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Abstract

We present a generalization of an abstract model of group choice in which the
process of collective choice is modeled as a cooperative process of consideration and
reconsideration of alternatives. We develop a general framework for studying choice
from a finite set of alternatives, using the idea that one alternative may challenge – or
displace from consideration – another in the course of a group choosing. From this
binary relation – the “challenges” relation – new tournament solutions are obtained,
the limit of which is the central object of the present study. The model presented
generalizes that of contestation [Schwartz, 1990] and we characterize the set of alter-
natives that can be chosen in a collective choice setting when the process of collective
choice is viewed as cooperatively considering and reconsidering alternatives. Basic
properties of the family of tournament solutions studied is given as well.

1 Introduction

This paper examines the logical consequences of conceiving of collective choice as a pro-

cess of consideration and reconsideration of alternatives. Specifically, this paper intro-

duces a family of tournament solutions based on the binary relations obtained from cri-

teria for choosing among alternatives (formally, from tournament solutions). In doing
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so, tournament solutions obtained as the top-set of binary relations is explored. We de-

velop a general framework for studying choice from a finite set of alternatives, using

the idea that one alternative may challenge – or displace from consideration – another

in the course of considering and reconsidering alternatives as a collective choice. From

this binary relation – the “challenges” relation – new tournament solutions are obtained,

the limit of which is the central object of the present study. Identifying alternatives that

are unchallenged or mutually challenged leads to a new family of tournament solutions,

generalizing the Tournament Equilibrium Set (TEQ) of Schwartz [1990].

We conceive of group choice as a cooperative process of consideration and recon-

sideration of alternatives. For example, when choosing from from set of alternatives, a

group might consider alternative x. If alternative x is proposed as collective choice, what

could replace (i.e. challenge) x in a process of cooperative re-consideration? Schwartz

[Schwartz, 1990] argues only alternatives that are majority preferred to x are even pos-

sible challenges, as a majority could prevent z from replacing x when x is majority-

preferred to z. However, not all alternatives that are majority preferred to x could replace

x as a final choice, Schwartz [1990] argues, because some of these alternatives are not real

challenges as some would not be chosen by the group when considering possible alter-

natives to x. For example, if the group deems A to be a criteria arbitrating “better” and

“worse” alternatives, some alternatives will fail according to A. Only alternatives deemed

“better than x” will pose a real challenge to x. That is, not all possible challenges to x are

actual challenges to x because some of these alternatives may fail the group’s criteria for

“betterness,” A. If one interprets collective choice to be an eventual outcome of consid-

eration and reconsideration in a cooperative game, the “challenges” relation may be used

to define alternatives that may appear in final contracts. Alternatives that are challenged

and do not challenge any other alternative are susceptible to being displaced from con-

sideration, and hence one would not expect to see such an alternative as the outcome of
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collective choice.

Two factors are relevant for determining if one alternative may displace from con-

sideration another: a criteria of challenging being a principal by which one alternative is

deemed better than another (e.g. majority preference, covering, contestation, etc.) and

the set of alternatives that are potential challengers, i.e. the set of alternatives a potential

group choice is compared to. We operationalize the former via a binary relation cap-

turing the idea that one alternative may be “better than” another. We model the latter

via a neighborhood map – a method of selecting alternatives that are compared to a given

alternative when a group considers it as a possible choice.

Perhaps surprisingly, we findmany different notions of “challenging” lead to the same

group choice. Indeed, when the set of possible challengers satisfies a minimal notion of

majoritarianism (namely, equalling the Condorcet winner when there is one) we show

that a large class of challenges-relations lead to the same collective choices. We show that

the criteria of challenging – the criteria by which alternatives are evaluated – is far less

important than the set of alternatives one is compared to. Indeed, in the limit the for-

mer plays virtually no role whatsoever in collective choice, while the later crucially dis-

tinguishes among sets of alternatives that may be considered possible collective choices.

Examples of the new class of tournament solutions as well as their relation to well-known

tournament solutions are given.

An extensive general treatment of tournaments can be found in Laslier [1997], who

discusses tournaments as a tool for studying social choice under majority voting. Schwartz

[1990] introduces one idea of “challenging” – the contestation relation and defines an

important tournament solution, the tournament equilibrium set (TEQ) in terms of the

top-set of the contestation relation, the properties of which have been studied in Dutta

[1990], Laffond et al. [1993] and Houy [2009].1 The present work departs from the above

1Some of the most basic properties of TEQ were unknown until the recent discovery of Brandt et al.
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in a number of ways. Most importantly, we seek to identify the essential building-blocks

of these models of collective choice. In doing so, we introduce a generalization of TEQ

which yields a family of tournament solutions based only on neighborhoods – alternatives

that are potential challengers to a collective choice. The utility of the exercise is not to

suggest “superior” tournament solutions, but rather to shed light on the use and useful-

ness of binary relations obtained from tournament solutions for the study of collective

choice.

After introducing the basics of tournaments (Section 2), we introduce a the challenges

relation in Section 3, and a family of new tournament in solution 4. Section 5 introduces

extensions and future work. Section 6 provides an illustration, relating the new family of

tournament solutions to extant tournament solutions. Section 7 discusses this research,

and concludes.

2 Preliminaries

2.1 Tournaments

Many of the definitions and basic results discussed in this section can be found in Laslier

[1997]. A tournament, T , is nonempty finite set X equipped with a binary relation ≻ on

X, such that for all x,y,∈ X exactly one of x ≻ y and y ≻ x holds. That is, a tournament

T := (X,≻), is an irreflexive, complete and asymmetric binary relation on a finite set.

We interpret ≻ as the “beats” relation2 so that x ≻ y, x,y ∈ X means “alternative x beats

alternative y.” No ties are contemplated, and no transitivity assumptions are made on ≻.

We refer to elements of X as alternatives.

[2013] who show that TEQ is not pair-wise intersecting and hence is not monotonic, and does not satisfy
the strong-superset property [Laffond et al., 1993].

2Commonly taken to be a groups’ majority preference relation
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A tournament may alternatively be defined as a complete, asymmetric directed graph,

with X being the set of vertices. Denote the set of all tournaments on X by T (X). A

tournament is irreducible if and only if there exists a directed path (under the ≻ relation)

between any two alternatives. Define the following sets, for any x ∈ X, T −1(x) = {y|y ≻ x}

and T (x) = {y|x ≻ y}. For a binary relation R on X, let R|Y , Y ⊆ X be the binary relation on

Y induced by R.3 Trivially, if T ∈ T (X) and Y , ∅ is a subset of X, then T |Y := (Y,≻ |Y ) is a

tournament. In an abuse of notion, if T = (X,≻) is a tournament, we denote |T | := |X | and

write x ∈ T when x ∈ X.

A major concern of social choice (as well as computer scientists – see Brandt et al.

[2009] ) is to identify “winners” from a given tournament. To that end, define a tourna-

ment solution as follows.

Definition 2.1 A tournament solution on X is a function

S :
⋃

Y⊆X

T (Y )→ 2X

for Y , ∅ satisfying (1) S(T |Y ) ⊆ Y for all Y ⊆ X; (2) non-emptiness: S(T ) , ∅ for all

T ∈ T (X); and (3) respect for isomorphism: relabeling the elements of X does not affect

the solution.4 In words, a tournament solution (or just solution) is a a function S assigning

to each sub-tournament (Y,≻ |Y ) of (X,≻), a nonempty subset of Y , called the S-winners,

in a manner respecting isomorphisms. Intuitively, S arbitrates among elements of X,

declaring alternatives in S(T ) ⊆ X to be “better” than those in X \ S(T ). If x ∈ S(T ), write

“x is an S-winner of T .” S(T |Y ) is similarly defined for non-empty sub-tournaments T |Y ,

Y ⊆ X. Define S(∅) = ∅. When T is understood, simply write S instead of S(T ).

3More formally, R|Y = R∩ (Y ×Y ), which can be considered as the subgraph of R on Y .
4This is a non-standard definition of a tournament solution, some version of the Condorcet criterion

usually being required in addition. We purposely treat two versions of the Condorcet criteria for tourna-
ment solutions separately.
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Usually one imposes one of the following Condorcet criteria as part of the definition,

but we keep them separate so that we can discuss both cases. A Condorcet winner of

a tournament T = (X,≻) is an element of X that beats all other elements of X, writing

Cond(T ) = {x ∈ X such that x ≻ y}. We say that a solution S satisfies theweak (respectively.

strong) Condorcet criteria if whenever a tournament T = (X,≻) has a Condorcet winner x,

then x is among the S-winners (respectively. is the only S-winner) in T .

2.2 Binary Relations

We will also consider some binary relations that don’t satisfy any specific axioms, but

carry a suggestion that one alternative is “better” than another. To be able to define some

terms, we will suppose ⊲ is some binary relation on a set X, pronounced “challenges”.

Definition 2.2 Let ⊲ be a binary relation on a set X and let Y ⊆ X. Then Y is retentive

for ⊲ (or is “⊲-retentive”) if and only iff

Y , ∅ (1)

∄(x ∈ X \Y and y ∈ Y ) such that x ⊲ y. (2)

A retentive subset Y is minimal retentive for ⊲ if ∄Z ⊂ Y such that Z is ⊲-retentive.

Retentive sets consist of alternatives that are not challenged by anything not in the set.

It is well-known that if Y1 and Y2 are two ⊲-retentive subsets such that Y1 ∩ Y2 , ∅ then

Y1∩Y2 is ⊲-retentive as well. As a consequence, two minimal retentive subsets are either

equal or disjoint. When ⊲ is intransitive, maximality may be generalized as follows.

Definition 2.3 The top-set of a binary relation ⊲ is the union of the minimal retentive

subsets of ⊲ and is denoted TS(⊲).
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The top-set generalizes the the concept of the top-cycle when ⊲ is incomplete. The top-

set of any binary relation is always nonempty since there exists a nonempty retentive set

(X itself) and therefore a minimal such set.

2.3 Tournament Equilibrium Set

Given a solution S, Schwartz [1990] introduces a binary relation obtained from S he called

bears on5 as follows. If S is an solution, T = (X,≻) is a tournament and x,y ∈ X, then we

say that x bears on y if x is an S-winner among those alternatives that beat y and write

xBS,T y. Less briefly, consider the elements of X that beat y, T −1(y). If this is empty then

nothing bears on y. Otherwise, T −1(y) ⊆ X becomes a tournament by restricting ≻ to it.

Since it is a tournament, S specifies one or more winners, and these are the alternatives

that bear on y.

Definition 2.4 Let S be a tournament solution and T be a tournament on X. Define the

contestation relation with respect to S, as the binary relation BS,T on X by

∀(x,y) ∈ X2, xBS,T y iff x ∈ S(T |T −1(y)).

Given an tournament solution S, consider the sequence of tournament solutions de-

fined by S(0) := S and S(k+1)(T ) := TS
(

BS(k),T

)

, k ≥ 1 where T is any tournament andBS(k),T

is the binary relation “bears on with respect to Sk ." Brandt et al. [2010] showed that this

process converges in the sense that S(k−1) and S(k) agree on any tournament with no more

than k alternatives.6 So the definition of S(∞)(T ) as S(k)(T ) for any k ≥ |T | is unambigu-

ous. Furthermore, if S and S ′ are any tournament solutions then S(∞) = S ′(∞), by Brandt

5called contests in subsequent literature [Brandt, 2011; Laslier, 1997]
6In this construction, each iteration involves the top-set of the contestation relation. For the interested

reader, a study isolating contestation from the top-set operator, and the limits thereof, is given in Moser
[2012].
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et al. [2010, Theorem 2]. Hence, there is a single limiting tournament solution based on

the iterated application of the top-set to the contestation relation. Combining Schwartz

[1990] and Brandt et al. [2010], this iterated tournament solution is also the unique fixed

point of TS(B·,T ) for any tournament T , and it is called TEQ:

TEQ(T ) = TS(BTEQ,T )

for all T ∈ T .

Our goal is to identify ways to modify the construction, to challenge the uniqueness

of TEQ, while keeping its appealing recursive nature. Obviously the place to begin is the

definition of B, which we generalize as follows.

3 Binary Relations from Tournament Solutions

We now define a class of “challenges” relations, one that can be defined by only consid-

ering proper subsets of X. Define a neighborhood map to be a function N that assigns to

each alternative x in each tournament (X,≻) a proper subset NX,≻,x of X, in a manner

respecting isomorphisms. For easy of reading, denote T̃ (x) := T |NX,≻,x
so that T̃ (x) is the

beats-relation among the neighbors of x. We write just Nx when (X,≻) is understood. In

the TEQ case Nx is the set of alternatives that beat x, T
−1(x).

Definition 3.1 Given a neighborhood map N and a tournament solution S, we define a

binary relation ⊲N,S on each tournament T = (X,≻) by

x ⊲N,S y just if x ∈ S
(

T̃ (y)
)

.

Because S and N respect isomorphisms of tournaments, so does ⊲N,S .
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WhenN and S are understood we write just x ⊲ y. We say that a binary relation arising

by this construction (for some S) is definable by neighborhoods.

4 Solutions from Binary Relations

In this section we study the usefulness of ⊲ for collective choice.

4.1 Iterated Top-Sets

Motivated by Brandt [2011], who examines the repeated application of the top-set of the

contestation relation of general tournament solutions, we consider the repeated applica-

tion of the top-set to general binary relations arising from tournament solutions.

Nowwe fix a neighborhood map,N , andmimic the Brandt et al. [2010] construction of

TEQ: if S is any tournament solution, we consider the sequence of tournament solutions

defined by S
(0)
N := S and S

(k+1)
N (T ) := TS

(

⊲
N,S

(k)
N

)

⊆ X, for k ≥ 1 where T = (X,≻) is any

tournament. We will suppress the subscript when N is understood.

4.2 Fixed Solutions

Alternatively, one may examine fixed solutions. For given tournament solution, S, and a

⊲ that is definable by neighborhoods, define a fixed solution, S∗N as

S∗N (T ) := TS
(

⊲N,S∗N

)

(3)

for all T ∈ T (X). In words, S∗N (T ) is defined to be a fixed-point of the operator TS(⊲N,·).

For example, if ⊲ is taken to be the contestation relation, so that NT ,x = T −1(x), we have

S∗N (T ) = TEQ(T ) for all T ∈ T [Schwartz, 1990].
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5 Results

In this section we study the existence and uniqueness of fixed solutions, and the conver-

gence of iterated solutions. Importantly, the two coincide when ⊲ is definable by neigh-

borhoods and yields a family of new tournament solutions.

Proposition 1 (Convergence) Suppose N is any neighborhood map and k ≥ 1. Then for any

tournament solution S and any tournament T with |T | ≤ k, S
(k)
N (T ) = S

(k−1)
N (T ).

Proof : By induction on k. The case k = 1 is trivial: the top-set of any binary relation

is nonempty, hence (in the case |T | = 1) the set of all alternatives. Now take k > 1 and

suppose S and T = (X,≻) are as stated. Then for all x ∈ X we have |Nx| < |X | by the

definition of a neighborhood map, so by induction we have S(k−1)(Nx,≻) = S(k−2)(Nx,≻).

It follows that the binary relations ⊲N,S(k−1) and ⊲N,S(k−2) coincide on X. Since S(k)(T ) and

S(k−1)(T ) are defined as the top-sets of these binary relations, they are equal.

We write S(∞) for the limiting tournament solution : S(∞)(T ) := S |T |(T ). This definition

makes clear what the notation suggests: applying the construction to S(∞) yields S(∞)

again.

Corollary 5.1 Let ⊲ be definable by neighborhoods with neighborhood map N . Then

S
(∞)
N (T ) exists for any S ∈ S (X), T ∈ T .

Proposition 2 (Uniqueness) Suppose N is any neighborhood map and S,A are tournament

solutions. Then S
(∞)
N (T ) = A

(∞)
N (T ) for any T ∈ T .

Proof : We must show that S(∞)(T ) = A(∞)(T ) for any tournament T = (X,≻), and we pro-

ceed by induction on |X |. The argument is a slight variation on the previous one. For all

x ∈ X we have |Nx | < |X | (by definition of neighborhood map), so by induction we have
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S(∞)(Nx,≻) = A(∞)(Nx,≻). It follows that the binary relations ⊲N,S(∞) and ⊲N,A(∞) on X

coincide. Since S(∞)(T ) and A(∞)(T ) are the top-sets of these binary relations, they are

equal.

We have shown that the choice of neighborhood mapping N defines a tournament

solution, and we will write S∗N for it. So we have S∗N = TS(⊲N,S∗) for any tournament.

An immediate corollary of the above two propositions (stated below and without

proof) is that if ⊲ is definable by neighborhoods then there is one and only one fixed

solution (i.e., satisfying equation 3) and it is precisely the iterated top-set, S
(∞)
N of any

S ∈ S (and hence does not depend on S).

Corollary 5.2 Let ⊲ be definable by neighborhoods and N be the corresponding neigh-

borhood map. Then S∗N (T ) = A
(∞)
N (T ) for any A ∈ S , T ∈ T .

5.1 Properties of Fixed Solutions and Iterated Top-Sets

Note that the while S∗N exists for any neighborhood map, N , it might not be a proper

tournament solution as there is no guarantee it satisfy the Condorcet criterion. For ex-

ample, S
(1)
N might not satisfy the strong Condorcet criterion, as there is no guarantee that

a ∈ Cond(T ) implies T̃ (a) = ∅. In this section, we identify conditions on a neighborhood

map, N , for which S∗N is a proper tournament solution. To do so, we introduce a version

of the Condorcet criteria for binary relations.

Definition 5.3 (Condorcet) The neighborhood map, N , satisfies weak Condorcet (wC)

iff NX,≻,x is empty whenever x is a Condorcet winner in (X,≻).

N satisfies strong Condorcet (sC) iff Nx = ∅ and x ∈ Ny for all y ∈ X other than x,

whenever x is a Condorcet winner in (X,≻).
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As the results below show, the above is a useful notion of Condorcet criteria in this

setting.

Proposition 3 (Weak Condorcet condition) Suppose N is a neighborhood map satisfying

weak Condorcet (wC). Then S∗N is a weak Condorcet tournament solution.

Proof : Suppose x is a Condorcet winner of (X,≻). Then there is no y ∈ X with y ⊲N,S∗ x

since Nx = ∅. So {x} is a minimal ⊲N,S∗-retentive subset of X, hence part of TS(⊲N,S∗) =

S∗N (X,≻).

Proposition 4 (Strong Condorcet condition) SupposeN is neighborhoodmapping such that

Nx = ∅ and x ∈Ny for all y ∈ X other than x, whenever x is a Condorcet winner in (X,≻). Then

S∗N is a strong Condorcet tournament solution.

Proof : First assume N satisfies the stated conditions; we must show that for any tourna-

ment T = (X,≻) with a Condorcet winner x, we have SN (T ) = {x}. We use induction on

|X |. Suppose y ∈ X − {x}. Since Nx = ∅ we cannot have y ⊲N x. And by hypothesis on N

we have x ∈ Ny . Obviously x is a Condorcet winner in Ny . Since |Ny | < |X |, our inductive

hypothesis says SN (Ny) = {x}. So x ⊲N y for all y , x. It is now obvious that the top-set of

⊲N is {x}. That is, SN (T ) = {x}, as desired.

Note that the converse is not true: the strong Condorcet criterion is not necessary for

S∗N to satisfy strong Condorcet property, as the following example shows. Let X = {1,2,3}

and ≻ being >. On this tournament define N (1) = {2}, N (2) = {3} and N (3) = ∅. Then N

does not satisfy sC since 3 <N (1). But S∗N (T ) = 1 is the same as TEQ(T ).

Notice that the requirement for S∗N to satisfy the strong Condorcet criteria does not

depend on the properties of A ∈ S , even though S∗N = A
(∞)
N . Indeed, starting with a solu-

tion A that does not satisfy even the weak Condorcet criteria, we may nonetheless recover
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a proper tournament solution, S∗N . An example of this phenomena can be seen in the fol-

lowing example.

Example 5.4 Let T = (X,≻) be a tournament and let NX,≻,x = T −1(x). Consider S to be the

“anti-Copeland” rule, S(T ) = argmin
a∈T

{|T (a)|}, selecting alternatives majority preferred to

the least number of other alternatives. Clearly, S does not satisfy SCC nor WCC. Equally

clearly, N satisfies sC. Consider the tournament T on X = {w,a,b,c, } defined as:

• wTa, wTb, wTc

• aTb

• bT c

• cTa.

That is, w is a Condorcet winner, and T is intransitive. For example, Na = {w,c} and

c ⊲ a. The ⊲ relation is seen to be c ⊲ a, a ⊲ b, b ⊲ c. Hence, S(1)(T ) = TS(⊲) = X.

Continuing, it can be seen that w ⊲S(1) a, w ⊲S(1) b, w ⊲S(1) c so that S(2)(T ) := TS(⊲S(1)

) = w = S(3)(T ). Hence, S∗N =w.

6 Illustration

There is a a surprisingly rich family of tournament solutions that may be defined via the

method we present. The role of the neighborhood map N and relations of S∗N to existing

tournament solutions are illustrated in this section.

For example, the trivial solution, returning all alternatives, may be obtained by taking

the neighborhood map to be all alternatives except one, and S0 to be the trivial solution.

Claim 1 Let S0 be the trivial solution (S0(T ) = X for all T ∈ T (X)). Fix T := (X,≻) and let

Nx = X \ x for all x ∈ X. Then S
(∞)
N (T ) = X.
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The proof is trivial: for all alternatives y , x, y ⊲N,S0 x, for all x ∈ X. So S(1)(T ) = X.

Continuing, y ∈ S(1)(TX\x) for all y , x, for all x ∈ X, so S(2)(T ) = X. Clearly, then,

y ∈ S(k)(T |X\x) for all y , x, for all x ∈ X and the result obtains. Intuitively, neither the

neighborhood map nor the method of arbitrating depends on the details of the ≻ relation

and hence iterating cannot help discriminate among alternatives in X.

As a more interesting example, define a neighborhood map by

Nx = {y : (yTx)∨ (∃z s.t. xTyT zTx)}, (4)

for all x ∈ X (we call this the ‘inclusive better neighborhood map’ ). Define ⊲: S×T →R as

a ⊲N,S b iff a ∈ S(T̃ (b)) and abbreviate ⊲ as (N,S). As x <Nx, for any x ∈ X, ⊲N is definable

by neighborhoods. Hence, by Proposition 2 S∗N exists, is unique and by Proposition 1 can

be computed by taking A(T ) = {X} and calculating A
(|T |)
N .

Equation 4 satisfies the antecedents of Lemma 4 and so S
(∞)
N satisfies strong Condorcet.

Indeed, more can be said: it is a subset of the uncovered set [Miller, 1980]. Recall that for

T ∈ T , alternative a covers alternative b in T iff T (a) ⊇ {b ∪ T (b)}. In words, a covers b in

T if a beats b, and beats everything that b beats. The uncovered set of T , denoted UC(T ),

is the set of alternatives not covered in T . The uncovered set has been studied, among

other places, in Miller [1980], Shepsle andWeingast [1984], Cox [1987], Feld et al. [1987],

Epstein [1997], Miller [2007].

Proposition 6.1 Let T ∈ T (X) be irreducible. Let N be as in equation 4 and define ⊲N,S

as: a ⊲N,S b iff a ∈ S(T̃ (b)) for any S ∈ S (X). Then S
(∞)
N (T ) ⊆UC(T ).

Claim 2 Let T ∈ T (X) be irreducible and let S ∈ S . Let x cover c in T , and d ∈ T (c). If

c⊲N,S(∞)d, then x⊲N,S(∞)d.

Proof of claim: Clearly, x ∈Nd . That x ∈ S
(|T |)
N (Nd) follows from induction on |T |.
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Claim 3 Let T ∈ T (X) be irreducible and let S ∈ S . Let x cover c, and y ∈ T −1(c). If c⊲N,S(∞)y,

then x⊲N,S(∞)y.

Proof of claim: If T is irreducible, then there exists y ∈ T −1(c) and d ∈ T (c) with cTdTyT c.

Hence, c ∈ Ny . Further, x ∈ N as yTx implies yTxTdTy. By induction on the order of T ,

the claim follows.

Proof of Proposition 6.1: Let S ∈ S . We prove S
(|T |)
N (T ) ⊆ UC(T ) by induction on |T |. The

|T | = 1 case is trivial, so assume the inductive hypothesis S
(|T |)
N (T ) ⊆ UC(T ) for all T with

|T | ≤ n.

Consider T with |T | = n. We prove the contrapositive. Let c <UC(T ). Then there exists

an a such that aT c and aTx for all x ∈ T (c). Since aT c, a ∈ Nc. Further, c < Na as there

is no b such that aTbT c. Suppose, by way of obtaining a contradiction, that c ∈ S
(∞)
N (T ).

Letting M be a minimal ⊲N,S(∞)-retentive set containing c, either

i c ∈M is a singleton or

ii M forms a ⊲N,S(∞) cycle.

Case (i) leads to a contradiction, as N (c) is non-empty and S
(k)
N is nonempty for all k.

Case (ii) implies there existsm ∈M with c ⊲N,S(∞) m. By Claims 1 and 2, a ⊲N,S(∞) m which

in turn implies a ∈M (as m ∈M , M is ⊲N,S(∞)-retentive, and a ⊲N,S(∞) m. But this implies

M is not minimal as ¬(c ⊲N,S(∞) a) because c ∈ N (a). Hence, M \ {c ∩ {q : c ⊲N,S(∞) q}} is

retentive contradicting, the supposition.

As the next two examples show, however, S
(∞)
N is distinct from both UC as well as the

idempotent uncovered set, UC∞. Further, the novelty of S
(∞)
N can be seen in Example 6.2

in which S
(∞)
N (T ) , TEQ(T ).
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Example 6.2 Figure 1 gives a tournament T in which S
(∞)
N (T ) , UC∞(T ). For the in-

terested reader, TEQ(T ) = {x1,x2,x3}. Here, S
(∞)
N (T ) = {x1,x2,x3,x4,x5,x6} = UC(T ). As

UC(T ) forms a T -cycle, the top-cycle of UC(T ) is equal to UC(T ).

Example 6.3 Figure 2 shows a tournament T in which S
(∞)
N (T ) , UC(T ). Here, S

(∞)
N (T ) =

{v1,v2,v3} =UC∞(T ). The uncovered set, UC(T ) = {v1,v2,v3,v4}, does not form a T -cycle.

The top-cycle of UC(T ) is equal to {v1,v2,v3}. For the interested reader, we note that

TEQ(T ) = {v1,v2,v3}.

Proposition 6.1 along with the above two examples, lead us to conjecture that S
(∞)
N (T ) is

equal to the top-cycle of the uncovered set of T , when N is defined as in Equation 4.

7 Discussion

Wemodel the process of group choice by cooperative reconsideration of alternatives. The

intuitive process of group choice we model can be described as follows. A group starts

with a criteria by which alternatives are arbitrated “better” or “worse”, A. The group then

considers each alternative, finding “better” alternatives to each, using whatever scheme

A uses to arbitrate only those alternatives in their (respective) neighborhoods. That is, if

alternative x is under consideration as a potential group choice, then only alternatives in

the neighborhood of x are even possible challenges to it. Then A(1) declares an alternative

x0 unfit for collective choice (displaced from consideration) if there is a x1 that challenges

it, unless every chain x0, . . . ,xm, with each xi challenging xi−1, can be extended to such

a chain x0, . . . ,xm,xm+1, . . . ,xn with xn = x0. If one accepts that A is a “reasonable” way

to evaluate alternatives in tournaments smaller than T , then one is forced to accept that

A(1) is a “reasonable” way to evaluate alternatives in a tournament T . Continuing, if

a group starts with a criteria of arbitrating “challengers” from non-challengers, A, and
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alternatives are compared/ reconsidered according to the neighborhood map, N , then

the group is logically committed to choosing alternatives only in A
(∞)
N .

Perhaps surprisingly, we showed that this set is does not depend on the initial “chal-

lenging” criteria, A, but rather does depend on set of potential challengers (on which

alternatives one is compared to), N . Indeed, if we restrict attention to binary relations

that are definable by neighborhoods, then Propositions 1 and 2 establish a family of tour-

nament solutions, parameterized only by a neighborhood map, N . By way of example,

it is shown that the family contains well-know tournaments solutions (for example, the

trivial solution, as well as TEQ) and some solutions distinct from the extant solutions

TEQ, uncovered set and the idempotent uncovered set (Section 6).

The majority preference relation has long held a central role in the theory and study

of collective choice. General, extra-majoritarian relations among alternatives play an

increasing role in the study of group choice, however [Schwartz, 1974; Miller, 1980;

Schwartz, 1986; Patty, 2008]. The results of Moser [2012] together with Brandt [2011]

suggest an examination of binary relations derived from tournament solutions, and the

top-sets thereof. We introduce a framework for doing so and showed its potential useful-

ness for the study of choice from tournaments. Indeed, the essential component in the

construction of tournament solutions in Schwartz [1990] and Brandt [2011] lies in the set

of alternatives that are potential challenges to a possible collective choice.

Several questions remain regarding this family of tournament solutions, most obvi-

ously those of inheritance. Does S
(k)
N inherit any properties from S

(k−1)
N ? That is, if S

(k−1)
N

satisfies the strong superset property, monotonicity,etc., does S
(k)
N ? Further, exactly how

rich is this family of solutions? That is: what tournament solutions are expressible as

the limit of the process of group choice modeled here? We have shown by example some

preliminary findings but deeper study is warranted. At a broader level, the conceptu-

alization of group choice here quite general, but is only one of many models of group
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choice. For example, Banks [1985] formulates a solution from a model of group choice

based on a non-cooperative voting game. Examining the relationship between of tourna-

ment solutions obtained from different models of group choice could prove fruitful for

future study.
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x1

x3
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x5

x4

x7

x6

Figure 1: A tournament T in which S
(∞)
N (T ) , UC∞(T ). Here, S

(∞)
N (T ) =

{x1,x2,x3,x4,x5,x6} = UC(T ). As UC(T ) forms a T -cycle, the top-cycle of UC(T ) is equal
to UC(T ). For the interested reader, we note that TEQ(T ) = {x1,x2,x3}.
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Figure 2: A tournament T in which S
(∞)
N (T ) , UC(T ). Here, S

(∞)
N (T ) = {v1,v2,v3} =

UC∞(T ). The uncovered set, UC(T ) = {v1,v2,v3,v4}, does not form a T -cycle. The top-
cycle of UC(T ) is equal to {v1,v2,v3}. For the interested reader, we note that TEQ(T ) =
{v1,v2,v3}.
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