk(]\7 ) then we may cover
f(S*) with finitely many open sets, each of which is carried into N by some homotopy of N that
satisfies (ii) and (iii). Applying these homotopies one after another shows that f is homotopic
to a map S*¥ — N. Therefore 7, (N) surjects onto 7 (N). The same argument applied to balls
rather than spheres shows that 7, (V) also injects. By elaborating this argument one can show
that N — N is actually a homotopy equivalence, but it is easier to prove theorem 3.1 first and

then apply the contractibility of both spaces. O

Proof of theorem 8.1: By lemma 3.2, N is a standard branched cover of M over the normal
family Ho. Since M has sectional curvature < x < 0, theorem 2.2 shows that N is locally CAT(x).
Since N is simply connected, lemma 3.3 implies that N is also. The Cartan-Hadamard theorem
for Alexandrov spaces [3, p. 193] implies that N is CAT(x) and hence contractible. In particular,
all of its homotopy groups vanish, and by another application of lemma 3.3 the same is true of N.

As a manifold all of whose homotopy groups vanish, N is contractible. O

Now we turn to moduli spaces. The set € of cubic surfaces in CP? may be identified with
CP'?, because there are 20 cubic monomials in 4 variables. The smooth surfaces form an open
subset Cp, and it is known that PGL(4,C) acts properly on €y. Therefore the moduli space
M = Cy/PGL(4,C) carries the natural structure of a complex analytic orbifold. The main result
of [1] shows that M is orbifold-isomorphic to (CH* — H)/PT, where CH* is complex hyperbolic
4-space, H is the union of an infinite family of complex hyperplanes and I' is a certain discrete
group. To state this more precisely, let w be a primitive cube root of unity and let € be the discrete

subring Z[w] of C. Let A be the lattice £ equipped with the Hermitian inner product
h(z,y) = —xoYo + T1y1 + -+ + Ta¥s -

Then the complex hyperbolic space CH? is the set of lines in C® on which h is negative-definite,
H is the union of the hyperplanes in CH* which are the orthogonal complements of those r € A
with A(r,7) =1, and T' is the unitary group of A, which is obviously discrete in U(4, 1).

Corollary 3.4. M has contractible orbifold universal cover.

Proof: Since CH* — 3 covers (CH* — 3()/PT' and CH* has negative sectional curvature,
all we have to prove is the normality of the family of hyperplanes. Suppose 7,7’ € A satisfy
h(r,7) = h(r',7') = 1. If r* meets 7'+ then r and 7’ span a positive-definite sublattice of A. This

requires |h(r,7")| < 1, and since h(r,7’) € & we must have h(r,7’) = 0, so that v+ and '+ meet
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orthogonally. The local finiteness of the family of hyperplanes follows from a standard argument:
if x € C® represents a point of CH* and N is given, then there are only finitely many r» € A
satisfying h(r,7) = 1 and |h(r,z)| < N. O

Enriques surfaces are smooth compact complex surfaces that satisfy certain cohomological
conditions; see for example Horikawa [9], [10]. Horikawa’s global Torelli theorem identifies the set
of isomorphism classes of these surfaces with (D — H)/T", where D is the Hermitian symmetric
space for O(2,10), I' is a certain discrete subgroup and H is the union of an infinite family of
complex hyperplanes. Namikawa [11] refined Horikawa’s work, and according to the rephrasing of
these results in [2], I' may be taken to be the isometry group of the lattice L which is Z'? equipped

with the inner product

Ty =2T1yYy1 + ToYy2 —X3Y3 — - — T12Y12 -

A concrete model for D is the set of v € P(L ® C) satisfying v-v =0 and v-7 > 0, and H may be
taken to be the union of the (complex) hyperplanes in D which are the orthogonal complements of
the norm —1 vectors of L. We regard the moduli space of Enriques surfaces as being the orbifold
(D —H)/T.

Corollary 3.5. The moduli space (D — H)/T" has contractible orbifold universal cover.

Proof: The proof that hyperplanes that meet do so orthogonally is the same as before. Local
finiteness follows by essentially the same standard argument: any v € D defines a 2-dimensional
positive-definite subspace V of L ® R, namely the projection to L ® R of the complex line it
represents. For each N there are only finitely many r € L with r - r = —1 having projection to V'
of norm < N. This proves local finiteness and hence normality. Then we use the fact that D has

nonpositive sectional curvature and appeal to theorem 3.1. O
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