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Abstract.

For two different integral forms K of the exceptional Jordan algebra we show that Aut K is gener-
ated by octave reflections. These provide ‘geometric’ examples of discrete reflection groups acting
with finite covolume on the octave (or Cayley) hyperbolic plane QH?, the exceptional rank one
symmetric space. (The isometry group of the plane is the exceptional Lie group Fy_sp).) Our
groups are defined in terms of Coxeter’s discrete subring X of the nonassociative division algebra
O and we interpret them as the symmetry groups of “Lorentzian lattices” over X. We also show
that the reflection group of the “hyperbolic cell” over X is the rotation subgroup of a particular
real reflection group acting on H® = QH'. Part of our approach is the treatment of the Jordan
algebra of matrices that are Hermitian with respect to any real symmetric matrix.

1 Introduction

The octave hyperbolic plane QH? is the exceptional rank one symmetric space; it is very similar to
the more familiar real (and complex and quaternionic) hyperbolic spaces. There is a natural notion
of a hyperplane in QH?, and of a reflection in such a hyperplane (the mirror of the reflection).
In this paper we explain this and construct two discrete groups of isometries of QH? that are
generated by reflections. One can also define the ‘octave hyperbolic line’ QH', and it turns out
to be isometric with the real hyperbolic space H®. In this setting, a hyperplane is just a point
and the octave reflection therein is just central inversion. We will construct a discrete group of
isometries of QH' generated by octave reflections and show that it is the rotation subgroup of a
certain group of isometries of H® generated by real reflections. This real reflection group is easy
to describe; it has a simplex for its fundamental domain, with Coxeter diagram

N

We construct all three of our groups by defining them arithmetically and then finding suffi-
ciently many reflections to generate them. It turns out that in each case one can easily write down
a large set of reflections preserving the relevant algebraic structure, and that the mirrors of these
reflections are arranged in a pattern governed by the combinatorics of the E7 and Eg root lattices.
We use facts about the geometry of these lattices to prove that these “known” reflections actually
generate the entire group. To the author’s knowledge this is the first geometric construction of
discrete groups of isometries of QH?2.

To discuss OH? in any depth one must introduce various spaces of 3 x 3 matrices with entries
in the nonassociative field O of octaves, such as the space J; of Hermitian matrices; such matrices
should informally regarded as “Hermitian forms” on the nonexistent vector space Q3. One can
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define the determinant of such a “Hermitian form” in terms of a certain cubic form. The group Hy
of linear transformations of J; that preserve the determinant form is isomorphic to the exceptional
Lie group Fg(_s6)- This representation of Hy is very closely analogous to the action of PGL3C on
the space of 3 X 3 complex Hermitian matrices given for g € GL3C by ® — g®g*. (One can replace
C here with any associative ring.) One should think of H; as “PGL30”, and the stabilizer in Hj
of some matrix ® as the unitary group preserving the “Hermitian form on @3” with inner product
matrix ®. For appropriate choice of ® this stabilizer is isomorphic to G' = Fy_20) = Aut OH 2,
and one can use this to construct QOH?.

To construct discrete subgroups of GG one can simply take ® to be integral and consider the
stabilizer of ® in the subgroup H IK of Hy that preserves the set of integral Hermitian matrices. By
an integral matrix we mean one whose entries lie the natural discrete subring X of O discovered
by Coxeter [9]. In light of the above interpretation of G and Hy, we may think of this discrete
subgroup as being essentially the isometry group of the “lattice” over X with inner product matrix
®. Our main result is that if ® is

(1.1)
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then the discrete group is generated by octave reflections. We note that the first of these groups
has been studied by Gross [13] in a different guise (see section 7). If one uses 2 x 2 matrices over O
then one finds that the analogous discrete subgroup defined by the matrix ((1) (1)) is also generated
by octave reflections, and that is has index 2 in the real reflection group with Coxeter diagram
given above. We note in passing that the finite simple group 3D4(2) described in the ATLAS [7] as
an octave reflection group in the compact form of Fy has been realized by Elkies and Gross [10] as
the stabilizer in H ?C of a certain positive definite matrix with entries in X and unit determinant.

Our construction of reflection groups in Fy_z) reveals the source of the ideas for this in-
vestigation. In [1] we constructed a large number of discrete reflection groups acting with finite
covolume on complex and quaternionic hyperbolic spaces CH™ and HH". These groups were de-
fined as the automorphism groups of certain Lorentzian lattices over discrete subrings of C and H.
(A Lorentzian lattice is a free module equipped with a Hermitian form of signature — + +--- +.
See [1] for details.) This work was in turn inspired by the work of Vinberg [18] [19], Vinberg and
Kaplinskaja [20], Conway [6], and Borcherds [4] on real hyperbolic reflection groups defined in
terms of Lorentzian lattices over Z.

The basic idea of [1] was that the symmetry group of a Lorentzian lattice sometimes contains a
collection of reflections whose mirrors are arranged in the pattern of some positive-definite lattice.
If this lattice is “good enough” (e.g., has small covering radius) then these reflections generate a
group with finite covolume. We use the same idea here, although all of the arguments of [1] must
be changed because O and X are not associative and so modules and lattices over them do not
make sense. We are pleased that the geometric ideas continue to work in the nonassociative case
even though all of the formalism must be rewritten. In this paper, the relevant positive-definite
“lattice” over X is just X itself, which is a scaled copy of the Eg root lattice.

Above, we described Fy_og) as the stabilizer in Eg_o6) of any of various Hermitian matrices.
However, for computations it is more convenient to describe the group as the automorphism group
of a Jordan algebra J, and to describe QH? in terms of the idempotent elements of J. For any
3 x 3 nondegenerate real symmetric matrix ¢ we define Jg to be the set of 3 x 3 octave matrices
that are Hermitian with respect to ®. This vector space is closed under the Jordan multiplication
X *xY = (XY +YX)/2, and the automorphism group of Jg turns out to be a real form of Fy. In
particular, if ® is indefinite then the group is Fy_z0) = Aut OH 2. For most of the paper we will
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work with Jg and various integral forms thereof, where

W:

o O
—_— o O
o = O

This is a convenient setting for computations and for the construction of the reflection groups. A
little bit more effort is then required to identify the groups as the stabilizers in H }K of the Hermitian
forms (1.1). This extra work essentially consists of the introduction of the determinant forms on
Jr and Jg and an identification of these cubic forms with each other.

Existing treatments of QH? are ecither elegant and abstract but not suited for computation
(see [16]) or else are defined in terms of the Jordan algebra Jgjag—1,41,41] (see [15]). To prove
our results we need to introduce and name various transformations of Jy and make other detailed
constructions. In light of this, our treatment of J is almost entirely self-contained. In section 2 we
describe O and list some identities useful for computing therein. We then heuristically describe in
section 3 the geometry of OH?, to guide the reader through the algebraic thicket of section 4, which
formally defines the Jordan algebras and QH?, provides useful coordinates for them, and establishes
key properties of their symmetry groups. Section 5 is the heart of the paper and constructs the
advertised reflection groups. The proof that the groups are the entire symmetry groups of two
integral forms of J requires the rather involved theorem 5.3, but we indicate how to obtain the
weaker result that they have finite covolume without using this theorem. In section 6 we describe
the determinant form on J, a cubic form which makes the inclusion Fy_20) € Eg(—26) = Aut OP?
visible. Finally in section 7 we use the determinant form to realize our reflection groups as the
stabilizers of the integral Hermitian forms (1.1).

2 The Nonassociative Field O

The algebra O of octaves is the algebra over R with basis e5 = 1,€q,...,es with 2 = —1 for
a # oo, any two elements lying in an associative algebra, and eze 11 = eq+3 for each a # oo,
with indices read modulo 7. The algebra of octaves is noncommutative and nonassociative, but
otherwise a division algebra. For computational purposes it is useful to know that for distinct
a,b,c # oo we have e e, = —epe, and e, (epe.) = t(eqep)e., with associativity holding just if

{a,b,c} ={d,d+1,d+ 3} (mod 7) for some d =0,...,6.

Sometimes it is convenient to write 4, j, k and £ for eg, e1, e3 and es, respectively. Then i generates
a copy of C and i, j, k generate a copy of the quaternions H. The real part Rezx of z = ) z,e, is
Zoo, and the conjugate T of x is T = —x + 2 Rex; we have Rexz = ReZ. We say that z is imaginary
if Rex = 0 and we write Im @ for the set of imaginary octaves. The norm |z|? of z is defined to be
% = > 22, and 7 is called a unit if it has norm one. The identities Ty = §Z and |zy|> = |z|?|y|?
hold universally.

Since Q is nonassociative, computations with it are sometimes complicated. Five identities we
will use are

z(zy)z = (22)(y2), (2.1)
Re((zy)z) = Re(z(yz)) = Re((y2)z) (2.2)
(pzp)(py) = p(zy), (2.3)

(zp) (pyp) = (zy)p, and (2.4)

zy +yx = (zi)(uy) + (yi) (pr) (2.5)
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which hold for all z,y,z € O and all imaginary units p. We write Re(zyz) for any of the three
expressions in (2.2). Identities such as these are easily proven if one takes advantage of the auto-
morphism group of @. This group is the compact form of the exceptional Lie group G, and the
stabilizer of a subalgebra isomorphic to R, C or H acts transitively on the units orthogonal to the
algebra. (See [12] for a proof.) For example, we prove (2.3). After applying an automorphism of
O we may take p =i, * = o + aj and y = yo + B¢ with a, 8 € R, zp € C and yo € H. After
expanding both sides of (2.3) we find that almost all terms cancel by associativity in H. All that
remains is to check
(257) () = i(j0),

which one does using the definition of multiplication. Note that (2.4) may be obtained from (2.3)
by taking conjugates.

We observe that if Aq,..., A, are matrices over Q, with all except at most two of them having
all real entries, then the product A; --- A, is independent of the manner in which the terms are
grouped by parentheses. The same result holds if all the entries of all the matrices lie in some
associative subalgebra of Q.

Finally, we will use the fact that the group of transformations of O generated by the left
multiplications by imaginary units acts transitively on the unit sphere S7 in Q. (Proof: every orbit
contains an equator S® of S C Q, so any two orbits meet.)

3 The Geometry of QH?

This section is not logically necessary for those following it. Its purpose is to tell the reader in
advance what some of the answers are, to serve as a guide to the rather heavy algebra of section 4.
We discovered the reflection groups mostly by geometric visualization using the model described
here, together with analogies with the constructions of [1]. The geometry of QH? and OP? can be
developed entirely synthetically, along the lines of [16] and [17], but we will use the Jordan algebra
approach in order to be able to use a theorem of Borel and Harish-Chandra at a crucial point in
the proof of theorem 5.4. Some of the basic ideas described here are implicit in [14] and they are
all developed in [11] and [12].

Even though O is not associative and so modules over it can’t reasonably be defined, one
should imagine the fictional vector space @3. If it were equipped with a nondegenerate Hermitian
form ® then we could consider the set Jg of Q-linear transformations of Q3 that were self-adjoint
with respect to ®. Among these would lie the orthogonal projections onto subspaces of Q2; these
would be the identity and zero operators together with two continuous families corresponding to
the 1- and 2-dimensional subspaces. In particular, thinking of elements of Q% as row vectors with
matrices acting on the right we could consider X = v*v where v* would be the ®-adjoint of v € Q3.
Up to a multiplicative constant this would be the projection onto the span of v. It would turn
out that such transformations could be essentially characterized by the conditions that X2 = AX
and Tr X = X where A € R would be the (square) norm of v. This would allow one to recover the
1-dimensional subspaces of @3 and the norms of vectors in them. Furthermore, if X and Y lay in
Jo then their Jordan product X «Y = (XY + Y X)/2 would also lie in Js, so that Je would be a
Jordan algebra. Finally, one could recover the notion of orthogonality of subspaces of Q3 because
if X and Y were projections to two subspaces then these subspaces would be orthogonal just if
X*xY =0.

The reason one goes to these lengths is that Q3 is not in any sense a vector space over O,
so the above account is purely fictional. However, the Jordan algebra Jg does exist (although we
will only treat the case of real ®). This allows us to recover much of the structure that O® would
have provided if it existed. In particular, if ® has signature — + + then we can recover the set
of “l1-dimensional subspaces of @3 on which ® is negative definite”. By analogy with hyperbolic
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geometry over R, C and H we define QH? to be this set. The group Aut .Jg turns out to be Fy—20),
which acts transitively and with compact stabilizer on QH?2.

The geometry of OH? is very similar to more conventional hyperbolic geometry. In particular,
OH? is an open 16-ball and it has a natural boundary 0OH? “at infinity”, a sphere S'® which
arises from the nilpotents of Jg (or, heuristically, from the norm 0 elements of Q3). Furthermore,
by considering idempotents of Jp one obtains points “outside” OOH? which together with QH?
and O00H? form the octave projective plane QP2. This is essentially the same as the realization of
real hyperbolic space H™ as an open ball in RP", as the image of the elements of R™*! of negative
norm with respect to a quadratic form of signature — + + --- +. The only difference is that there
is no vector space Q3 associated with QP2.

We will show that Aut QH? acts transitively on O0H?, and the stabilizer of a null point will
be very important in our work. There is an upper-half-space model for OQH? which is ideal for
studying the stabilizer of a null point. In this model, the points of QP2 (except those on the line
at infinity) are described by pairs (z,z) with z,z € Q. The points of OH? are the pairs with
Re z > 0, and the points of 9O H? are the pairs with Re z = 0, together with one extra point called
00, which lies on the line at infinity. There are “translations” stabilizing oo, which have the form

(z,2) — (z+ &z —Im(zf) + 1)

with € € O and n € ImQ. The translations turn out to form a 15-dimensional Lie group H'®
which (obviously) acts transitively on 0OH? \{oc}. The group of translations is closely analogous
to the translations of Euclidean space R™ which act on H"*! in the usual upper-half-space model.
The only substantial difference from the real case is that 3% is nonabelian, being a sort of octave
version of the Heisenberg group.

We mentioned above that one can define the notion of orthogonality of “subspaces of Q3"
purely in terms of the Jordan algebra. This leads to the concept of a hyperplane in QH?; usually
we will call a hyperplane a line. A reflection is a nontrivial transformation of QH? that fixes a
line pointwise. We will see that there is a unique reflection across each line; the line is called the
mirror of the reflection. The map R’ : (z,z) — (—z,2) is an example of a reflection which fixes
oo and there is another reflection R which exchanges oo with (0,0). The coordinate expression
for R is complicated, but R is analogous to a real reflection of H"™ whose mirror appears as a
hemisphere resting on 0H"™ in the upper-half-space model. The two reflection groups we will build
will be generated by conjugates of R and R’ by translations satisfying appropriate integrality
conditions on & and 7. The mirrors of the conjugates of R’ will be arranged in the pattern of a
discrete subgroup of %, and if this subgroup is “dense enough” then the mirrors will “cover”
O0QH? ~{oo}. This will allow us to prove that the groups have finite covolume in Aut QH?2.

4 Jordan Algebras

We will use angle-brackets *()’ to denote the values of various multilinear forms, and also to denote
“the linear span of” or “the group generated by”. One of the latter possibilities applies when there
are no vertical bars ‘|” between the brackets. In this case, the meaning will be clear from the sort
of objects lying between the brackets.

If ® is a symmetric matrix in M3R, then we will regard it informally as a “Hermitian form on
037; we will restrict our attention to invertible ®, corresponding to nondegenerate forms. We write
M50 for the real vector space of 3 x 3 matrices with entries in O, and denote by X* the conjugate-
transpose of a matrix X. The vector space Jo = {X € M30 | X = &X*} is closed under the
Jordan multiplication X Y = (XY + Y X)/2, and we call it the Jordan algebra associated to ®.
We say that X,Y € Jg Jordan-commute if X Y = 0. We informally regard elements of Jp as
“transformations of Q3" that are Hermitian with respect to ®. In most treatments (e.g., [11] and
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[12]), OP? is described in terms of J;, whose automorphism group is the compact form of Fy. We
will study ® # I because we are interested in QH? and because it is useful to formulate the theory
for more general ®—this clarifies the various roles of the matrices involved. For g € G L3R we define
the transformation Cy of M350 given by C; : X g 'Xg. A quick computation shows that o
carries Jypg+ to Jo and preserves matrix multiplication on M30. We write O(®) for the subgroup
of GL3R whose elements are unitary with respect to ® (that is, g € O(®) if g®g* = ®). Scalars
in O(®) act trivially on Jg, so we have PO(®) = O(®)/{£I} C Aut Jp. When & is indefinite,
PO(®) may be identified with the subgroup O7(®) of O(®) that preserves each of the two null
cones defined in R? by ®. We will assume this identification henceforth. For any X € Mz0Q we
define x(X) = ReTr(X) and the symmetric inner product (X|Y) = x(X *Y’). We call (X|X) the
norm of X. It is easy to see that Tr(XY) = Tr(Y X) if either X or Y is real, so GL3R preserves
the trace form on M30. Since (X|Y') is defined in terms of the trace and the multiplication, GL3R
also preserves norms and inner products. We will see that all of Aut Jg preserves the restrictions
of these forms to Jg, and that the trace of any element of Jg is real.
We will mainly be concerned with the indefinite form

1 0 0
V=10 0 1
01 0

and we write J for Jg. For any ®, there exists ¢ € GL3R such that g®g* € {+I,+V}, so Jg is
isomorphic to Jy or to Jy. An element of J has the form

X = (a,b,c,u,v,w) = (4.1)

g < 9
o & 8
S o

with a,b,c € R and u,v,w € Q. It is obvious that X has real trace. Since all elements of J; also
have real trace (proof: compute, or see [11]) and the maps C, preserve traces, the trace of any
element of any Jg is real. Computation reveals

(X|X) = a® 4 2bc + 2Re(u?) + 4 Re(vw),
and so by polarization we obtain
(X1|X2) = a1a2 + byca + bach + 2Re(ujuz) + 2 Re(viwa + vowy ). (4.2)
In order to work with the reflection groups of section 5 we will need detailed information about

J and its automorphism group. We begin by giving the multiplication table for J. For each x € O
we define

1 0 0 0 0 0 0 0 0

A=10 0 0), B={0 0 1], C=10 00

0 0 O 0 0 O 01 0
0 0 O 0 0 =z 0 =z O
U.=(0 z 0], Vo=|=x 0 0 andW,=10 0 0
0 0 =z 0 0 O z 0 O

With respect to this spanning set, the Jordan multiplication is given in table 4.1. Note that entries
denote twice the Jordan product. We write U (resp. V', W) for the span of the U, (resp. V,, W,).
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A B C U, Vy W,
A |24 0 0 0 v, W,
B 0 U, 2Re(y) - B 0 Vy
C 0 2Re(y) - C Wy 0
Uz Usy+ya Vay Wyz
Ve 2Re(zy) - B 2Re(zy) - A+ Uyz
W, 2Re(zy) - C

Table 4.1 Entries denote twice the Jordan product in J.

We write Im U for the span of those U, with x € Im Q. The nilpotent B will be very important in
our analysis, and we define the height of X € J to be ht(X) = (X|B). For X given by (4.1), we
see by (4.2) that ht(X) = c.

We now introduce several transformations which will turn out to be automorphisms of J.
We already know that OT(¥) C AutJ. For t € R and p any imaginary unit of Q we define the
transformations

R:(a,b,c,u,v,w) — (a,c,b,u, —w, ) (4.3)

Syt (a,b,c,u,v,w) = (a,b, ¢, puft, pv, wi) (4.4)
1 0 —t

Tro=0Cy forgi=|t 1 —t?/2 | (Noteg;' =g_+.) (4.5)
0 0 1

We will soon introduce a more convenient notation for certain elements of J, which will greatly
simplify these expressions. We write G for the group generated by R, the S, and the T} o. Later in
this section we will see that G = Aut.J, that the S, generate a group isomorphic to Spin;R, and
that the T} o together with their conjugates under this Spin;R generate a 15-dimensional nilpotent
Lie group. An important element of G is the map

R’ : (a,b,c,u,v,w) — (a,b,c,u, —v, —w), (4.6)

which is the square of any .S,,. We will define octave reflections in section 5 and see that R’ is one.

Lemma 4.1. The transformations R, S,, and T} o are automorphisms of J and preserve the trace
and norm forms. We have (R, Ty o) = O (¥), and it follows that O (¥) C G.

Proof: We first observe that R and T} lie in O*(W0): T} o obviously does and R = C,, for

Verification that each S, is an automorphism relies on several pages of computation, using the
identities (2.1)—(2.5) and the fact that g = —pu. It is obvious that S, preserves traces and since
it preserves the Jordan multiplication it also preserve norms. Alternately, section 6 defines the
determinant form on J and theorem 6.2 uses it to prove that S, € Aut.J. This approach reduces
considerably the amount of work required but is much more circuitous.

We write elements of R3 as row vectors; OF (W) acting on such vectors (by multiplication on
the right) preserves the quadratic form W. The T} o are the parabolic transformations stabilizing
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(0,0,1) and their conjugates by R are those stabilizing (0,1,0). It is obvious that these one-
parameter subgroups generate SO (V) = SOT(2,1;R). Since R € O (V) \ SO (V) we see that
(R, Ty o) = O (). O

Working with 3 x 3 matrices is tedious and there is a better notation, which closely resembles

the use of “vectors in @3”. We write elements of the real vector space Q% as row vectors, and
define

@(3) = { (z,y,2) € 03 ‘ x,y, z all lie in some associative algebra}
@80 = { (:v,y,z) € @3 ’ Yy ER} - @8

Suppose ® is given. We define the map g : Of — M30 by 7g(v) = ®v*v; we write 7 for mg. One
checks immediately that 7¢(03) C Jp. We say that an element of Jg is “good” (with respect to
®) if it is nonzero and lies in the image of mg. One checks that if (z,y,2) € Q3 and a € O~ {0}
such that z,y, z and « all lie in some associative algebra then 7¢(z,y, z) = 7o (ax, ay, az), so any
good element of Jg lies in the image of QF,. It is easy to see that the span of 7(QF) is all of J.
The elements of Of and OF, have been dubbed “restricted homogeneous coordinates” by Aslaksen
[3]. (Actually, Aslaksen considered a slightly different version of the special case ® = I. A very
similar idea appears in [14]. The relation between these ideas is explained in [2].) For reference,
we record that the ordered pair (z, z) of section 3 represents

m(x, 1,z — |z[*/2) € J.

(We will not need this identification.)
The following theorem a very useful computational tool.

Theorem 4.2. Ifv,w € O3 and all six entries of v and w lie in some associative subalgebra of O,
then for any ® we have
(T (v)|me(w)) = [vPuw’[?.

Proof: Let o denote the single entry of v®w*. We write v = (v,), w = (wp) and ® = (¢4p) for
a,b=1,2,3. In the derivation below we have associated terms freely and used identity (2.2) and
the symmetry and reality of ®.

Tr

—~

To(v) * Te (w))
dv*vdw w + dwrwdv*v)/2
v aw + Pw*av)/2

(Ta(v)[ma(w))

I
==

(PabUpaWa + PapWyavg) /2
a,b

Re(paptpawy,)

o

a,

= Re ag W PabTp
a,b

= Re(aa) = |of*

O

For A € R, we say that X € Jg is A-potent (or is a A-potent) if X2 = AX. We refer to 1-,
0-, and (—1)-potents as idempotents, nilpotents and negpotents, respectively. We say that X is
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potent if it is Ad-potent for some A. One reason we use Of and OF, is that the good elements turn
out to be the most important elements of Jg. In particular, every good element is potent. We will
see that the geometry of @H? may be described in terms of the good potents of Js. We define the
norm |v|3 of v € OF to be the single entry of v®v*, which is automatically real. Then we have

e (V) Te(v) = Pv*vdv v = v*|v|3v = |[v]i7Te(v),

so we see that 7¢(v) is |v|3-potent. (Warning: The norm |v]3 of v € OF is not the same as the
norm in Jg of mg(v)—by theorem 4.2 the latter norm is the square of the former. This is an
unavoidable inconvenience.)

We also have

Tr(me(v)) = ReTr(me(v)) = Re Y daplyva = Re > vadasts = |v]3.
a,b a,b

Therefore a necessary condition for X € Jg to be good is that there be A € R such that X is
A-potent and has trace A. In theorem 4.3 we will see that this is nearly a sufficient condition.

We can define an action of O(®) on OF that is me-equivariant with its action on Jp. Namely,
g € O(®) acts by v — vg; observe that this preserves Q3. Taking ® = ¥ we observe that the maps
T;,0 also preserve 03, and we define an action of the S, on O by

S (2.9,2) v (uz,y. pzfi)-

With the aid of (2.3) and the fact that y € R one can check that this action and the action of S,
on J are m-equivariant.
An important set of transformations of QF, are the “translations”

Tf,n : (':ana Z) = (QL' + gyaya 2 l‘g_ |§|2y/2 + yn)

with £ € O and n € Im Q. Those with £ = 0 are called central translations. If £ = ¢ € R and
n = 0 then this definition agrees with the action of T} o on 03, defined in the previous paragraph
by virtue of Ty o € O(®). All of the translations fix (0,0, 1), which is useful because B = 7(0,0,1)
is a useful nilpotent of J. Using (2.1) and the fact that 7 = —p one may show

S © Ten © Sp = Tyg unp (4.7)

Teyomy © Tea i = Tyt m+mo+Im(616) (4.8)

T =T_, (4.9)

[Ty s Tenma] = Tgl}m o ng}m ©Teym © Teyms = Tootm(erEy) - (4.10)

These show that the translations form a 15-dimensional Lie group (which we call 31®) which is
nilpotent of class 2 and normalized by the S,. Its derived subgroup coincides with its center
and consists of the central translations—31® is a sort of octave version of the Heisenberg group.
Because m(0F,) spans J, the m-equivariance properties of the T} o and S, show that the action on
J of any elements of (T3, S,,) is completely determined by its action on 03,- The relations above
show that all of H'® x(S,,) is generated by the S, and those T} with ¢ € R, so all of H* x(S,,)
maps into G C Aut J. One reason for introducing the restricted homogeneous coordinates is that
the expression for the action of T¢, on J is horrible for general § and 7. We now show that the
natural map from the group (T}, 5,) acting on O to the group (T} 0,5,) C G acting on J is an
isomorphism. The action of s € (S,) on O is determined by its actions on the first and third
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coordinates of elements of @3,. These actions coincide with those of the image of s in G on the
subspaces V and U of J. Thus (S,) C Aut OF, acts faithfully on J. If h € H'5 \ 1 and s € (S,)
then by considering the action of hs on (0,1,0) € @80 we see that the corresponding action of hs
on J is nontrivial. Therefore all of (T}, S,) C Aut Q3 acts faithfully on J. This establishes an
isomorphism between the group (T} ,,5,) acting on Of, and the group (T}, S,) acting on J. We
will henceforth assume this identification.

The following theorem provides the justification for our assertion that the good elements of J
are the most important ones, and provides the link between OF and the structure of the Jordan
algebra.

Theorem 4.3. Suppose X € J~{0} is A-potent and has trace A. Then (i) under G, X is
equivalent to a real matrix, and (ii) precisely one of X and —X is good. Furthermore, (iii) every
nilpotent of J has trace 0.

Proof: By the m-equivariance of the actions of O(¥) on J and Of and those of (K, S,) on
J and 03, the image under G of a good element is good. Therefore it suffices to find a transform
X’ of X under G such that just one of £X’ is good. Suppose X = (a,b,c,u,v,w). If X Jordan-
commutes with both B and C then by table 4.1 we have X = AA for some A € R, obviously a real
matrix. If A > 0 then X = n(v/),0,0) is good but —X is not. If A < 0 then the reverse applies.
Since X # 0 we do not need to consider the case A = 0.

If X fails to Jordan-commute with at least one of B and C' then we may (if necessary applying
R € G to exchange B with C') suppose that X fails to Jordan-commute with B. If ¢ = 0 then in
order for X to be A\-potent we must have |w|? = Ac = 0, so w = 0. Even if ¢ # 0, we may suppose
without loss of generality that w = 0, as follows. After applying suitable S,’s to X we may take
w € R. Computation shows that T} o (for ¢ € R) acts on J by

Tio: (a.b,c,u,v,w) — (7,7,7,7,7,w + ct)
where the question marks indicate irrelevant coordinates. Applying T_,, /.0 we may take w = 0.
Since the S, and T; o fix B, we know that X still fails to Jordan-commute with B.

Squaring the matrix X we find that when w = 0 the conditions for X to be A-potent are

ala—A) =0 (4.11)
(a+a2—ANv=0 (4.12)
ve=10 (4.13)
u(u—A)+bc=0 (4.14)
c(2Reu—A)=0 (4.15)
[v|> + b(2Reu — ) = 0. (4.16)

If ¢ = 0 then by (4.14), u = 0 or u = A, the latter condition being impossible by the trace condition
on X. Therefore u = 0, which together with w = ¢ = 0 shows that X Jordan-commutes with B.
This contradicts our hypothesis on X, so ¢ = 0 is impossible.

Since ¢ # 0, (4.13) and (4.15) show v = 0 and Reu = A/2. The trace condition implies that
a = 0, and we solve for b by finding b = —u(u — \)/c = uu/c. We conclude

0 0 0
X=10 u wuu/c
0 ¢ U



If ¢ > 0 then X = 7(0,+/c,u/y/c) and —X is not good. If ¢ < 0 then —X = 7(0,+/—c,u/y/—c) and
X is not good. This proves (ii). To prove (i), we suppose without loss of generality that ¢ > 0
and simply apply 7o, m /e, Which carries X to 7(0,+/c, Reu/\/c), a real matrix.

To prove (iii) we suppose that X is nilpotent but make no assumption about its trace. As
above, we may suppose w = 0, so that (4.11) (4.16) hold with A = 0. Then (4.11) implies a = 0.
If be = 0 then by (4.14) we have u = 0, so Tr X = 0. If bc # 0 then by (4.13) we find v = 0 and
then by (4.16) we find Reu = 0, which again shows Tr X = 0. O

One consequence of theorem 4.3 is that if X € J is nilpotent then we know that X = +m(v)
for some v € O3, with |[v|2, = 0. It is easy to enumerate all possibilities for v, and we find that
either X is a multiple of B = 7(0,0, 1) or else

X =hen(@,1,~[2]2/2+2)

for some h € R, z € O and z € ImQ.

Theorem 4.4.
(i) For each A € R, G acts transitively on the good A-potents of J.
(ii) Two orthogonal nilpotents are proportional.
(iii) The subgroup H!® of G stabilizes B and acts simply transitively on the nilpotents of any given
nonzero height.
(iv) The groups G and Aut J coincide.
(v) The subgroup fixing B and also C' is isomorphic to Spin;R, is generated by the S,,, has center
{1, R'}, and acts on (B,C,U) as SO(T7).
(vi) The stabilizer of B is the semidirect product H' x Spin,R.

Recall that the transformation R’ is defined in (4.6), as
R’ : (a,b,c,u,v,w) — (a,b,c,u, —v, —w).

Proof: (i) Suppose that X and Y are good A-potents and thus nonzero. By theorem 4.3, after
applying elements of G, we may suppose that X = 7(v,) and Y = 7(v,) with v, v, € R¥~{0} C
Q3. The norm map v — |v|3 is the usual norm on R? associated to the quadratic form U. We
know that |v;|3, = |vy|3 = A and that O(¥) = OT(¥) x {£I} acts transitively on the nonzero
vectors in R with any given norm. Applying an element of OT (V) C G we may take v, = +uv,
and so X = 7(v,) = m(vy) =Y.

(ii),(ii) For any nilpotent X, either X or —X is good (this follows from theorem 4.3). In
order to have inner product h # 0 with B, we must have X = h - 7(z, 1, —|x|?/2 + 2) with € O,
z € ImQ. For h # 0 these are obviously permuted simply transitively by H!°, proving (7ii). If
h = 0 then X must have the form +m(z,0, ), but then since 0 = |(x,0, 2)|3, = |z|?, we must have
x =0 and so X is a multiple of B. This proves (ii).

(iv) Suppose ¢ € Aut J. By (i) and theorem 4.3 (ii),(#4), after multiplying ¢ by an element
of G we may suppose ¢(B) = eB, with e = +1. By (i) and (i77) we may then take ¢(C) = &'C
for some &’ € R. Since 2¢(B) * ¢(C) = ¢(U1) must be idempotent we see ¢’ = 1/e = e. We will
eventually learn that € = +1. The rest of the proof is mostly a chase through the multiplication
table of J (table 4.1).

By considering B * C' we find that ¢(U;) = U;. We know that ¢ fixes the identity matrix
I (since I is the identity element of .J), so it also fixes I — Uy = A. We know that ¢ fixes
each of the spaces (B,C,U), (A, B,ImU,V) and (A,C,Im U, W), as these are the subspaces of .J
which Jordan-commute with A, B and C, respectively. Taking their intersection we see that ¢
stabilizes ImU. If £ € ImO then 2?> € R and U, x U, = x? - U;, which shows that ¢ preserves
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the norm U, — |z|? on ImU. Next, for any z € O, V, Jordan-commutes with B, so we see that
d(Vy) = A+ BB+ Vy + Uy for some o, f € R, 2’ € O and ¢ € ImQ. Consideration of Uy x V,
shows that o = 3 = ¢/ = 0 and therefore ¢ preserves V C .J. Considering V,, * V, shows that ¢
preserves the norm V, + |z|? on V. Similar reasoning proves that ¢ preserves W C J and the
norm W, +— |z|? thereon. We conclude that

¢(a7 bv ¢, u, v, w) = (aa €b, Ec, d)l (u)a ¢2(v)7 ¢3 (’LU)),

with e = 41, each ¢,, an orthogonal transformation, and ¢, (1) = 1.

The transformation S, acts on ImU by the product of central inversion and reflection in .
Therefore (S,,) (the group generated by all the S,) acts on Im U as SO(7) and we may suppose that
¢1 is either the identity or the conjugation map. (We will see soon that the latter is impossible.)

Considering V, * W, and using the fact that ¢1(z) = ¢1(x), we find

b1 (zy) = d2(x)p3(y)  Va,y € O. (4.17)

Taking x = y = 1 shows that ¢2(1) = ¢3(1) and we write £ for this common value. Taking x = 1
in (4.17) yields

¢3(y) = £ (y) (4.18)
and taking y = 1 in (4.17) yields
Plugging these into (4.17) we obtain
p1(zy) = p1(x)€ - Ebi(y)  Va,y € 0. (4.20)

If ¢, is the conjugation map then we derive
gi‘:ig (] ny?JE@a

which is impossible since there are noncommuting x and y in some associative algebra containing
€. Therefore ¢y = I and so by (4.20) we find

ry = x€ - &y Vz,y € Q.

Taking z € O and = = £z we may apply the identity (2.3) to deduce (£2)y = £(zy) for all y, z € Q.
Therefore € € R, so &€ = £1 and thus by (4.18) and (4.19) we have ¢o = ¢3 = +1. After applying
the square R’ of any S, we may suppose that ¢ = ¢3 = I. Finally, consideration of B * W, shows
that ¢3 = £¢o, so € = +1. Therefore ¢ is the identity, establishing (iv).

We have just seen that the group stabilizing each of B and C'is generated by the S, and that
this group maps to its action SO(7) on (B, C,U) with kernel equal to {1, R’} and central in (S,,).
Therefore (S),) is isomorphic to either Spin,R or SO(7) x (Z/2). The latter is impossible because
the nontrivial central element R’ is a square. This establishes (v), and (vi) follows immediately
from (44) and (v). O

We now define the octave hyperbolic plane QH?2. It is is the image in RP?® = PJ of the
good negpotents of J. The “boundary” of OH? is denoted JOH? and is defined as the image of
the good nilpotents. A line in @H? is the set of good negpotents that Jordan-commute with some
fixed good idempotent. The line associated to a given idempotent X is said to be polar to X.
One may define the octave projective plane QP2 as the image in PJ of all the good elements of
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J. Then OOH? turns out to be the topological boundary of QH? in QP?, and each line of QH?
(equivalently, each good idempotent of .J) is associated with a point of QP? \ QH?2. We will not
need this description of QP2.

Theorem 4.4 shows that G acts transitively on the points and lines of OH? and 2-transitively
on the points of 0OH?. The remark following theorem 4.3 shows that 0QH? consists of the images
of the elements (0,0,1) and (z, 1, z—|z|*/2) of 03, where z € @ and z € Im Q. This realizes 9QH?
topologically as the one-point compactification S5 of R'5. Similarly, OQH? may be identified with
the image of the set {(z, 1,z — |z|?/2) € O3,| Re z > 0}. This realizes QH? as a 16-ball bounded
by S = 00H?.

Theorem 4.5. G is isomorphic to the group Fy_sq), a connected simply connected simple Lie
group of 52 dimensions.

Proof: The orbit of good nilpotents in J is connected because it fibers over its image S° in
OH? with the fibers being half-lines. The stabilizer of a nilpotent is H'® x Spin;R. This realizes
Aut OH? as an iterated fibration of connected simply connected spaces and therefore it has these
properties itself. We have dimG = 15 + 1 4+ 15 4 dim Spin,R = 52. We may also compute the
homological dimension (h.d.) of G, as

h.d.(G) = h.d.(S*®) + h.d.(R") 4 h.d.(H"®) + h.d.(Spin,R) = 36.

To show that GG is semisimple and centerless it suffices to show that it has no nontrivial normal
solvable subgroups. Suppose N were such a subgroup. It is easy to verify that the nilpotents of
J span J and this easily implies that N acts faithfully on OOH?. As a normal subgroup of the
2-transitive group G, it acts transitively on &OH?. (This holds because GG permutes the orbits of
N; if there were more than one then this would contradict the 2-transitivity of (G.) This realizes
S15 as the coset space N/M for some subgroup M of N which of course is also solvable. Since
solvable groups are aspherical, the long exact homotopy sequence shows that S'° is aspherical,
which is absurd.

As a connected centerless semisimple Lie group, G is a direct product of simple Lie groups.
Each factor, being normal, must act transitively on S'5. If M and N are distinct (thus commuting)
factors then since IV is transitive, the action of g € M on S is completely determined by its action
on any point thereof. This implies that M acts simply-transitively on S*® and hence is compact.
If there were more than one factor than this argument would apply to each, exhibiting G as a
product of compact groups. Since GG is noncompact, this is absurd. Thus there is only one factor,
and G is simple.

The dimension of G and its simplicity show that it has type Fy. The dimension of any maximal
compact subgroup equals h.d.(G), so we see that G is isomorphic to Fy(52—2.36) = Fi(—20)- O

One can see that the stabilizer Gy of a point of QH? is compact, as follows. We know
dim Gy +dim QOH? = dim G, so dim Gy = 36. We also know that h.d.(Go) +h.d.(QH?) = h.d.(G),
so h.d.(Gy) = 36. The compactness of G follows from the equality dim Gy = h.d.(Gy). One can
also show (see [16]) that Gy = SpingR. We will not need either of these facts.

5 The Reflection Groups

A reflection is a nontrivial transformation that fixes a line (its mirror) of OH? pointwise. For each
line L there is a unique reflection across L. One can see this by considering the line L polar to
A = m(1,0,0), which contains B = 7(0,0,1) and C' = 7(0,1,0). By part (v) of theorem 4.4, the
stabilizer of B and C is Spin;R, which acts on (B, C,U) and hence on L as SO(7). Therefore the
central element of Spin,R is the only reflection across L. Explicitly, this reflection R’ acts on J by

R/ : (CL, ba ¢ u,v, w) = (CL, ba ¢, u, —v, _w)a
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which may be written more simply on O} as
R/ : ($7y, Z) = (_xaya Z)‘

Since G acts transitively on lines of QH?, the reflections form a conjugacy class in G.

Coxeter [9] discovered a natural discrete subring X of @. One description [7, p. 14] of X is as
the set of vectors ) z,e, with all z, € %Z such that the set of a for which z, € Z + % coincides
with one of the sets

{0124},{0235},{0156}.{0346},{c0013},
{00026},{c0045},{cc0123456},

or one of their complements. We summarize here the properties of X that we will need.

Lemma 5.1.
(i) As a lattice, X is isometric to a scaled copy of the Eg root lattice, with minimal norm 1,
covering radius 1/+v/2 and 240 units.
(ii) The elements of X of even norm span X.
(iii) The deep holes of X nearest 0 are the halves of the elements of X of norm 2.
(iv) As a lattice, Im X is a scaled copy of the E; root lattice, with minimal norm 1, covering radius
\V/3/4, and 126 units.
(v) All deep holes of the E; lattice are equivalent under translations by elements of Fr.
(vi) The group of transformations of Im X generated by the maps x — pxp with p a unit of Im X
is the full rotation group of the Z-lattice Im X.
(vii) The group of transformation of X generated by the maps x +— px, with p a unit of ImX, is
isomorphic to Spin,(F2) and acts transitively on the elements of X of each norm 1 and 2.

Remarks: (vi) and (vii) identify the action of ({S, : p is a unit of ImX}) on OF, and hence
on J. We will write Spin,(2) for Spin,(F3) and otherwise use ATLAS notation [7] for finite groups.
The deep holes of a lattice L in a Euclidean space are the points of the space furthest from L; the
distance from any one of these to L is called the covering radius of L.

Proof: Background information on E7 and Eg sufficient to prove (i), (éii), (iv), and (v) is
provided in [8, ch. 4]. It is a simple exercise to prove (i7); in fact X is the integral span of its
elements of norm 2. The map in (vi) acts on ImX by the product of the real reflection in p and
the central involution. Therefore these maps generate the rotation subgroup of the F; Weyl group,
which is the full rotation group of the lattice E7 and hence of Im X. This establishes (vi).

The central quotient of the group generated by the transformations of (viz) is identified on
p. 85 of [7] as the simple group O7(2), and since the central involution is a square (the square of
any S,,), the group must be the (unique) nontrivial central extension Spin;(2) of O7(2). To prove
transitivity on the 240 units of K, observe that each orbit must have at least 126 members, so any
two orbits meet. Now we show transitivity on norm 2 vectors. Every norm 2 element of X has
the form a + b where a and b are orthogonal units of X. By transitivity on units we may take
a = 1. Then since Spin,(2) contains G2(2) = Aut X (see [7, p. 14]), which fixes a = 1 and acts
transitively on the units of Im X, we may take b = ¢ (say). This establishes (vit). O

For n a positive integer we define K, as the integral span in J of nA, B, C, and those U,,
Vn'V, and /n W, with z € XK. It is easy to see the X is the integral span of the image under 7 of

{(z,y,2) € Of|lz € vVn-K,y,2 € X},

or of

{(ZC,y,Z) 6@80|ZE€ \/’r_liKay GZvZEK}'
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In particular, we can show that an element of G preserves K, if it preserves either of these subsets
of OF. Tt is easy to check that K, is closed under Jordan multiplication and thus is an integral
form of J. We write R,, for the subgroup of Aut K,, generated by reflections. We will see that
R,=AutK,ifn=1o0orn=2.

Recall that R" acts on Q3 by R’ : (z,y,2) — (—z,y, 2), so we see that R’ € R,, for all n. The
transformation R of (4.3) acts on OF by R : (x,y,2) — (z,—z, —y), fixing {(z,y, —y)} pointwise.
Since this subset of O} corresponds to the line polar to 7(0,1,1), we see that R is a reflection.
It is also clear that R € R, for all n. The reflection groups we construct will be generated by
conjugates by certain translations of R and R’. We first show that R,, contains a generous supply
of translations.

Theorem 5.2. For every n and every & € X, there exists n € ImQ such that R,, contains the
transformation Tg /5 .

Proof: By (4.8) and lemma 5.1(ii) it suffices to prove the theorem when [€|? is even. Compu-
tations in Oy show that T_¢ /7000 R 0 Ty /s o preserves K,,. (This holds even though T 7 /2
might not preserve K,,.) Since it is a reflection, it lies in R,,. Therefore

Teymo =R oT gm0 R 0T myag

lies in R,,. O
Remark: The geometric picture behind this proof is that R’ and its conjugate by Ty /2,0 are
reflections whose mirrors are parallel at infinity (that is, their mirrors do not meet in QH?, but

both contain the point 7(0,0, 1) of 9OH?). Naturally, the product of reflections in parallel mirrors
in a translation.

We now study the stabilizer in R,, of nA. Let J_ denote the subspace of J whose elements
Jordan-commute with nA. We have J_ = (B,C,U), a Jordan subalgebra of J. Since R,, contains
1 and R/, which are the only elements of G that fix J_ pointwise, the stabilizer in R,, of nA is
completely determined by its action on J_. In particular, it must stabilize J_ N K,,, which is
independent of n and which we denote by K . We write R_ for the subgroup of R, generated
by all the reflections T}, o R o Ty, _,, with n € ImX. (For each n, we have (R, Ty,) C Aut K, so
R_ C R,,.) Since R and each Tj, fixes A, we see that R_ acts on J_ and K_.

We write QH! (resp. OOH!) for the intersection of OH? (resp. OOH?) with the image of
J_ in PJ = RP?%. One can identify OH' with the real hyperbolic space H® and show that its
stabilizer in G is Spin(8, 1), acting on each of J_ and H® as SO(8,1). (In fact this falls out of
the proof of theorem 5.3 below.) Therefore R_ will acts as a group of isometries of H®. We can
describe this group explicitly:

Theorem 5.3.
(i) The action of R_ on OH' = H® is that of the rotation subgroup of the real hyperbolic
reflection group with Coxeter diagram

A= a 8

(ii) For each n € ImX and each unit p of ImXK, the transformations Ty ,, and S, lie in R_ (and
hence in R,,, for all n).
(#i) For each n, the stabilizers of B in R,, and in Aut K,, coincide.

Remarks: The labels a and § on the diagram are for reference by the proof. This proof
is lengthy and the reader may be satisfied with a weaker version of theorem 5.4, for which this

15



theorem is not needed. Namely, knowing only that the stabilizer of B in R, has finite index in its
stabilizer in Aut K,,, one can slightly modify the proof of theorem 5.4 to prove that R, has finite
index in Aut K,,. (We indicate there how to make these modifications.) To prove this property of
the stabilizers of B one need only take the translations of theorem 5.2 together with those central
translations which are their commutators.

Proof: The elements of 9OH! are the images in projective space P.J of 7(0,0,1) and those
(0,1, 2z) with z € Im @. We denote these points by oo and z respectively, and we will describe sym-
metries of OH?! by their actions on Im QU{oc}. We know that Aut J_ contains the transformations
R and Ty, (n € Im Q). These act as follows:

R:zw—1/z
Toy:z—2z+n.

These formulas also describe the action of R and Ty, on OH' = {2 € O | Rez > 0}. Note that
the octave reflection R acts as the central inversion about 1 € OH!. These transformations
generate the conformal group of 90H! = S7, so this identifies OH! with H®, as claimed above.
We henceforth use the symbol 1 (resp. p) exclusively to denote elements (resp. units) of Im XK.
By a real reflection we will mean a nontrivial transformation of H® that fixes a real hyperplane
pointwise. This is the usual definition of reflections, and opposed to octave reflections, which act
on H® by central inversion in points of H®.

By definition, R_ = (P,) where P,, = T, o R o Ty _, and n varies over ImX. This group is
normalized by the involution ¢ : z +— Z, since ¢ commutes with R and conjugates Ty, to 1o .
The reader is cautioned that ¢ is not the restriction to J_ of any element of Aut J. Since ¢ reverses
orientation on dOH', (P,) is the rotation subgroup of (P,,q). We write Q,, for Ty ,, 0 RogoTp, .
One can check that Qg is a real reflection which acts on JOH! by inversion in the unit sphere
centered at 0, so @, acts by inversion in the unit sphere centered at 7. The next few constructions
are much more easily carried out by geometric rather than symbolic computation. Figure 5.1
should assist the reader.

We know that Qo € (P,,q). If [|> = 1 then P, o Qg o P, is the (real) reflection across the
P,-translate of the mirror of Qo—mnamely, the perpendicular bisector of the segment joining 7 and
2n. If 1 and ny are two units of Im X with mutual distance 1, then

(P771OQOOPm)(PﬁonOOPnz)(PmOQOOPm)

is reflection across the hyperplane of Im O that passes through 0 and is orthogonal to £(n; — 72).
These reflections generate the F7 Weyl group, the group of all isometries of Im X fixing 0, and so
(P,) contains all of the rotations of Im X fixing 0. Since (P,) is normalized by the Tj ,, it contains
all the rotations about all of the points of Im K. These rotations generate an (infinite) group of
transformations of Im Q@ containing all rotations and translations preserving ImX. We are now
in a position to prove (ii). We know that R_ contains transformations acting on J_ in the same
manner as do the Ty, and S,. Fixing p for the moment, we see that R_ contains either S, or
R’ 0 S,,. The square of either of these is R’, so R € R_. Now, for any pu (resp. 1), R_ contains
either S, or R’ o S,, (resp. Tp,, or R’ o T ,,) and hence contains both. This proves (ii).

We now finish the proof of (i). We know that (P,,q) contains @)y and all the translations
z+— z 4+, and so it contains all the @,,. Since ¢ = Q¢ o Py, we see that (P,,q) = (P,,Q,) and so
(P,) is the rotation subgroup of (P,,Q,). We now show (P,) C (Q,). If n; and 7, are neighbors
in ImX then @,, o @,, o Q,, is the real reflection in the perpendicular bisector of the segment
joining 11 and 7. These real reflections generate the group of all isometries of Im @ that preserve
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(PmQOPm)(PWQOPW)(PmQOPm)

PUQQOPnz

Figure 5.1. A 2-dimensional section of Im O (see the proof of theorem 5.3). Dots indicate elements
of ImX. The real reflection )y acts by inversion in the solid circle. The lines are the mirrors of
certain other real reflections, whose names are next to them. Each dashed circle is carried to itself
by the octave reflection whose name is next to it; this reflection carries each point on the dashed
circle to its antipode on the same dashed circle. The octave reflection also exchanges the center of
the dashed circle with oo.

ImX. (This is just the affine E7; Weyl group; note that the diagram automorphism of the Coxeter
group does not preserve the lattice—it exchanges it with the set of its deep holes.) In particular, it
contains the map ¢ : z — —z. Since Py = g o Qq, we see that Py € (Q,). Since (@) is normalized
by all Ty, we see that (P,) C (Q,). This identifies (P,) as the rotation subgroup of (@Q,).

It remains to identify (@,). We take the nodes of A other than o and 3 to represent standard
generators of the 7 Weyl group, acting on Im X by isometries that preserve 0. We take the node
« to represent the reflection in the perpendicular bisector of the segment joining 0 and 79, for some
unit 79 of K. The group generated by these 8 reflections is the affine £7 Weyl group and contains
all translations of Im X. Taking the node 3 to represent the reflection QQy, we see that the group
generated by these 9 reflections contains all the Q,, and thus equals (Q,,). It is easy to see that the
angles between pairs of these 9 mirrors are 7/3 (resp. 7/2) when the corresponding nodes of A are
joined (resp. unjoined). Since these are integral submultiples of 7, the region in H® bounded by
the mirrors is a fundamental domain for the group generated by the 9 reflections. This identifies
(@) as the Coxeter group with diagram A, proving (7).
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Now we prove (ii). Suppose ¢ € Aut K,, with ¢(B) = B. Then ¢(C) is a good nilpotent of
height 1, so ¢(C) = n(x, 1, 2) for some z,z € Q. Since ¢p(C) € K,, we must have x € \/n-XK. After
applying a translation of R,,, courtesy of theorem 5.2, we may take x = 0. Then since ¢(C) is
nilpotent and in K, we must have z € Im K. After applying T, _., which lies in R,, by (i), we may
take z = 0. That is, we may suppose ¢(C) = C. By mimicking the proof of (iv) of theorem 5.3
and using (vi) of lemma 5.1 we see that that the simultaneous stabilizer of B and C' is generated
by the S,,, which by (éi) also lie in R,,. This establishes (iii). O

Remarks: The proof of (i) shows that R_ is a nontrivial central extension by Z/2 of its image
in Aut J_; the nontrivial central element is R’. One can show that A is the Coxeter diagram of
the reflection group of the real Lorentzian lattice F; @ (? (1)) This is not surprising since this form
is the negative of the restriction to the traceless elements of K_ of the norm form on J.

Here is the main result of the paper: the existence of finite covolume reflection groups acting
on OH?2.

Theorem 5.4.
(i) Under the action of Ry, there is a single orbit of primitive good nilpotents of Kj.
(ii) Under the action of Rg, there are precisely two orbits of primitive good nilpotents of Ks.
Elements of one orbit are characterized as such by being orthogonal to idempotents of K.
(iii) Forn =1 or 2, R, coincides with Aut K,, and has finite covolume in G' = Fy_og).

Proof: Let n =1 or 2. Suppose X € K, is a primitive good nilpotent and has minimal height
h among its images under R,,. Then either X = Bor X = h-7(z,1,—|z|?/2+2) withh >0,z € O
and z € ImQ. After applying a translation in R,, (of which there are plenty by theorem 5.2), we
may suppose that z is at least as close to 0 as it is to any other element of y/n-X. By theorem 5.3,
R, also contains all central translations, so we may also suppose that z is at least as close to 0 as
it is to any other point of ImX. By lemma 5.1 (i), (i), these conditions imply |z|? < n/2 and
|z]? < 3/4. Observe that

R(X)="h-(z,|z[?/2 — 2, 1)

has height h(|z|? + |z|*/4). If n = 1 then this is smaller than the height h of X, contrary to our
hypothesis on X. Thus we have proven (7).

If n = 2 then either ht(R(X)) < ht(X), contrary to our hypothesis on X, or we have |z|*> = 1
and |z|? = 3/4. Since x is at least as close to 0 as to any other element of v/2 - X, we see that z is
a deep hole of v/2 - K. Similarly, since z is at least as close to 0 as to any other element of Im X,
we see that z is a deep hole of ImX. By lemma 5.1(44i), (vii) and theorem 5.3(ii), after applying
an element of Spin,(2) C Ry we may take x to be any particular deep hole of v/2 - X nearest 0,
say = (1+1)/v/2. By lemma 5.1(v) and theorem 5.3(ii) we may apply some T, € R and take
z to be any particular deep hole of ImX, say z = (i + j + k)/2. This determines X up to the
scale factor h, which is determined by the requirement that X be a primitive good element of Ks.
Therefore

X = XO = 7T(1 +Za \/ivw\/i)v

where w = (—1 4 i+ j + k)/2. This proves that K has at most two orbits of primitive good
nilpotents under Ry. It is obvious that X is orthogonal to the idempotent £ = 7(0,1, —w) € Ko
and one can show B is not orthogonal to any idempotent of K5. (The key is that A ¢ Ks.) This
proves that there are exactly two orbits under Rs and under Aut K»; in particular, (4i) holds.
Now suppose ¢ € Aut K,,. By using (i) or (iz), after multiplying by an element of R,, we may
suppose that ¢(B) = B. But then by theorem 5.3 (7ii) we see that ¢ € R,,. This establishes the
equality R, = Aut K, for n = 1,2. Because Aut K, is an arithmetically defined subgroup of a real
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semisimple Lie group, a theorem of Borel and Harish-Chandra [5] shows that it has finite covolume
in G, which establishes (4ii). O

Remarks: 1f we do not assume the full results of theorem 5.3, as described in the remark there,
the proof above can be modified to obtain the weaker result that £, and R> have finite covolume
in G. The proof above shows that if X is a primitive good nilpotent of K of positive height then
there is a reflection in Ry reducing the height of X (namely, the conjugate of R by the translations
used in the first paragraph of the proof). Therefore we can conclude that X is equivalent to B
under R;. Similarly, if X is a primitive good nilpotent in K5 then after a sequence of reflections
in Ry, X may be taken to have height < 1. Since the stabilizer of B in Aut K5 acts with one orbit
on the primitive good nilpotents of height 1, and by hypothesis the stabilizer of B in R_ C Ry
has finite index of that in Aut K5, we see that there are only finitely many Rs-orbits of primitive
good nilpotents in K. The finiteness of the index of R; in Aut K; for each i = 1,2 follows from
this and from the assumption that B’s stabilizer in R; has finite index in its stabilizer in Aut K.

6 The Determinant

In section 5 we constructed the promised octave hyperbolic reflection groups and proved that they
have finite covolume. In the following section we will interpret our groups as the stabilizers of
certain Hermitian forms over X. To do this we must work in a context wider than that of our
treatment so far. Namely, we must introduce the determinant form on J and its automorphism
group H. By explicit construction we will show that the determinant form on J is equivalent to
the one on J; studied in [11], which will prove that H = FEg_26). The action of Eg_ o6 on Jr
is similar to the action of PGL3C on the space of Hermitian forms on C3, so this is the natural
setting for discussions of the stabilizers of Hermitian forms. We will pursue this further in the next
section.

Recall that we defined x(X) = Re Tr(X) for any X € M30. (Of course, we are only interested
in elements of Jordan algebras Jg, which have real traces.) Pages 30-31 of [12] show that if
X,Y,Z € M30 then (X|YZ) = (XY|Z) = (ZX]|Y), and it follows therefrom that x(X2?X) =
(X X?) and that (X|Y|Z) = (X % Y|Z) is a symmetric trilinear form. Since it is symmetric, it is
obtained by polarization from the cubic form € given by

C(X) = (X[X|X) = x(X?).

Following [11] we define the cubic “determinant” form by
1
det(X) = 2 [2x(X?) = 3x(X*)x(X) + x(X)7]

The name of this cubic form derives from analogies between it and the usual determinant form on
(say) M3R. In particular, in the special cases will consider below the formulas (6.1) and (6.2) for
the determinant closely resemble the usual expression. For any ® we write Hg for the group of
all linear transformations preserving the determinant form on the real vector space underlying Jg.
We write H for Hy.

Theorem 6.1. For X € J given by (4.1),
det(X) = alul® + blw|* + c|v|* — abc — 2 Re(uvw). (6.1)
Proof: The computation is long and tedious but mostly straightforward. One should begin
by writing 2 Tr(X3) = Tr(X2X) + Tr(X X?) before multiplying together the matrices. This de-

vice makes the resulting sum simplify because many of its terms appear in OQ-conjugate pairs.
Manipulations involving no special Q identities except obvious applications of (2.2) show

det(X) = alul* + blw|* + c|v|* — abc + [2 Re(@vw) — 4 Re(vw) Re(u)],

19



and so we examine the term in brackets. Further use of (2.2) allows the derivation

2 Re(uvw) — 4 Re(vw) Re(u) = Re[2 Re(uvw) — 4 Re(vw) Re(u)]

[
= Reluvw + wou — (vw + wo)(u + 1))
= Reluvw 4+ @wou — vwa — vwu — WU — W]
= Re[uwt 4+ vwv — vwv — vvw — wvw — wWY|
= —2Re(uvw),
which completes the proof. O

Since the action of GL3R on M30 preserves matrix multiplication and traces, it also preserves
the determinant form. In light of this, the next theorem assures us that G C H; it also provides a
quick alternate proof of most of theorem 4.1.

Theorem 6.2. The transformations S, preserve the restriction to J of the determinant form and
act as automorphisms of the Jordan algebra J.

Proof: To show that det S, (X) = det X for X € J given by (4.1) it suffices to show
Re(pup - pv - win) = Re(uvw).

This follows from the derivation

where we have used (2.1), (2.2), and the fact that g = —pg. (This is in spirit the same argument
as that applied to J; in [11, §6].)

Combined with the fact that the S, preserve traces and norms, this proves that S, € Aut J.
This follows because the Jordan multiplication can be defined in terms of the trace, norm and
determinant forms: Suppose X,Y € J. Supposing that we know the trace, norm and determinant
forms, we know the value of € for every element of J. Therefore we know the value of the symmetric
trilinear form (X|Y|Z) obtained from € by polarization, for every Z € J. By the definition of
(XY|Z), we know the value of (X «xY'|Z) for every Z, and since the inner product is nondegenerate
this uniquely determines X Y. O

There are elements of H that do not lie in G, for example if » € R~{0} then H contains the
map

2

F,: (a,b,c,u,v,w) — (ar*,br—2, cr—2 ur—2, vr,wr).

We may identify H with the real Lie group Fg(_z6) as follows. In [11] Freudenthal calculated the
determinant form on J;. An element of J; has the form

d

8] O W

y
Z x|,
y f



for d,e, f € R and z,y, z € O. We denote this element of J; by [d,e, f,z,y, z]. It is shown in [11]
that
det[d, e, f,x,y, 2] = def + 2Re(ayz) — d|z* — e|y| — f|2]*, (6.2)

and that the H is isomorphic to Eg(_g6). To identify H with this Lie group we need only observe
that the map ¢ : J — Jy defined by

g: (av ba ¢ u,v, w) = [—CL, —¢, _bv —Uu, —v, —UJ]

identifies the determinant forms.

So far in this paper we have informally regarded elements of a Jordan algebra Jg as “trans-
formations of @3” that are Hermitian with respect to ®. When one considers just the determinant
form on J; and not the Jordan algebra structure, it is more appropriate to regard elements of J; as
“Hermitian forms on @3”. One should also regard their determinants as those of Hermitian forms
rather than of “linear transformations”.

7 Stabilizers of Integral Hermitian Forms

We write H }K for the stabilizer in H; of J; N M3X. Given the material we have developed so far,
it is quite easy to realize the groups R,, as stabilizers in H ?C of appropriate forms over X.

One can show that Fy_og) is a maximal (proper) subgroup of Eg(_s6), and since not all of H
fixes the identity matrix I, we see that we may define G as the subgroup of H fixing I € J. Recall
that for n a positive integer we defined

K, = {(na,b,c,u,v/n,wy/n)la,b,c € Z,u,v,w € X}.

From the above, we conclude that Aut K, is the subgroup of H that preserves K, as a set and
fixes nl € K,.

We define the map h,, : J — J; by h(X) = —n Y3 . (go F,)(X) where r = n~ /6 and F,
and g are as defined in section 6. Computation reveals that h,, carries K,, bijectively to J; N M3X
and multiplies determinants by —1/n. This shows that Aut K, is isomorphic to the subgroup of
H¥ that fixes h,(nl). Computing h,(nlI) we obtain:

Theorem 7.1. For any n, Aut K, is isomorphic to the subgroup of H ?C that preserves the matrix
(or “Hermitian form”)

OO =
S oo
o3I ©

An element g € PGL3Z acts on 3-dimensional integral quadratic forms ® by ® — ¢g®g*, and
obviously acts on J;N M3X in the same way, realizing PG L3Z as a subgroup of H*. The stabilizer
in PGL3Z of an integral quadratic form ® is (the central quotient of) the automorphism group of
the lattice with inner product matrix ®. This makes it natural and satisfying to regard the groups
Aut K, (and in particular the reflection groups R; and Rs) as the symmetry groups of “Lorentzian
lattices” over X with the “inner product matrices” given in theorem 7.1.

Gross [13] has investigated integral forms of various semisimple algebraic groups, and observed
that the stabilizer in HX of the matrix



is a model over Z for the unique form of Fy over Q which is split at each prime p and has rank 1
over R. Since ¥’ is equivalent to —¥ under PGL3Z C Hi we see that this integral form of Fy is
the reflection group R;. In particular, one of our groups has been investigated before and found
to be a natural integral form of Fj.

Finally, one can consider 2-dimensional versions of our constructions. As introduced in sec-
tion 5, J_ is the space of 2 x 2 octave matrices which are Hermitian with respect to (0 1). (We

10
actually introduced J_ in a slightly different but equivalent way.) That is, J_ consists of the

matrices (ch Z) with b,c € R and u € Q. There are no subtleties involved in the definition

of the determinant |u|? — bc of an element of J_, and the group preserving just the vector space
structure and determinant form on J_ is obviously the real orthogonal group O(9,1). The group
of Jordan algebra automorphisms is the stabilizer O(8, 1) therein of the identity matrix. We also

defined K_ as MyX N J_.
The determinant form on the space

=100 7)

of matrices in M50 that are Hermitian with respect to (
J_ — J' given by

e,fE]R,mE@}

1
0

<u b ) ( b u)

=
c u a c
negates determinants, carries ((1) (1)) to ((1) (1)), and identifies K_ with M>X N J’. Therefore, as in
the 3-dimensional case, we may interpret the group Aut K_ as begin essentially the automorphism
group of the “Lorentzian lattice” with inner product matrix ((1) (1))

In section 5 we defined a group R_ which acted on K_; it turned out that R_ was a central
extension by Z/2 of the rotation subgroup of a certain Coxeter group. The map R — Aut K_ is
almost an isomorphism. The kernel of the map is the central Z/2 of R and the image has index
two in Aut K, which is the entire Coxeter group. (The real reflections of H® = QOH' arise from
automorphisms of J_ that do not extend to J.) This description of Aut K_ follows from the fact
that the central involution of K_ does not lie in Aut K_, together with the remark concerning the

lattice F7 & ((1] (1)) following the proof of theorem 5.3.

(1)) is given by ef — |z|2. Thus the map
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