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Abstract.

We construct a natural sequence of finite-covolume reflection groups acting on the complex hy-
perbolic spaces CH', CHY and CH?®, and show that the 9-dimensional example coincides with
the largest of the groups of Mostow [10]. These reflection groups arise as automorphism groups
of certain Lorentzian lattices over the Eisenstein integers, and we obtain our largest example by
using the complex Leech lattice. We also construct finite-covolume reflection groups on the quater-
nionic hyperbolic spaces HH’, HH® and HH?, again using the Leech lattice, and apply results of
Borcherds [3] to obtain automorphic forms for our groups.

1 Introduction

In [2] we constructed a large number of reflection groups acting on complex and quaternionic hy-
perbolic spaces. For the most part, the groups appeared as symmetry groups of selfdual Lorentzian
lattices (i.e., those of signature (1,n)) over the rings of Eisenstein, Gaussian and Hurwitz integers.
We were surprised to find examples in even higher dimensions by using certain non-selfdual lattices.
These are the subject of the paper. Although similar in spirit to [2], we do not need results from
there.

The basic idea, as in [2], is that one can build reflection groups acting on CH"*! or HH" !
from suitable negative-definite n-dimensional lattices; we will use lattices over the Eisenstein in-
tegers € = Z[w|, where w is a primitive cube root of unity, and over the quaternionic ring H of
Hurwitz integers. If A is such a lattice then one constructs a Lorentzian lattice L by taking the
direct sum of A and a suitable 2-dimensional Lorentzian lattice H. In [2] we took H to be given

by the inner product matrix ((1) (1)), whereas here we use

0 6 . 0 1+
0 0 © 1—4 0 )

where 6 € € is a square root of —3. If the covering radius of A is small enough, then Aut L is
generated up to finite index by reflections.

The small change in H has surprising effects, allowing us to use certain lattices A that did
not work before. In particular, there are Eisenstein and Hurwitz versions of the Leech lattice, but
their covering radii are too large for the technology of [2] to apply. Our main results are that the
automorphism groups of the Eisenstein lattices

AsoH, AsoAieH and AL,0H

are generated (up to finite index, in the last case) by reflections. Here, A and A%, are the
00
0 0
Lorentzian &-lattices L of dimensions 6, 10 and 14 satisfying L = L', where L’ is the dual of

Eisenstein versions of the Eg and Leech lattices, and H = ( ) Alternately, these are the unique

1



L. In particular, AS, ® H may also be described as (A$)% @ H, so that our three groups form a
natural sequence. Furthermore, we identify our 10-dimensional E-lattice with a lattice described
by Thurston [12] in terms of combinatorial triangulations of the sphere S?, and we identify the
automorphism group of the lattice with the largest of the groups described by Mostow [10]. (See
also Deligne and Mostow [8] and Thurston [12].)

We also carry out a quaternionic version of this program, proving that the automorphism
groups of the lattices

AeoH, AoAeH and Ao H

are virtually generated by reflections. Here, AJ' and AZ‘ are the Hurwitz versions of the Fg

and Leech lattices, and H = (131' 1;')"'). The lattices above may be described as the unique
Lorentzian H-lattices L in dimensions 4, 6 and 8 satisfying L = L' - (1 + ). By the isomorphism
A @ H = (A39)3 @ H, we see that these three lattices also form a natural sequence.

These two sequences are obviously similar to each other, and they are also very similar to a

sequence of real hyperbolic reflection groups, namely those of the lattices

Eg@H, Eg@Eg@H and A24@H,

where Aoy is the Leech lattice and H = ((1) é) These lattices are the unique even selfdual

Lorentzian Z-lattices in dimensions 10, 18 and 26. As before, Aoy & H = E3 @& H, so that these
lattices form a natural sequence. The subgroup of Aut L. generated by reflections has index 2, 4 or
oo in Aut L for these three lattices L. In the last case, although the reflection group has infinite
index, it is still “almost all” of Aut L, in the sense that the quotient by it is virtually Z?*. See [4]
for details.

Finally, we construct automorphic forms on complex and quaternionic hyperbolic space that
are automorphic with respect to the symmetry groups of the various lattices listed above. This
construction relies on the work of Borcherds [3], and allows us to explicitly describe the zeros and
singularities of these forms. In the complex case, the forms are holomorphic with simple zeros
along the mirrors of the reflection groups, and in the quaternionic case the forms are real analytic
except at their singularities, which lie along the mirrors of the groups. The analogy with the real
hyperbolic case extends to the construction of these automorphic forms.

2. Background on lattices

We write w for a primitive cube root of unity and define the Eisenstein integers € to be Z[w]. It
will be useful to denote w — w, a square root of —3, by 0. For x € £ we define Imx = (z — z)/2.
A lattice over € is a free (right) module over € equipped with a Hermitian form (|) taking values
in &. If z lies in a lattice then the norm z2 of x is defined to be (z|z); some authors call this
the squared norm. We will consider only nondegenerate forms—in fact only those of signature
(0,m) or (1,n). The former are negative-definite and the latter are called Lorentzian. We use the
convention that (|) be linear in its second argument rather than in its first. This is because it is
convenient to regard lattice elements as column vectors, with linear transformations acting on the
left. This means that in the quaternionic case (section 6), scalars should act on the right and this
makes it natural for (|) to be linear in its second argument. Until section 6 we will allow ourselves
to write the action of scalars on either side.

The dual L’ of a lattice L is the set of all x € L ® Q satisfying (z|\) € € for all A € L. For
the most part we will consider lattices L satsifying L C 0L’, so that all inner products of lattice
vectors are divisible by 6. We call r € L a root of L if 7?2 = —3 and » € §L’. Then the complex
&-reflection in r,

(rlw)

rz ’

w—w—r(l—¢) (2.1)



is an isometry of L if £ is a cube root of unity. If £ # 1 then the reflection has order 3 and is called
a triflection. We define R(L) to be the subgroup of Aut L generated by the triflections in the roots
of L.

An element x of a lattice L is called primitive if it is not of the form ya with y € L and «
a non-unit of €. A sublattice M of L is called primitive if L N (M ® Q) = M. A deep hole of a
positive-definite lattice L is a point of L ® R at maximal distance from L; this distance is called the
covering radius of L. It is awkward to directly adapt this definition for negative-definite lattices,
so we make the following definition instead. The covering norm N of a negative-definite lattice L
is the largest (negative) number N such that for each £ € LR there is a lattice vector A satisfying
(£ — X)? € [N,0]. The points £ of L ® R for which there are no A € L satisfying (¢ — \)? > N are
called the deep holes of L.

If L is a Lorentzian E-lattice then Aut L acts on the set of positive-definite subspaces of L @ R;
this space is called complex hyperbolic space and denoted CH", where n = dim L — 1.

3. The stabilizer of a null vector

We define H to be the 2-dimensional lattice over € with inner product matrix H = (9 0) That

is, elements of H are column vectors with entries in €, so that the inner product (v|w) of lattice
vectors v and w is v* Hw, where v* denotes the conjugate-transpose of v. Let A be any E-lattice
and let L = A ® H. We write elements of L in the form (A\;u,v) with A € A and p,v € €. We give
the vector (0;0, 1) the name p and define the height ht v of v € L&R to be the inner product (p|v).
For v = (A; , v), the height of v is just fu. If A is negative-definite then since H is Lorentzian, L
is also Lorentzian.

Let A € A ® R and suppose z € ImC. Then the map

(£;0,0) — (£;0,071()|€))
Ty, (0;1,0) = (A 1,071 (2 — A2/2))
(0;0,1) — (0;0,1)

is an isometry of L@R that preserves p. Every isometry preserving p and acting trivially on p*/{p)
has this form, where (p) denotes the complex span of p. We call the maps 7, , the translations by
A. Regarding elements of L ® R as column vectors, T,., acts by left multlphcatlon by the matrix

I A 0
T,,,= 0o 1 0 (3.1)
0N 071 (z—)2/2) 1

where I represents the identity map of A and A* is the linear map ¢ — (A|£) on A induced by .
One verifies the relations

T,\;ZT,\/;zf = T/\+)\’;z+z’+1m<)\’|/\> (3.2
Tfl =T 5 _. (3.3)

—1mp—1
TA;ZTX;Z’TA;ZTX T TO 2Im(N|A) 3.4)

These show that the translations form a group whose center and commutator subgroup coincide
and consist of those T’ 2 with A = 0. We call these the central translations. Furthermore, if U is
an isometry of A then we may regard it as acting on L, fixing H pointwise. Then we have

UT)\ zUﬁ U/\ z " (35)



In order for a translation to preserve L, it is obviously necessary that A € A. Furthermore, by
considering the lower-left entry of (3.1), we see that the inner product (A|¢) must be divisible by 0,
for all £ € A. Finally, by considering the bottom middle entry of (3.1) we see that z € Im C must
be chosen so that 0~1(z — A2/2) € €. We can choose such a z just if 67122 /2 is an integer multiple
of §/2. This condition holds because by our previous condition we know that A2 = (A|)\) is real
and divisible by 6, hence divisible by 3 = —62. We conclude that Aut L contains a translation by
Ajust if A€ ANOA.

Theorem 3.1. Let A be an E-lattice and let L = A@® H. Then for each A € ANOA’, R(L) contains
a translation by .

Proof: We begin by working in H, so we suppress all but the last pair of vectors’ coordinates.
Let 71 = (1,) and r, = (1, —w), each a root of L, and let R; and Ry be the w-reflections in r;
and 79, respectively. Computation reveals that matrices for the action of the R; on H are

R1—< 0 ‘7’_> and Rg—<_€’ w) .
—w - —w 0
Then the action of R1 Ry on H is

—w 0
2w —w

R1R2 = ( ) = —wTO; 20 -+ (36)
Of course, Ry R, acts trivially on H+ = A. We write the action of R Ry on L as ~wKT, ,,, where
—w indicates scalar multiplication by —w on all of L and K indicates scalar multiplication by —w
on A.

Suppose A € ANOA’, so that Aut L contains a translation Ty, by A. We will show that R(L)
contains a translation by —wA. The commutator

Ty, RiRT,. (RiRy)™"

is a member of R(L), since R(L) is a normal subgroup of Aut L. By using our expression for Ry Rs,
together with (3.2) (3.5), we discover that

Ty, Ri RT3 L (RiRy) ™ =T, (—wEK) Ty, 5gT 1 Ty, _oy(—K '@)
—17-—1
=1, KT K

_ -1
- T/\’ zTK/\;z

)

=7, T}

Ajz7 —wA;z
= TA; zTC)A; —z
= TA+@,\; Im(@A|A)
= T—w)\; Im(wA?)

= T—m; ox2/2

Theorem 3.2. Let A be an &-lattice and L = A @ H. If A = A’ then R(L) contains all the
translations of L and all the scalars of H.

Proof: By theorem 3.1, R(L) contains a translation by A, for each A € A. Thus, to show that
R(L) contains all the translations, it suffices to show that it contains the central translations. By
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the condition A = §A’, we may find A\, \ € A such that (N'|\) = —6w, so that Im(N'|\) = 6/2.
Choosing translations 7. and 7),, , that lie in R(L), we see by (3.4) that R(L) contains

—1p—1 _
T)\;ZT)\’;Z’T)\;ZT)\’;Z’ - T0;0

It remains to show that R(L) contains the scalars of H. In the proof of theorem 3.1 we saw that
R(L) contains the product —wT|,. 5y. Since R(L) contains the central translations, it must also
contain the scalar —w, which generates the group of all scalars of H. O

A consequence of these results is that if A is negative-definite then the stabilizer of p in R(L)
has finite index in the stabilizer in Aut L. This holds even if there are no reflections of L stabilizing
p—we will see an example of this in the next section. There are no analogues of theorems 3.1 and
3.2 for Z-lattices. In particular, if L is a Lorentzian Z-lattice, p is any null vector of L, and G
is a subgroup of Aut L generated by reflections, then the stabilizer of p in G is also generated by
reflections. The most notatble example of this phenomenon occurs with L = Agy @ ((1) (1)) and
p = (0;0,1), where Ay is the Leech lattice. From the fact that Aoy admits no reflections one can
deduce that no reflections of L stabilize p, so the stabilizer of p in the reflection group of L is trivial,
so the reflection group has infinite index in Aut L. (However, the stabilizer of p is essentially the
entire difference between the two groups. See [4] for details.)

The following theorem is not needed elsewhere in the paper but casts light on a conjecture
made in [2].

Theorem 3.3. Let A be a negative definite E-lattice and let L = A&® ((1) é) Then the subgroup of
Aut L generated by reflections in norm —1 vectors contains a finite-index subgroup of the stabilizer
of p=1(0;0,1).

Proof sketch: Take Ry and Ry to be the (—w)-reflections in the norm —1 vectors r; = (1,w)
and 72 = (1,w) of the second summand of L. Then argue as in the proofs of theorems 3.1 and 3.2.
(Note that the matrices for translations of L are given by formula (4.2) of [2] rather than by (3.1),

because we have replaced H by ((1) (1))) O

Conjecture 9.1 of [2] asserts that the lattice 271 is reflective just if each negative-definite
selfdual E-lattice of dimension n is virtually spanned by its elements of norms —1 and —2. (A
lattice L is called reflective if the subgoup of Aut L generated by reflections has finite index in
Aut L.) The purpose of the last condition was to assure that the reflection group of L contains a
finite-index subgroup of the stabilizer of each null vector. Theorem 3.3 shows that this conclusion
holds with no hypotheses at alll In light of this, the natural reformulation of the conjecture is
simply that €171 is reflective for all n. This sounds too good to be true, considering Vinberg’s
result [13] that there are no reflective Lorentzian Z-lattices in high dimensions.

4. A reflection group on CH'3

The Leech lattice Asg is the unique even selfdual positive-definite lattice of dimension 24 with
minimal norm 4. Its automorphism group contains an element of order 3 that fixes no vectors
except the origin. We may regard this transformation as defining an action of € on Ay, making
Aoy into a 12-dimensional E-lattice. Wilson [15] describes this lattice, the complex Leech lattice,
in detail. By A%, (in this section, A) we denote his lattice with all inner products multiplied by
—3. Then A is a negative-definite E-lattice whose real form is the standard Leech lattice with inner
products muliplied by —3/2. By the main result of [5], the covering norm of A is —3. The minimal
vectors of A (those of norm —6) span the lattice, and Wilson’s computation (p. 158) of the inner
products of minimal vectors with each other shows that A C §A’. By [9, p. 248] the determinant

5



of Ais 02, so A = OA’. The automorphism group of A is the universal central extension 6-Suz of
Suzuki’s sporadic simple group. For further background on A we refer the reader to [15].

We set L = A @ H and note that because A has no roots, p = (0;0,1) is orthogonal to no
roots of L.

Theorem 4.1. The group R(L) acts transitively on the primitive null vectors of L that are orthog-
onal to no roots of L. The obvious subgroup 6-Suz of Aut L maps onto the quotient Aut L/R(L).
In particular, the index of R(L) in Aut L is finite.

Proof: Suppose that v € L has norm 0, is not a multiple of p (so that it has nonzero height),
and is orthogonal to no roots of L. We claim that by applying a reflection of L we may reduce the
height of v. By this we mean that we may carry v to a vector v" with |htv'| < |htv|.

To prove this it suffices to reduce the height of any scalar multiple w of v, say the one of the
form w = (¢;1,a — 0€%/6), with £ € A®@ R and o € R. (The imaginary part of the last coordinate
is determined by the condition w? = 0.) We may choose A € A such that (¢ — \)? € [-3,0].
Because A2 = 0(3) we may choose 8 € 3Z such that 8 + 6(—3 — A?)/6 lies in &, and then
" = (M\1,8+0(—3—)22)/6) is a root of L. For any n € Z the vector

7":’1“/"‘(0;0,”) = ()\;l,n+ﬂ+9(—3—)\2)/6)

is also a root of L, and we will show that for suitable n, some triflection in r reduces the height of
w. We will need to know (r|w):

R —3—\2

<r|w):<A|€)+9a—5+n9+60+72

:_g—%(62—2<)\|£>+/\2)+n9+9a+59

:_g—%(f—/\)2+lm<z\|€>+n9+§a+ﬂ9

— 2 —
=-3 l+(£ A +m9_1+040_1—|—5<9_1—M
2 6 3
= —3la+b],

where a = % + %(ﬂ — )\)2 is the real part of the term in brackets and b is the imaginary part. By
construction of A we have a € [0, %] By choice of n we may suppose b € [0~1/2,071/2] = [0/6,0/6].

Let w’ be the image of w under &-reflection in r, where £ is a cube root of unity that we will
choose later. Using (2.1) and the computation above, we can compute the height of w':

(plw’) = (plw) = (plr)(1 — g)L;b)

=0—-0(1-¢(a+Dd).
For the absolute value of this to be smaller than that of (p|w) = 6, we need to choose £ so that
1— (1 —¢)(a+ b) has norm less than 1. If b € [0,0/6] (resp. b € [0/6,0]) then taking & = w (resp.
¢ = @) accomplishes this unless a = b = 0. We have assumed that v is orthogonal to no roots, so
w cannot be orthogonal to r, which rules out the case a = b = 0. This proves the claim.

We have shown that we may reduce the height of v with a reflection. Repeating this as
necessary, we may suppose that v has height 0, so that it is a multiple of p. By theorem 3.2,
R(L) contains the scalars of H, so R(L) acts transitively on the unit scalar multiples of p. This
proves the first claim of the theorem. Also by theorem 3.2, R(L) contains the translations. Since
these act transitively on the the null vectors of height 6, we conclude that a complete set of coset
representatives for R(L) in Aut L may be taken from the simultaneous stabilizer of (0;0,1) and
(0;1,0). Since this stabilizer is just Aut A = 6-Suz, the proof is complete. O



5. Further examples

We can construct other reflection groups by following the arguments of section 4 with other lattices
in place of A{,. In this section we construct two further examples, one acting on CH? and the other
on CH®. The first of these has already been discovered in a different guise—it is the largest of
the groups discovered by Mostow [10] (see also Deligne and Mostow [8], Mostow [11] and Thurston
[12]). We conjecture below that the 5-dimensional group coincides with a certain one of the other
groups found in [10].

The FEg root lattice may be regarded as an Eisenstein lattice, and is most easily described in
terms of the tetracode C4. This is the 2-dimensional subspace of IF% consisting of the scalar multiples
of the images of the vectors (0,1,1,1) and (1,0,1,—1) under cyclic permuation of the last three
coordinates. We define A§ to be the set of vectors in £ whose coordinates are elements of €4 when
reduced modulo §. Here we regard £* as being equipped with the standard (negative-definite) inner
product

(@1 ) (1, y)) = — Y Taws -

This is the smallest scale at which A{ is an integral E-lattice, and we have A = (A$)'.

The largest of Mostow’s groups is his I'(3,5,%, 5,5, 5,5, 5, 3> 5+ 5 5), for which we will
simply write I'. The only fact we will need about I is that it is an infinite image of the spherical
braid group B on 12 strands, with the standard generators bi,...,b11 mapping to triflections
S1,...,511. We will first construct an explicit set of reflections that generate a copy of T'.

It is easy to check that the S; are all distinct—if any two coincide then all coincide. (This
follows by repeated use of the fact that if S; = .S; then any S which braids with one of them and
commute with the other coincides with both of them.) Since the b; are conjugate in B, the S; are
either all w-reflections or all w-reflections. Which of these is the case is irrelevant to the question
of determining I', so we suppose that they are all w-reflections. (In any case, the two possibilities
are exchanged by complex conjugation, or equally well by the automorphism of B exchanging
each b; with its inverse.) We may choose vectors s; of norm —3 in C!9 such that each S; is the
w-reflection in s;. In order for S; and S;11 to braid, matrix computations show that we must have
|(sils;)| = V3. If S; and S; commute then (since S; # S;) we must have s; L s;. Therefore we
may successively replace each of so,..., 511 by a scalar multiple of itself norm so that (s;[s;) =0
unless |i — j| = 1, when (s;|s;) = 6 or 6 according to whether or not j is closer than i to 6. That is,
we may take the vectors s; to be those elements of AY @ A§ @ H given in figure 5.1. We chose our
strange convention about (s;|s;) when |i — j| = 1 so that the “diagram automorphism” s; — s12_;
would be an isometry.

We write K; and Ky for the first and second summands of L = A§ @ Af ® H, and set
Lo = Ko @ H. We define 'y to be the subgroup of I' generated by Sg, ..., S11-

Theorem 5.1. ' (resp. T'y) coincides with Aut L (resp. Aut L) and acts transitively on the
primitive null vectors of L (resp. Lyg).

Proof: All the s; are roots of L and sg,...,s11 lie in Lg, so I' € Aut L and I'g € Aut Ly.
By theorem 5.2 below, Sg,...,S11 generate Aut K», so I'g contains Aut K. Similarly, S1,..., Si
generate Aut K;. Since the automorphism b; — bi5_; of B is inner, I" contains an element sending
each s; to s1o—; (up to a scalar). Such a transformation exchanges K; with K5, so I' contains
Aut(K1 D K2)

By theorem 5.2, Aut K is transitive on the roots of Ks, so I'g contains the w-reflection S’
in A = (0,0,0,0) € Ky. Computation reveals that S’S;! is the translation Tyz.0/2 of Lo. The
conjugates of this translation by Aut Ky are the translations Tm; 0/2 where x varies over the roots
of Ks. Since the roots of K5 span Ks, I'g contains a translation by A for each A € K5. By taking
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51 ( é, ) s 5 )
52 (-1,-1, 1, ; s s )
83 (0 , ; s 5 s )
54 ( . L L ., 5 )
S5 (G ) év N A )
6 ( . N A7)
St (G ’ N 1)
S8 ( - L1 1)
S9 (. SR 0, 5 )
510 (G ,os L=, 5 )
S11 ( ) ) ; év ) ) y )

Figure 5.1. For each i = 1,...,11, S; is the w-reflection in s;. The reflections S; and S;
braid (resp. commute) if the corresponding nodes of the diagram are joined (resp. not
joined). All of the s; lie in A§ ®A§ @ H, with coordinates given in an obvious notation; each
blank entry represents the value 0. The diagram automorphism s; +— s12_; corresponds
to the bodily exchange of the first two blocks of coordinates.

commutators of these translations, as in the proof of theorem 3.2, we see that I'g contains the
central translations, hence all the translations of Ly. By applying this result together with its
image under the diagram automorphism, we see that I' contains all the translations of L. Together
with the previous paragraph, this implies that I' (resp. T'g) contains the full stabilizer of p in Aut L
(resp. Aut Lg).

Observe that the roots r1 and ry appearing in the proof of theorem 3.1 are the vectors sg and
Tp, _4(s6). We conclude from (3.6) that I'g (and hence I') contains the scalars of H, and therefore
acts transitively on the unit scalar multiples of p.

Now we study the orbits under I' of the primitive null vectors of L. Suppose v € L is such a
vector, is not a multiple of p, and has minimal height in its ['-orbit. Then for some multiple w of
v we have w = (£1;€2;1,a — 0€%/6), where o € R and £ = (f1;65) with £1,0, € Af @ R.

The argument for theorem 4.1 proves the following statement: if A = (A;X2) € K1 & K
satisfies (¢ — \)? € [=3,0] then there is a root r of L of the form

a2
r= <)\1; A2 1,8+ b3 -2) 36 A )> (5.1)

(with 3 € R) such that either a triflection in 7 reduces the height of w or else (¢ — \)? = —3
and r L w. Since v has minimal height in its I-orbit, the latter possibility must apply. By [6,
p. 121], the covering norm of Af is —3/2 and its deep holes are the halves of the vectors with norm
divisible by 6. Therefore the condition (¢ — X\)?2 = —3 for all A\ € K; & K, nearest ¢ implies that
after a translation we may suppose that each of ¢; and /5 is one-half of a norm —6 vector of A§.
Furthermore, by the transitivity (theorem 5.2) of Aut A§ on such vectors, we may suppose that
each is one-half of a specific one, say (6,6,0,0).

The argument above, applied to Ly and I'y instead of L and I', rules out the existence of w,
so any null vector of Lg is ['g-equivalent to p. Since the stabilizers of p in I'g and Aut Ly coincide,
we have proven all our claims regarding I'.



We now return to studying I' and L. We have deduced that any null vector of L not I'-
equivalent to a multiple of p is instead I'-equivalent to a multiple of

0 0 0 0 0
=(=,-,0,0; =, =,0,0; 1 — 5.2
w <27 2’ ) ) 27 2’ ) 7 7a + 2) ( )
for some a € R. (We have used the equality /> = —3.) Furthermore, we know that for each

A € K; @ Ky with (£ — \)? = =3, there is a root 7 of the form (5.1) orthogonal to w. Taking
A =0, so that » = (0; 0; 1,n 4+ @) for some n € Z, the condition r | w requires o € % + Z. Taking
A= (w,—@,0,1; 0,0,0,0), so that » = (\; 1,n) for some n € Z, the condition r L w requires o € Z.
We conclude that w cannot exist, so that any primitive null vector of L is I'-equivalent to p. The
proof is completed by the equality of the stabilizers of p in I and Aut L. O

One can show that (A§)3 @ H = A%, @ H, so that the three Lorentzian lattices we have
considered in this section and the previous one form a natural sequence. We have shown that T"
appears on the lists of [11] and [12], and we conjecture that Iy also appears, as I'(2X, 2, 2, Z T
%, %, 3). The quotients of complex hyperbolic space by the various discrete groups of [8], [10] and
[11] are constructed in terms of the moduli spaces of point-sets in CP?; it would be very interesting
to find a moduli-space interpretation for our quotient of CH3.

Thurston [12] states that there is an &-lattice L in C»? invariant under I' whose points of
positive norm (up to I'-equivalence) may be identified with the triangulations of the sphere S? in
which each vertex meets at most 6 triangles. Furthermore, the number of triangles in a triangulation
equals the norm of a corresponding element of L. One can show that up to scaling there is only one
E-lattice invariant under I'. Since the fewest number of triangles possible is 2, Thurston’s lattice
must be a copy of A§ ® A§ @ H with all norms multiplied by 2/3.

The following theorem (used in the proof of theorem 5.1) is not new, but I have been unable
to find a reference for it, especially for the transitivity on norm —6 vectors.

Theorem 5.2. Aut Af is generated by the triflections Ss, ..., S11 and acts transitively on lattice
vectors of norms —3 and —6.

Proof: A% /0A§ may be regarded as a vector space V over F3 = € /0€, and the reduction modulo
0 of the Hermitian form yields a symplectic form on V. No more than 3 roots may be congruent
to each other modulo 6, because a tetrahedron of edge-length 3 cannot be inscribed in a sphere of
radius v/3. Therefore the 240 roots represent all 3% 1 = 80 nontrivial elements of V. A triflection
in a root acts on V by a symplectic transvection in the corresponding element of V', and these
generate the full symplecic group Sp,(3). Since this group acts transitively on the 80 classes we
obtain the transitivity on roots. Any element of Aut A§ acting trivially on V must carry each root
to a multiple of itself by a cube root of 1. Since A§ is not a direct sum of lower-dimensional lattices,
any such transformation must be a scalar. This shows that | Aut A| = [Sp,(3)] - 3 = 155,520. By
the last entry of the table on p. 133 of [7], the triflections Ss, ..., S11 generate a group of this order,
so this group is Aut A§.

None of the 2160 vectors of norm —6 lie in A, so each is congruent modulo @ to a root.
By transitivity on roots, there are 2160/80 = 27 vectors of norm —6 in each class, and to prove
transitivity it suffices to prove transitivity on one such class of 27, say those congruent to (6,0, 0,0).
The 27 vectors are the images of (0,0, 0, #) under the group generated by cyclic permutation of the
last three coordinates and multiplication of the 4th coordinate by w. The transitivity follows from
this description. O

6. The quaternionic case



All of the above constructions have analogues when the ring of Eisenstein integers is replaced by
the quaternionic ring H of Hurwitz integers. In particular, the Leech and Fg lattices may be
regarded as H-lattices, and we can use them to construct finite-covolume reflection groups acting
on the quaternionic hyperbolic spaces HH”, HH® and HH?3. The Hurwitz integers are the elements
of the skew field H of quaternions that have the form (a + bi + cj + dk)/2 with a, b, c and d being
integers that are all congruent modulo 2. The left ideal p generated by p = 1 — ¢ (or equally well
by any other norm 2 element of H) is two-sided.

The constructions may be described loosely as “those of sections 2 5 with 6 replaced by p.” In
particular, if L is an H-lattice, r € L has norm —2, and all inner products of r with lattice vectors
lie in p, then the &-reflections (2.1) in 7 are isometries of L if £ € {41, +i, -7, k}. In this case we
call  a root of L; we set R(L) to be the group generated by these reflections in roots of L. We

define H to be the 2-dimensional H-lattice with inner product matrix (2 g). If A is an H-lattice

then as before we write elements of L = A @ H in the form (\; p,v) and define p = (0;0,1) and
htv = (p|v). f A€ A®@R and z € ImH then the translation

(£;0,0) — (£;0,—p H(A|£))
Tyt (0;1,0) = (A 1,5 (2 — A?/2))
(0;0,1) — (0;0,1)

is an isometry of L @ R preserving p. One may write these transformations in matrix form in a
manner similar to (3.1) and check that the relations (3.2)—(3.5) hold. Aut L contains a translation
by A just if A € AN A'p.

We have an analogue of theorems 3.1 and 3.2, with slightly weaker conclusions:

Theorem 6.1. Suppose A is an H-lattice and L = A @ H. If Aut L contains a translation by
A € A then R(L) contains a translation by A(i—1). In particular, if A is definite then the stabilizer
of p in R(L) has finite index in the stabilizer in Aut L.

Proof: This is similar to the proof of theorem 3.1. Let R; and Rs be the i-reflections in the
roots r1 = (1,4) and rp = (1,—1) of H. Computation reveals that Ry Ry = —iT ,;, by which
we mean the product of left scalar multiplication by —¢ on H and the translation To; 4;- For any
T,.. € Aut L, '

RiRoT,, Ry 'Ry ' =T

T iy —izit
(One must verify this by multiplying the matrices together rather than following the proof of
theorem 3.1, because there may be no concept of left-multiplication by scalars on A.) Then R(L)
contains

Ty RiRoT), Ry 'Ry ' =

This proves the first claim; the second follows by taking commutators to obtain central translations,
as in the proof of theorem 3.2. O

T)x(ifl); —z—izi+iA2 ”

The Leech lattice admits an action of the binary tetrahedral group (the multiplicative group
of the 24 units of H) such that no nontrivial group element fixes any nontrivial lattice vector. This
action allows us to regard Aoy as a 6-dimensional H-lattice. Wilson [14] describes this lattice in
detail; the only facts we require about it are that suitably scaled it has no roots, all inner products
are divisible by p, and that its minimal vectors have norm —4. In Wilson’s description [14], the
minimal norm of the lattice is 8 and all inner products are divisible by 2p, as may be verified
using the basis he gives on p. 453. By A" we mean his lattice with all inner products divided by
—2. There is also a quaternionic form of the Fg lattice, denoted AJ' and defined to be the set of
pairs (71, 72) in H? satisfying 1 = x5 (p), under the standard (negative-definite) Hermitian form
(w1, 22)|[(y1,42)) = —T191 — T2y2.

10



Theorem 6.2. Let A be one of the lattices AJ", AJC®AJ" and AJ', and let . = A@ H. Then R(L)
has finite index in Aut L. If A = AJ* (resp. AZY) then R(L) acts transitively on the (1-dimensional)
primitive null lattices of L (resp. those orthogonal to no roots of L).

Proof: This is very similar to the proof of theorem 4.1. By theorem 6.1, R(L) contains a
subgroup of finite index in the stabilizer of p in Aut L. In light of this, it suffices to prove the
claims regarding the transitivity on null lattices, and also that if A = A @ AJ* then R(L) acts
with only finitely many orbits of primitive null lattices.

Take A = AJ. Suppose v is a null vector of L not proportional to p and let w be its multiple
of the form w = (¢;1,p7 (o — £?/2)) where £ € A @R and o € ImH. Because the covering norm
of A is —2, we may choose A € A with (£ — \)? € [-2,0]. Then we may find a root r’ of L of the
form " = (\;1,p71 (3 — 1 — \?/2)) with 8 € ImH. For any n € Imp, to be chosen later,

r=r"4(0;0,n)= (N1Lp "(n+B—1-X/2)) (6.1)
is also a root of L. Computation proves that

2_hMMQ+a+B+Q
2 2

1 1
= 2la+b+n/2

where a = % + i(ﬁ — )2 €[0,1/2] and b is purely imaginary. Denoting by w’ the image of w under
the i-reflection in r, we have

htw' =p[l — (1 —4)(a +b+n/2)].

In order to have reduced the height of w we need to choose n € Im p such that the term in brackets
has norm less than 1.

That is, we desire
2

1
\1fﬂ2f—fgma+b+nm) <1,
—1
which is equivalent to
1+ |
‘;’—m+b+wm <5
and to
25 2
- — ——b—n/2 — . 6.2
'2 a| + 5 n/2| < 5 (6.2)

By our condition on a, the first term on the left lies in [0,1/4] and equals 1/4 just if a = 0. Since
Imp is a copy of the D3 root lattice (it is spanned by ¢ + j and j &+ k), p. 112 of [6] shows that
the covering radius of %Imp is 1/2. Therefore by choice of n/2 we may suppose that the second
term is bounded by 1/4, with equality just if b is a deep hole of i/2 + %Imp. All deep holes of
Imp are equivalent by translations by elements of p, and 0 is such a deep hole. Therefore if b is
a deep hole of i/2 + %Imp we may take n/2 = —b € %Imp. We have shown that for each A € A
with (A —¢)? € [-2,0], there is a root 7 of L of the form (6.1) such that either the i-reflection in r
reduces the height of w, or else a = 0 and b = —n/2, in which case (A — )2 = =2 and r | w.

For A = AJ%, this shows that if v is a null vector of L orthogonal to no roots, then by repeated
reflections its height may be reduced to 0, so that v is equivalent under R(L) to a multiple of p.
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For A = A3%, the same argument proves that the height of any null vector may be reduced to 0,
since the covering norm of AJ¢ is —1. For A = AJ' @ A3, the argument shows that if the height of
w cannot be reduced by an element of R(L) then ¢ is a deep hole of A. Modulo translations there
are only finitely many possibilites for £. For each such ¢ the condition that w be orthogonal to a
root of the form (6.1) for each A nearest ¢ imposes an integrality condition on «; modulo central
translations there are ounly finitely many possibilities for a.. This proves that R(L) acts with only
finitely many orbits on the primitive null sublattices of L. O

7. Automorphic forms

Borcherds [3] has developed machinery for constructing automorphic forms on the symmetric spaces
for the orthogonal groups O(m,n). That is, for an even Z-lattice M of signature (m,n) and
a suitable modular form F' on the usual upper half-plane, he constructs an (Aut M)-invariant
function on the Grassmannian G(M) of maximal-dimensional positive-definite subspaces of M @R.
Furthermore, he explicitly describes the singularities of this function in terms of the lattice M and
the Fourier coefficients of F'. In this section we use his results to obtain automorphic forms on
complex and quaternionic hyperbolic spaces for the symmetry groups of the various Lorentzian
lattices we have considered.

We begin with the complex case. We define the real form of an E-lattice to be the underlying
Z-module, equipped with the bilinear form given by the real part of the Hermitian form. The real
forms of A{,, A§ and H, with inner products multiplied by 2/3, are even unimodular Z-lattices. The
evenness follows because all norms of lattice vectors are divisible by 3, and the unimodularity from
that of the Leech and Fg lattices (as Z-lattices) together with a computation of the determinant
of the inner product matrix of a Z-basis for the real form of H. Borcherds’ machinery simplifies
dramatically in the unimodular case, and we obtain the following theorem.

Theorem 7.1. Suppose A = A§ (resp. A§®A§, ALy) and L = A@H. Then there is a holomorphic
automorphic form Wg on CH?® (resp. CH®, CH'3) of weight 84 (resp. 44, 4) for a one-dimensional
representation of Aut L taking values among the cube roots of unity. Furthermore, W, vanishes
exactly on the subspaces orthogonal to roots of L, and these zeros have multiplicity one.

Proof: Suppose A = A§. Then the real form L® of L is a copy of Ilz 10 (the selfdual even
Z-lattice of signature (2,10)) with all norms multiplied by 3/2. Let F' be the modular form

F(r) = E3(r)/A(r) = > c(n)q" = q ' + 504+ 73764 + - - (7.1)

n>—1

of weight —4 for SLsZ, where ¢ = €*™™ and 7 lies in the upper half-plane. Then theorem 13.3
of [3] provides a meromorphic automorphic form ¥ on G(Ily 1) of weight ¢(0)/2 = 252 for some
one-dimensional character of AutIls 9. Furthermore, the only zeros and poles of ¥ lie along the
divisors orthogonal to those A € 1l 19 with A% < 0, and are zeros of order

> c(@®)2).
zeRT
z €Iz 10

That is, ¥ has a simple zero along the divisor orthogonal to each norm —2 vector of Il 19 and
no other zeros or poles; this implies that ¥ is holomorphic. By definition, CH? is the space of all
positive-definite complex lines in L&R, and is obviously a subspace of the Grassmannian G(Ils 19).
By restricting ¥ to CH® we obtain an automorphic form for Aut L. The orthogonal complement
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of a root of L meets CH® in the obvious complex hyperplane. The orthogonal complements of \w
and A\w meet CH? in this same hyperplane, so the zeros of the restriction of ¥ to CH?® are precisely
the hyperplanes orthogonal to roots of L, with multiplicity 3.

If r is a root of L then the real form of the E-span of r , with inner products multiplied by 2/3,
is a copy of the Ay lattice. The three real reflections in the 6 roots of As generate the symmetric
group S3, and the 120° rotations are commutators in S3. This proves that the triflections in r
are commutators in AutIls 9. Since the triflections generate Aut L, we find that ¥ transforms
according to the trivial character of Aut L. A cube root Wq of the restriction of ¥ is automorphic
with respect to a character of Aut(L) taking values among the cube roots of unity. Finally, ¥,
obviously has simple zeros along each mirror, and weight 252/3 = 84.

If A = A @ A or Af, then our assertions follow from the argument above, with F' replaced
by

F(1) = By(1)/A(T) = ¢~ 1 + 264 + 82449 + - - - or
F(r)=1/A(1)=¢q ' +24+324g+--- ,

respectively. In the case A = A%, to prove that W is invariant under Aut L, one must use the fact
that Aut L is generated by triflections together with the perfect group Aut A%,. (Aut A%, is perfect
because it is the universal central extension of a simple group.) O

Now we consider the quaternionic case. As before, the real forms of AJ‘, AJ¢ and H are even
unimodular lattices (this time, no rescaling is required). Borcherds obtained the form ¥ used above
by exponentiating another function ® which has logarithmic singularities along the mirrors. In the
quaternionic case, the relevant real lattices are 114 4,,, and the analogue of ® has poles rather than
logarithmic singularities.

Theorem 7.2. Let A = A3 (resp. AJ*@A3", AZY) and let L = A@H. Then there is a function ® on
HH? (resp. HH®, HHT) that is invariant under Aut L and real-analytic except at its singularities.
The set on which ® is singular is the union of the mirrors orthogonal to roots of L. Along the
mirror orthogonal to a root r, the singularity has type

12 w?
™ [{wlr)?
where w is a vector in L ® R representing a point v of hyperbolic space near r=+.

Proof: Suppose A = AJ', so that L® is isometric to 11y 12. We take F/(1) = E3(1)/A(T), as
in (7.1). Then the function ® on G(L®) defined in [3, §6] (with the polynomial p set to 1) is real
analytic except at its singularities. If vy is a maximal-dimensional positive-definite subspace of
L® @R then for v € G(L®) near vy, ® has a singularity of type

ST e(r?2) (27A2) 7,
AeLFnug-
A#£0

where A+ is the projection of A to the subspace v. Any X appearing in the sum satisfies A\? < 0, so
the only A for which the term in the sum is nonzero have norm —2. We now restrict to HH?3, with
vo a generic point of r+ (i.e., orthogonal to no elements of L except multiples of r), represented
by a vector wy of L @ R of positive norm. The sum extends over the 24 roots A (the unit scalar
multiples of ) orthogonal to wy. For v a point of HH? near vy, represented by a vector w, \,+ is
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the projection A to wH with respect to the Hermitian form, and A2, = [(w|A)[?/w?. Therefore the

singularity near vy has type
2

L T E
u
where the sum extends over the units u of H. Since ¢(—1) = 1 and the 24 terms in the sum all
coincide, we have proven our claims in the case A = AJL.
If A = A3 @ A3" or A" then one can repeat the proof above, with F' = E4/A or F = 1/A
respectively. O

In the introduction we mentioned the analogy between the two series of groups we have studied
here and the series of real hyperbolic reflection groups discussed by Conway [4], namely the groups
of the lattices

11179, 111’17 and 111’25 .

The analogy extends even to the construction of automorphic forms. In each of the real, complex
and quaternionic cases, there are automorphic forms constructed from the modular forms E% /A,
E4/A and 1/A. (See examples 10.7 and 12.2 of [3] for the real case.) Borcherds has observed
(private communication and [3, §12]) that there seems to be a very close (maybe one-to-one?)
correspondence between nice reflection groups on real, complex and quaternionic hyperbolic spaces
and automorphic forms with singularities exactly along reflection hyperplanes. The examples of
this paper strengthen this correspondence.

In an earlier paper [1] we constructed two reflection groups acting on the octave hyperbolic
plane OH?, and it is natural to wonder whether the analogies extend to this case. That they might
is suggested by the fact that one of the groups may be regarded as the automorphism group of
the “lattice” AT @ ((1) (1)), where A is the Fg lattice regarded as a “I-dimensional lattice” over a
suitable discrete subring X of the skew field O of octaves. This is obviously analogous to the first
term in each of the series of lattices over Z, & and .
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