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Abstract. The moduli space of stable real cubic surfaces is the quotient of real hyperbolic four-space
by a discrete, nonarithmetic group. The volume of the moduli space is 37π2/1080 in the
metric of constant curvature −1. Each of the five connected components of the moduli space
can be described as the quotient of real hyperbolic four-space by a specific arithmetic group.
We compute the volumes of these components. c© 2003 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

Surfaces Cubiques Réelles et Géométrie Hyperbolique Réelle
Résumé. L’espace des modules des surfaces cubiques stables et réelles est le quotient de l’espace

hyperbolique réel de dimension quatre par un groupe non-arithmétique discret. Le volume
de l’espace des modules est 37π2/1080 dans la métrique de courbure constante −1. Cha-
cun des composants connexes de l’espace des modules peut être décrit comme le quotient
de l’espace hyperbolique réel de dimension quatre par un groupe arithmétique spécifique.
Nous calculons le volume des composants. c© 2003 Académie des sciences/Éditions scien-
tifiques et médicales Elsevier SAS

1. Results
In [2] we showed that the moduli space of stable cubic surfaces is the quotient of complex hyperbolic

four-space by a certain arithmetic group which we described explicitly. The purpose of this note is announce
a corresponding result for real cubic surfaces: the moduli space is a quotient of real hyperbolic four-space
by an explicit discrete group. The group, however, is not arithmetic. We also compute the volume of the
moduli space in its metric of curvature −1. It is 37π2/1080 = (4π2/3)(37/1440). (The 4π2/3 is the ratio
of the volume of the unit 4-sphere to its Euler characteristic, which appears in the Gauss-Bonnet theorem.)

By the moduli space MR
0

(resp. MR
s ) we mean the set CR

0
(resp. CR

s ) of cubic forms with real coefficients
that define smooth (resp. stable) surfaces, modulo the action of GL(4,R). By smooth we mean that the set
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Figure 1: Coxeter diagrams for the reflection subgroups Wj of the PΓj . Each describes a polyhedron Cj

with one facet per atom of the diagram. The bonds indicate if/how pairs of facets meet: an absent (resp.
single, double, triple) bond represents an angle of π

2
(resp π

3
, π

4
, π

6
), and a dashed (resp. heavy) bond

represents ultraparallelism (resp. parallelism at ∞). Wj is the group generated by reflections in the facets
of Cj , and Cj is a fundamental domain for Wj .

of complex points is smooth, and by stable we mean stable in the sense of geometric invariant theory. In
this case, stable means that the complex surface has no singularities besides nodes. The space MR

0
has five

connected components (see [5]), which we denote by MR
0,j for j = 0, 1, . . . , 4.

For each component MR

j of the moduli space we exhibit an arithmetic lattice PΓj ⊂ PO(4, 1), a union
∆j of two- and three-dimensional real hyperbolic subspaces of RH

4, and an isomorphism

M
R

0,j
∼= PΓj\(RH

4 − ∆j) (1)

of real analytic orbifolds. We give two concrete descriptions of the PΓj , one arithmetic and one geometric.
First, PΓj is the projective orthogonal group of the integer quadratic form −x2

0 + m1x
2
1 + · · · + m4x

2
4,

where j of the mi are 3’s and the rest are 1’s. Second, PΓj is, up to a group of order at most two, the
Coxeter group Wj defined in Figure 1. More precisely, PΓj is the semidirect product of Wj by the group
of diagram automorphisms, which is either trivial or of order two. Yoshida has treated the case j = 0 in [7].

The points of ∆j represent nodal surfaces which are limits of smooth surfaces of type j. Since a surface
with a real node is a limit of two different topological types of real surface, it is natural to glue various
pairs MR

0,j and MR

0,j′ together by identifying part of ∆j with part of ∆j′ . Carrying this out in practice
means gluing certain faces of the polyhedra Cj to each other and taking care to deal with the diagram
automorphisms. A miracle occurs and the result of these gluings turns out to be a quotient of RH

4 in its
own right:

THEOREM 1.1. – There is a nonarithmetic lattice PΓR ⊂ PO(4, 1), a union ∆ of two- and three-
dimensional hyperbolic subspaces of RH

4, and an isomorphism

M
R

0
∼= PΓR\(RH

4 − ∆)
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of real analytic orbifolds. This identification extends to a homeomorphism

M
R

s
∼= PΓR\RH

4 .

The clue to the nonarithmeticity is that MR
s is obtained by gluing together arithmetic orbifolds whose

groups fall into two commensurability classes. In the spirit of Gromov-Piatetski-Shapiro [4], one expects
the resulting group to be non-arithmetic. To prove the nonarithmeticity we use the Galois-conjugation
criterion in [3]. Namely, it happens that PΓR preserves an integral quadratic form over Z[

√
3] which has

signature (4, 1) and whose Galois conjugate also has signature (4, 1). We note that PΓR is not a Coxeter
group, even up to finite index, but it contains an index two subgroup whose fundamental domain is a union
of copies of the Cj and happens to be a Coxeter polyhedron.

The homeomorphism M
R
s

∼= PΓR\RH
4 is not an orbifold isomorphism, but it becomes one if the

orbifold structure on PΓR\RH
4 is suitably changed. This can be done explicitly enough to compute the

orbifold fundamental group πorb
1 (MR

s ) ∼= Z/2 × (Z ∗ Z/2), and to see that MR
s is a bad orbifold in the

sense of Thurston.
The theory of Coxeter groups makes it easy to compute the orbifold Euler characteristic of Wj\RH

4,
and hence the volume of this quotient. Dividing by a factor of two if necessary, we obtain the volume of
PΓj\RH

4, which is the volume of MR

0,j . It follows that the hyperbolic volume of PΓR\RH
4 is the sum

of these volumes. The results are displayed in the table below. For each j we give the topology of that type
of real cubic surface, the number of its real lines, the orbifold fundamental group of M

R

0,j , and the orbifold
Euler characteristic and volume of PΓj\RH

4. Sn and D∞ denote symmetric and infinite dihedral groups.
Note that the component corresponding to the simplest topology has the greatest volume, just over 40% of
the total, and the component corresponding to surfaces with the most real lines has the smallest volume.

Type Topology Real Lines πorb
1

(MR

0,j) Euler char. Volume Fraction

0 RP
2 + 3 handles 27 S5 1/1920 .00685 2.03%

1 RP
2 + 2 handles 15 (S3 × S3) o Z/2 1/288 .04569 13.51%

2 RP
2 + 1 handle 7 (D∞ × D∞) o Z/2 5/576 .11423 33.78%

3 RP
2 3 } ∞ 1/96 .13708 40.54%

4 RP
2 ∪ S2 3 1/384 .03427 10.14%

37/1440 .33813 100.00%

2. About the proof

The identification of the components of the moduli space with quotients of real hyperbolic space depends
on the construction of [1], [2]. Given a smooth complex cubic surface S, let T be the triple cover of
projective 3-space branched along S, and let (H3(T ), σ) denote the resulting special Hodge structure, where
σ is the symmetry coming from the branched covering transformation. The period map which assigns to
S the class of (H3(T ), σ) defines an isomorphism between the moduli space of stable cubic surfaces and
PΓ\CH

4. Here PΓ is the projective automorphism group of the hermitian form h(x, y) = −x0ȳ0+x1ȳ1+
· · ·+ x4ȳ4 on the lattice Λ = E4,1, where E = Z[ 3

√
1]. The locus H of CH

4 representing singular surfaces
is the union of the orthogonal complements of the norm 1 vectors of Λ. In more detail, the Hodge structure
on H3(T ), together with a choice of isomorphism i : H3(T,Z) → Λ of Hermitian E-modules determines
a complex line in ΛC = Λ ⊗E C ∼= C

4,1 which is negative for h. Thus L is a point of CH
4, well defined

up to the action of PΓ.
We call an antilinear involution (“anti-involution”) of CH

4 integral if it arises from an anti-involution of
Λ. We write K0 for the set of all pairs (L, χ) where L ∈ CH

4 − H and χ is an integral anti-involution
that preserves L. If the surface S is defined by an equation with real coefficients, then complex conjugation
κ(X0, . . . , X4) = (X̄0, . . . , X̄4) acts on H3(T,Z) as an anti-involution with respect to the E-module
structure. Let χ be the corresponding integral anti-involution i ◦ κ∗ ◦ i−1 of CH

4. This associates to S and

3
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a choice of i a pair (L, χ) ∈ K0, and defines a period map

M
R

0
−→ PΓ\K0 , (2)

which we show is an isomorphism of real analytic orbifolds.
Another way to look at K0 is as a disjoint union of incomplete real hyperbolic manifolds. To see this, let

RH
4

χ be the set of fixed points in CH
4 of χ. Then

K0 =
∐

χ

(RH
4

χ − H) ,

where χ varies over the integral anti-involutions of CH
4. Now let C be a set of of representatives for the

conjugacy classes of integral anti-involutions of CH
4 under the action of PΓ. Let PΓχ be the centralizer

of χ in PΓ. Then the quotient of K0 by PΓ is

PΓ\K0 =
∐

χ∈C

PΓχ\(RH
4

χ − H) .

To understand this quotient in detail, we need to classify the integral anti-involutions χ of CH
4, modulo

the action of PΓ. One shows that there are just five classes, given by

χj(z0, . . . , z4) = (z̄0, ε1z̄1, ε2z̄2, ε3z̄3, ε4z̄4) , (3)

where j of the εi are −1 and the rest are +1. It is clear that each PΓχj
is a subgroup of the projective

automorphism group of the Z-lattice Λχj fixed by χj , and one can check that it is the full projective
isometry group. Computing the quadratic forms on the Λχj leads to the quadratic forms used to describe
the PΓj in (1), so PΓχj

= PΓj . This yields (1), where ∆j = RH
4

χj
∩H. We found the Coxeter diagrams

by using Vinberg’s algorithm [6].
In order to carry out the gluing process leading to Theorem 1.1, we computed which points of the Weyl

chambers Cj lie in H; it turns out that Cj ∩ H is a union of faces of Cj . Then we had to figure out which
faces of the Cj and Cj′ to glue to each other and how; for this we studied how the various RH

4

χ meet in
CH

4. Finally we worked out the result of the gluing by explicitly manipulating polyhedra in RH
4.
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