
ON THE Y555 COMPLEX REFLECTION GROUP

DANIEL ALLCOCK

Abstract. We give a computer-free proof of a theorem of Basak,
describing the group generated by 16 complex reflections of or-
der 3, satisfying the braid and commutation relations of the Y555

diagram. The group is the full isometry group of a certain lattice
of signature (13, 1) over the Eisenstein integers Z[ 3

√
1]. Along the

way we enumerate the cusps of this lattice and classify the root
and Niemeier lattices over Z[ 3

√
1]

The author has conjectured [3] that the largest sporadic finite simple
group, the monster, is related to complex algebraic geometry, with a
certain complex hyperbolic orbifold acting as a sort of intermediary.
Specifically, the bimonster (M × M):2 and a certain group PΓ acting
on complex hyperbolic 13-space are conjecturally both quotients of
π1

(

(CH13 −∆)/PΓ
)

for a certain hyperplane arrangement ∆ in CH13,
got by adjoining very simple relations. If the conjecture is true then
it has the consequence that PΓ is generated by 16 complex reflections
of order 3, satisfying the braid and commutation relations of the Y555

diagram

That is, two generators braid (aba = bab) or commute (ab = ba) when
the corresponding nodes are joined or unjoined. Basak [4] has proven
this, his proof making essential use of a computer. Our purpose is to
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give a conceptual, computer-free proof. We hope that it will clarify
which structures will be important for further work on the conjecture
of [3].

We will describe the players in the main theorem, state the theorem,
and then summarize the sections. Γ is the group of all isometries of a
certain lattice L13,1 over the Eisenstein integers E = Z[ω= 3

√
1]. This

lattice has the property that L13,1 = θL′

13,1, where θ = ω − ω̄ =
√
−3

and the prime indicates the dual lattice. Also, L13,1 is the unique E-
lattice of signature (13, 1) with this property. An explicit model for it
appears in section 3. The Artin group of the Y555 diagram means the
abstract group with one generator for each node of the diagram, with
the braid and commutation relations described above. Such groups
arise naturally in the fundamental groups of hyperplane complements.
A triflection means a complex reflection of order 3, where a complex
reflection means a nontrivial isometry of a Hermitian vector space that
fixes a hyperplane pointwise. Complex reflections arise naturally when
studying branched covers, in a manner explained in [3].

Theorem 1 ([4]). Up to complex conjugation, there is a unique irre-
ducible action of the Y555 Artin group on a Hermitian vector space of
dimension > 1 in which the generators act by triflections. The image
of this representation is Aut L13,1.

In section 1 we give background on Eisenstein lattices, and in sec-
tion 2 we classify two types of such lattices, the root lattices (analogous
to the ADE lattices over Z) and the Eisenstein Niemeier lattices (equiv-
alently, E-lattice structures on the Niemeier lattices). The point of this
is to enumerate the 5 cusps of CH13/PΓ and be able to recognize one as
having “Leech type”. Section 3 describes L13,1 in a manner convenient
for the proof of the theorem, which appears in section 4. Throughout,
we use ATLAS notation [6] for group extensions: A.B, A:B and A·B.

1. Eisenstein lattices

We have already introduced the Eisenstein integers E = Z[ω] and
defined θ = ω − ω̄ =

√
−3. An E-lattice L means a free E-module

equipped with an E-valued Hermitian form 〈|〉, linear in its first argu-
ment and antilinear in its second. The norm |x|2 of a vector means
〈x|x〉. We call L nondegenerate if L⊥ = 0; in this case the dual lattice
L′ means the set of all v ∈ L ⊗ C with 〈L|v〉 ⊆ E . All the lattices
we will meet satisfy L ⊆ θL′ := θ · (L′), which is to say that all inner
products are divisible by θ. This should be thought of as an ordinary
integrality condition, because it means that the underlying Z-lattice
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LZ, with x · y = 2

3
Re〈x|y〉, is integral and even. The rescaling by 2

3
is

not important; it is a nuisance arising from the fact that the smallest
scale at which L is integral as an E-lattice is different from the small-
est scale at which it is an integral Z-lattice. Most of our lattices will
also satisfy L = θL′, which is the same as the unimodularity of LZ. If
L = θL′ then det L = ±θdim L (which makes sense since dim L turns
out to be even).

Examples of L with L = θL′ are the Eisenstein versions of the E8

lattice ([7, ch. 7, example 11b] or theorem 3 below) and the Leech lattice
([9], scaled to have minimal norm 6). It is well-known that an indefinite
even unimodular Z-lattice is determined by its signature, and there is a
corresponding result for E-lattices. Namely, an E-lattice L of signature
(p, n) satisfying L = θL′ exists if and only if p − n ≡ 0 modulo 4, and
L is unique when this signature is indefinite. A proof appears in [4].
The main player in this paper is this lattice of signature (13, 1), for
which we will write L13,1. We studied it in [2], using slightly different
conventions (signature (1, 13) and 〈|〉 linear in its second argument
rather than its first) and a particular explicit model. In section 3 we
will give a different explicit model.

If L is an E-lattice satisfying L ⊆ θL′, then r ∈ L is called a root of
L if |r|2 = 3. The language reflects two things. First, r becomes a root
in the usual sense (a vector of norm 2) when we pass to LZ. Second,
the complex reflection

(1) x 7→ x + (ω − 1)
〈x|r〉
|r|2 r

is an isometry of L, so that roots give reflections, analogously to roots
in Z-lattices. But this is a triflection; we call it the ω-reflection in r,
since it multiplies r by ω and fixes r⊥ pointwise. If r and r′ are nonpro-
portional roots, then their ω-reflections braid if and only if |〈r|r′〉|2 = 3.
One can check this by multiplying out 2 × 2 matrices.

2. Root lattices; Niemeier lattices; Null vectors of L13,1

At a key point in section 4 we will need to recognize a particular
null vector ρ of L13,1 as having “Leech type”, which is to say that
ρ⊥/〈ρ〉 is a copy of the complex Leech lattice. The reader may skip
this section if he is prepared to accept one consequence of theorem 4
below: a primitive null vector of L13,1 whose stabilizer contains a copy
of L3(3) has Leech type. There is a quicker-and-dirtier proof than the
one we give, but we think the E-lattice classifications are interesting in
themselves.
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We will need to understand the orbits of primitive null vectors in
L13,1. These turn out to be in bijection with the positive-definite 12-
dimensional lattices L satisfying L = θL′; we will call such lattices
Eisenstein Niemeier lattices, since their real forms are positive-definite
24-dimensional even unimodular lattices, classified by Niemeier. Since
root lattices play a major role in Niemeier’s classification, they do in
ours too, so we define an Eisenstein root lattice to be a positive-definite
E-lattice L satisfying L ⊆ θL′ and spanned by its roots.

We will establish the bijection between Eisenstein Niemeier lattices
and orbits of primitive null vectors in L13,1, then classify the Eisenstein
root lattices, and then use this to classify the Eisenstein Niemeier lat-
tices. The root lattice classification is similar to and simpler then the
well-known ADE classification of root lattices over Z. The Eisenstein
Niemeier lattices turn out to correspond to five of the classical Niemeier
lattices.

Lemma 2. Suppose p, n > 0, p − n ≡ 0 (4), and Lp,n is the unique
E-lattice of signature (p, n) satisfying Lp,n = θL′

p,n. If ρ is a primitive

null vector then L := ρ⊥/〈ρ〉 is a lattice of signature (p − 1, n − 1)
that satisfies L = θL′. Every such L arises this way. Two primitive
null vectors ρ1, ρ2 of Lp,n are equivalent under Aut Lp,n if and only if
ρ⊥

1 /〈ρ1〉 ∼= ρ⊥

2 /〈ρ2〉.
Proof. (This is essentially the same as for even unimodular Z-lattices.)
By Lp,n = θL′

p,n, there exists w ∈ L with 〈ρ|w〉 = θ. Adding a multiple

of ρ to w allows us to also assume |w|2 = 0, so 〈ρ, w〉 ∼=
(

0 θ
θ̄ 0

)

. There-
fore 〈ρ, w〉 = θ〈ρ, w〉′, so 〈ρ, w〉 is a summand of Lp,n. The other sum-

mand 〈ρ, w〉⊥ must also satisfy 〈ρ, w〉⊥ = θ
(

〈ρ, w〉⊥
)′

, and it projects

isometrically to ρ⊥/〈ρ〉. This establishes the first claim. For the sec-
ond, given L of signature (p − 1, n − 1) satisfying L = θL′, we have
L ⊕

(

0 θ
θ̄ 0

) ∼= Lp,n, and it is now obvious that L is ρ⊥/〈ρ〉 for a suit-
able null vector ρ. In the last claim, if ρ1 and ρ2 are equivalent, then
obviously ρ⊥

1 /〈ρ1〉 ∼= ρ⊥

2 /〈ρ2〉, so it suffices to show the converse. The
argument for the first claim implies that there is a direct sum decom-
position Lp,n

∼= M1 ⊕
(

0 θ
θ̄ 0

)

with M1
∼= ρ⊥

1 /〈ρ1〉 and ρ1 corresponding
to one of the coordinate vectors of the 2× 2 block. And there is a sim-
ilar decomposition with ρ2 in place of ρ1. Then, given an isomorphism
M1

∼= M2, it is easy to write down an automorphism of Lp,n sending ρ1

to ρ2. �



ON THE Y555 COMPLEX REFLECTION GROUP 5

θL′ − L
L R Aut L |AutL| θL′/L min. norm

AE
2 Z/3 × Z/2 6 F1

3 1
DE

4 SL2(3) × Z/3 72 F1
4 3/2

EE

6 31+2:SL2(3) × Z/2 1,296 F
1
3 2

EE

8 3 × Sp4(3) × 1 155,520 0

Table 1. The indecomposable Eisenstein root lattices.
The second column gives the structure of the group R
generated by the triflections in the roots of L, in ATLAS
notation [6]. Aut L is the product of this group with
the cyclic group of scalars given in the third column.
The fifth column describes θL′/L as a vector space over
E/θE = F3 or E/2E = F4. Every nonzero element of
θL′/L has minimal representatives of norm given in the
last column.

Theorem 3. Any Eisenstein root lattice is a direct sum of copies of
the following 4 lattices:

AE

2 = θE
DE

4 =
{

(x, x, y) ∈ E3 : x ≡ y (θ)
}

EE

6 =
{

(x, y, z) ∈ E3 : x ≡ y ≡ z (θ)
}

EE

8 =
{

(x1, . . . , x4) ∈ E4 : π(x1, . . . , x4) ∈ C4 ⊆ F
4
3

}

,

which have the properties listed in table 2. (We use the standard inner
product on C

n. Also, the description of EE

8 refers to the map π : E4 →
E4/θE4 = F4

3 and the tetracode C4, i.e., the subspace of F4
3 spanned by

(0, 1, 1, 1) and (1, 0, 1,−1).)

Proof. The data in the table will be helpful in the classification, so we
begin there. The claims for L = AE

2 are obvious; we remark that the
smallest elements of θL′ − L are the units of E , and all others have
norm > 3.

Now let L = DE

4 . Its 24 roots are the scalar multiples of (ωi, ωi, 1)
and (0, 0, θ). It is easy to see that conjugation by each of the 24/6 = 4
cyclic groups generated by triflections permutes the other 3 cyclically.
Therefore R is generated by two triflections that braid, so it is an image
of 〈a, b | aba = bab, a3 = b3 = 1〉, which is a presentation for SL2(3). To
see that R is SL2(3) rather than a proper quotient, consider its action
on L/θL ∼= F2

3. Now, R permutes the scalar classes of roots as the
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alternating group A4, so if we choose any 2 non-proportional roots r
and s, then AutL is generated by R together with the transformations
sending r to a multiple of itself and s to a multiple of itself. Since
〈r|s〉 6= 0, such a transformation must be a scalar. So Aut L = R×〈ω〉.
Finally, it is easy to see that the norm 6 vectors of L are the scalar
multiples of (ωi, ωi, 1 + θ) and (θ, θ, 0), and that the halves of these
vectors span θL′. In fact, the halves of these vectors account for all the
elements of θL′ − L of norm ≤ 3, and are all equivalent under Aut L.
Representatives for θL′/L are 0 and ωi

2
(θ, θ, 0), so θL′/L ∼= F1

4.
Now let L = EE

8 . Because it is got from (AE

2 )4 by gluing along

the 2-dimensional code C4 ⊆
(

θ(AE
2 )′/AE

2

)4 ∼= F4
3, it satisfies L = θL′,

justifying the last two entries in the table. The descriptions of R and
AutL are justified by theorem 5.2 of [2]. (The proof in [2] appeals to
a coset enumeration to establish that L contains the scalars of order 3;
this may be avoided by observing that L contains 4 mutually orthogonal
roots.)

Now let L = EE

6 and note that the following symmetries are visible:
permutation of coordinates, multiplication of coordinates by cube roots
of unity, and the scalar −1. It is easy to see that θL′ = {(x, y, z) ∈ E3 :
x+y + z ≡ 0 (θ)}, whose 54 minimal vectors are got from (1,−1, 0) by
applying these symmetries. Note also that these are the only elements
of θL′ − L of norm ≤ 3. It is easy to see that θL′/L ∼= F1

3. Also,
L is the orthogonal complement of r = (0, 0, 0, θ) ∈ EE

8 , and every
automorphism φ of EE

6 extends uniquely to an automorphism of EE
8 that

either fixes or negates r. (The extension fixes or negates r according
to whether φ fixes or negates θL′/L ∼= θ〈r〉′/〈r〉 ∼= F1

3.) It follows
that |AutL| ≤ 2 × 1

240
× 155, 520 = 1296. Since triflections must act

trivially on F1
3, we also have |R| ≤ 648. We will show that R has

structure 31+2:SL2(3); this will justify the first column of the table,
and (since −1 /∈ R) also the second.

To see the map R → SL2(3), consider the action on L/3L′ ∼= F2
3. All

roots are equivalent under Aut L (since any two root in a DE

4 are R-
equivalent), and the 72 roots fall into 8 classes of size 9, accounting for
all 8 nonzero elements of L/3L′. This space supports a symplectic form,
given by dividing inner products by θ and then reducing mod θ. The ω-
reflection in a root projects to the symplectic transvection in the image
of the root. Now we study the kernel K of R → SL2(3). If r and s are
orthogonal roots then their ω-reflections map to the same transvection
L/3L′ (since they map to commuting transvections), so the quotient
of the reflections lies in K. This shows: if an automorphism of L
has 3 roots as eigenvectors, with eigenvalues 1, ω and ω̄, then it lies
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in K. For example, diag[1, w, ω̄] ∈ K. Also, the cyclic permutation of
coordinates lies in K. These two elements of K generate an extraspecial
group 31+2. Since 27 · |SL2(3)| = 648, we have shown R = 31+2.SL2(3).
The extension splits because the reflection group of a DE

4 sublattice
provides a complement.

Having established the table, we will now classify the Eisenstein
root lattices. Call such a lattice decomposable if its roots fall into
two or more nonempty classes, with members of distinct classes being
orthogonal. In this case it is a direct sum of lower-dimensional root
lattices, so it suffices to show that AE

2 , DE

4 , EE

6 and EE

8 are the only
indecomposable Eisenstein root lattices. We will use the following facts,
established above. (i) If L = AE

2 , DE

4 or EE

6 , then Aut L acts transitively
on the vectors of θL′ − L of norm ≤ 3. (ii) EE

8 = θ(EE

8 )′.
Suppose M is an indecomposable Eisenstein root lattice. If dim M =

1 then obviously M ∼= AE

2 . If dim M = 2 then it contains a 1-
dimensional indecomposable root lattice L, and we know L ∼= AE

2 . Also,
M contains a root r not in L⊗C, whose projection to L⊗C is nonzero.
Since this projection is an element r of θL′ − {0} of norm < 3, and
AutL acts transitively on such vectors, there is an essentially unique
possibility for 〈L, r〉. Since DE

4 arises by this construction, 〈L, r〉 ∼= DE

4 .
Therefore M lies between θ(DE

4 )′ and DE
4 . Since every norm 3 vector

of θ(DE

4 )′ lies in DE

4 , we have M ∼= DE

4 . If dim M = 3 then the same
argument, with L = DE

4 , shows that M ∼= EE

6 . If dim M > 3, then
the same argument, with L = EE

6 , shows that M contains EE

8 . Then
E8 = θ(EE

8 )′ implies that EE

8 is a summand of M , and indecomposabil-
ity implies M ∼= EE

8 . �

Theorem 4. There are exactly 5 Eisenstein Niemeier lattices:
(

AE

2

)12
glued along the ternary Golay code, with group 312:2M12;

(

DE

4

)6
glued along the hexacode, with group SL2(3)6:3A6;

(

EE
6

)4
glued along the tetracode, with group

(

31+2:SL2(3)
)4

:SL2(3);
(

EE

8

)3
, with group

(

3 × Sp4(3)
)3

:S3; and

the complex Leech lattice ΛE

24, with group 6Suz.

Here, M12 and Suz are the sporadic finite simple groups of Mathieu
and Suzuki.

Proof. Our argument is similar in spirit to Venkov’s treatment [8] of
Niemeier’s classification. Suppose L is an Eisenstein Niemeier lattice
and LZ its underlying real lattice. By Niemeier’s classification, there
are 24 possibilities for LZ; in 23 cases the roots span LZ up to finite
index, and in the last case LZ has no roots and is the Leech lattice.
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By theorem 3, the root system of LZ must be a sum of A2, D4, E6

and E8 root systems. Considering Niemeier’s list shows that LZ’s root
system is A12

2 , D6
4, E4

6 , E3
8 or empty. We treat the first four cases first.

Theorem 3 shows that there is a unique Eisenstein structure on the
root sublattice of LZ, so the sublattice L0 of L spanned by its roots
is (AE

2 )12, (DE

4 )6, (EE

6 )4 or (EE

8 )3. In the last case we have L = L0

and are done. In the other cases, L lies between θL′

0 and L0, so it is
determined by its image C in θL′

0/L0
∼= F12

3 , F6
4 or F4

3 in the three cases.
We must have C ⊆ C⊥ (with respect to the usual quadratic form on Fn

3

or Hermitian form on F6
4), in order to have L ⊆ θL′. Also, C must be

half-dimensional in θL′

0/L0, in order to have L = θL′. Finally, all roots
of L already lie in L0, by definition.

In the A2 case, these conditions imply that C is a selfdual code of
length 12 with no codewords of weight 3. The ternary Golay code is
the unique such code, up to monomial transformations of F12

3 , so C is
it and L is as described. In the D4 case, C is a selfdual subspace of F

6
4

with no codewords of weight 2. The hexacode is the unique such code,
up to monomial transformations, so C is it and L is as described. In
the E6 case, C is a 2-dimensional subspace of F4

3 having no codewords
of weight < 3. Again there is a unique candidate, the tetracode, and
L is as described.

Next we treat the case that LZ is the Leech lattice; we must show
that L is the complex Leech lattice. I know of 3 completely independent
approaches. (1) The uniqueness of the E-module structure on the Leech
lattice is the same as the uniqueness of the conjugacy class in Co0 =
Aut(LZ) of elements of order 3 with no fixed vectors. This can be
checked by consulting the character table [6] for Co0. (2) Use lemma 2,
together with theorem 4.1 of [2], which contains the statement that
L13,1 has a unique orbit of primitive null vectors orthogonal to no roots.
(3) Presumably one can mimic Conway’s characterization of the Leech
lattice [5], applying analogues of his counting argument to L/θL.

The automorphism group of ΛE

24 is treated in detail in [9]. The other
automorphism groups are easy to work out. Let L0 = Mn be the
decomposition of L0 into its indecomposable summands and let R be
the group generated by triflections in the roots of M . Recall from
theorem 3 that Aut M splits as R × C, where C denotes the group of
scalars from column 3 of table 2. Obviously Aut L ⊆ Aut L0 = (Rn ×
Cn):Sn; indeed it is the subgroup of this that preserves C ⊆ (θM ′/M)n.
Now, R acts trivially and Cn:Sn acts by monomial transformations.
Therefore Aut L is the semidirect product of Rn by the subgroup of
Cn:Sn whose action preserves C. This latter group is 2M12, 3A6, SL2(3)
or S3 in the four cases. (The automorphism group of the hexacode is
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support coordinates description number

0 013 1
6 +3−307 difference of lines 156
9 ±(+904) affine plane 26
9 ±(+6 −3 04) sum of 3 general lines 468
12 +6 −6 0 l1 + l2 − l3 − l3 for 4 concurrent lines 78

Table 2. The elements of C.

sometimes given as 3·S6, but the elements not in 3A6 are F4-antilinear,
so they arise from antilinear maps L → L.) �

3. A model of L13,1

In this section we describe L13,1 with 313:L3(3) among its visible sym-
metries. We begin with the vector space F

13
3 , with coordinates indexed

by the points of P 2F3, and proceed to define two codes. The first is the
“line difference code” C, spanned by the differences of (characteristic
functions of) lines of P 2F3, and the second is the “line code”, which de-
rives its name from the fact that it is spanned by lines, but is formally
defined (and written) as C⊥ (with respect to the usual inner product).

Two lines of P 2F3 meet in 1 point (or 4), and it follows that C is
orthogonal to every line, hence orthogonal to itself. Therefore dim C ≤
6. On the other hand, it is easy to enumerate some elements of C
(table 2). This shows that dim C = 6 and also that the enumeration
is complete. Therefore dim C⊥ = 7, and since a line lies in C⊥ but not
C, we see that C⊥ is indeed spanned by lines. It will be useful to have
a list of the elements of C⊥: these are the codewords in table 3, their
negatives, and the elements of C. We compiled table 3 by adding the
all 1’s vector (the sum of all 13 lines) to the elements of C.

We work with the usual inner product of signature (13, 1) on C14,

〈x|y〉 = −x0ȳ0 + x1ȳ1 + · · · + x13ȳ13,

index the last 13 coordinates by the points of P 2F3, and define L as
the set of vectors (x0; x1, . . . , x13) such that x0 ≡ x1 + · · ·+ x13 mod θ
and that (x1, . . . , x13), modulo θ, is an element of C⊥.

Theorem 5. L is isomorphic to L13,1 and is spanned by the 13 “point
roots” (0; θ, 012), with the θ in any of the last 13 spots, and the 13 “line
roots” (1; 14, 09), with the 1’s along a line of P 2F3.

Proof. It is easy to see that the point and line roots span L. If p is a
point root and ℓ a line root, then 〈p|ℓ〉 = θ or 0 according to whether
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support coordinates description number

4 +409 line 13
7 +1 −6 06 sum of two lines (negated) 78
7 +4 −3 06 −1 on vertices, 0 on edges, 1 elsewhere 234
10 +4 −6 03 0 on vertices, −1 on edges, 1 elsewhere 234
10 +7 −3 03 −1 on l1 − l2, 0 on l2 − l1, 1 elsewhere 156
13 +4−9 1 on a line, −1 elsewhere 13
13 +13 1

Table 3. The elements of C⊥ with coordinate sum 1.
The entries that refer to “vertices” and “edges” refer to
three general lines—a vertex means a point on two of the
lines, and an edge means a point on just one of them.

the point lies on the line. Also, any two point roots are orthogonal,
as are any two line roots. Therefore L ⊆ θL′. To see L = θL′, check
that L contains (θ; 013) and consider the span M of it and the point
roots. Then θM ′/M ∼= F14

3 , and we need to check that the image of
L therein is 7-dimensional. This is easy because we know dim C⊥ = 7
and the 0th coordinate of an element of L is determined modulo θ by
the others. �

The promised group 313:L3(3) is generated by the triflections in the
point roots and the permutations of the last 13 coordinates by L3(3).

The following lemma is not central; it is used only to establish the
equality of two lattices in the proof of lemma 9.

Lemma 6. Let M be the 12-dimensional lattice consisting of all vectors
in (θE)13 with coordinate sum zero. Then there is a unique lattice N
preserved by L3(3), strictly containing M , and satisfying N ⊆ θN ′.

Proof sketch: Any lattice N containing M and satisfying N ⊆ θN ′ lies
in θM ′, so that it corresponds to a subspace of Z := θM ′/M . And Z is
the coordinate-sum-zero subspace of F

13
3 . The lemma follows from the

fact that C is the unique nontrivial L3(3)-invariant subspace. To see
this, one checks that C is irreducible under L3(3), so that Z/C is also
irreducible (being the dual), and that C has no invariant complement.

�

4. Generation of Aut(L13,1) by the Y555 triflections

In this section we prove the main theorem, theorem 1. First we prove
uniqueness. Label the generators by g1, . . . , g16. The argument of [2,
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sec. 5] shows that without loss we may take the gi to be the ω-reflections
in pairwise linearly independent vectors r1, . . . , r16 of norm 3, satisfying
|〈ri|rj〉|2 = 3 or 0 according to whether gi and gj braid or commute.
It is convenient to 2-color Y555 and suppose 〈ri|rj〉 = θ (resp. −θ)
when gi and gj braid and gi is black (resp. white). The inner product
matrix of the ri turns out to have rank 14 (by direct computation or the
realization below), so V must have dimension 14 (by irreducibility of
V and connectedness of Y555). The ri are determined up to isometries
of V by their inner products, so their configuration is unique.

Having proven uniqueness of the representation, we can define R as
its image. To identify R with AutL13,1, we will use the model for L13,1

from the previous section, and write L for it. Let ∆ be the incidence
graph of the points and lines of P 2F3, and color the nodes corresponding
to points black and lines white. Then the point and line roots from
theorem 5 satisfy the same inner product conditions as the ri chosen
above. It is possible (uniquely up to L3(3)) to embed the Y555 diagram
into ∆, preserving node colors. So the 16 roots for Y555 may be taken
to be 16 of the point and line roots. It would be annoying to make a
choice of which 16, and we are saved from this by the following lemma.

Lemma 7. The 16 roots for Y555 span L, and R contains L3(3) and
the triflections in all the point and line roots.

Proof. First observe that Y555 contains an 11-chain E and a 4-chain F
not joined to it. By [2, fig. 5.1], the roots of E span a copy of L9,1 and
those of F a copy of EE

8 , so together they span L. This proves our first
assertion.

One can check that for any 11-chain E in ∆, E has a unique extension
to a 12-cycle C, and that the nodes of ∆ not joined to C form a 4-
chain F . (E is unique up to L3(3):2, so checking a single example
suffices.) We claim that if R contains the triflections in the roots of E,
then it also contains the triflections in the root extending E to C. We
use a computation-free variation of the proof of [4, lemma 3.2]. First
use the fact that the roots of F span a copy of EE

8 , whose orthogonal
complement in L must be a copy of L9,1. By [2, thm. 5.2], Aut L9,1 is
generated by the triflections of E and hence lies in R. And since the
extending root is orthogonal to EE

8 , it also lies in L9,1, so its triflections
also lie in R. This proves the claim. Now, starting with the three 11-
chains in Y555 and repeatedly applying the claim shows that R contains
the triflections in all 26 roots.

We use a similar trick to show L3(3) ⊆ R. Consider any Y555 ⊆ ∆,
and let E be one of its 11-chains and F the 4-chain in Y555 not joined
to it. Let φ be the diagram automorphism of Y555 that fixes each node
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of F and exchanges the ends of E. One can check that φ extends to an
automorphism of ∆, preserving node colors since it has a fixed point.
Therefore φ defines an automorphism of L, permuting the point and
line roots as it permutes the points and lines of P 2F3. Since φ fixes
F pointwise, it is an automorphism of the L9,1 spanned by the roots
of E. We already know that R contains AutL9,1, so it contains φ. So
each Y555 ⊆ ∆ gives rise to an S3 ⊆ R ∩ L3(3). The set of elements of
R ∩ L3(3) so obtained, from all Y555 subdiagrams, is clearly normal in
L3(3). Since L3(3) is simple, R ∩ L3(3) is all of L3(3). (This diagram-
automorphism trick was also used in [2, thm. 5.1] and [4, thm. 5.8].) �

The next lemma shows that if R contains certain triflections, then
it contains a well-understood group, of finite index in the stabilizer of
a null vector. The lemma after that shows that R does indeed contain
these triflections, and then we can complete the proof of theorem 1 by
showing R = Aut L.

Lemma 8. Suppose L is an E-lattice of dimension > 2 satisfying L =
θL′. Suppose ρ is a primitive null vector and ri are roots satisfying
〈ri|ρ〉 = θ, such that the span of their differences projects onto ρ⊥/〈ρ〉.
Let G be the group generated by the triflections in the ri and ρ + ri.
Then G contains every element of Aut L that acts by a scalar on 〈ρ〉
and trivially on ρ⊥/〈ρ〉
Remark. The hypothesis dim L > 2 is necessary and should also have
been imposed in theorem 3.2 of [2].

Proof. This is implicit in the proofs of theorem 3.1 and 3.2 of [2]; since
the argument is slightly different and our conventions there were dif-
ferent, we phrase the argument in coordinate-free language and refer
to [2] for the supporting calculations. By the unipotent radical U of
the stabilizer of ρ we mean the automorphisms of L that fix ρ and act
trivially on M := ρ⊥/〈ρ〉. It is a Heisenberg group, with center Z equal
to its commutator subgroup and isomorphic to Z, with U/Z a copy of
the additive group of M . The set X of scalar classes of roots r with
∣

∣〈r|ρ〉
∣

∣ = |θ| is a principal homogeneous space for U , and the set X/Z
of its Z-orbits is a principal homogeneous space for U/Z ∼= M . If r
is a root with 〈r|ρ〉 = θ, then the triflections in r and ρ + r can be
composed to yield a transformation multiplying ρ by a primitive 6th
root of unity and acting on X/Z by scalar multiplication by a primitive
6th root of unity, where X/Z is identified with M by taking rZ as the
origin. Write φr for this transformation (which depends only on rZ,
though we don’t need this).
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Suppose r′ is another root with 〈r′|ρ〉 = θ. Since X/Z is a principal
homogeneous space modeled on M , there exists m ∈ M with m · rZ =
r′Z. Then φr ◦ φ−1

r′ turns out to be an element of U , acting on X/Z
by translation by a unit times m. Under the hypothesis of the lemma,
G contains elements of U for sufficiently many m to span M as an
E-lattice. Taking conjugates by (any) φr gives the unit scalar multiples
of these m, so G contains enough elements of U to generate M as a
group. Taking commutators shows that G contains Z, so it contains
all of U . And 〈U, φr〉 consists of all the elements of AutL that we are
asserting to lie in G. �

Lemma 9. Let ρ be the primitive null vector (−4 − ω; 113) ∈ L. If
r is one of the 156 roots (2 + θ; 03, ω̄3,−17) or one of the 234 roots
(−2ω̄; ω̄4,−13, 06), then 〈r|ρ〉 = θ and R contains the triflections in r
and ρ + r. The differences of these 390 roots span ρ⊥.

Remarks. The exact placement of the coordinates can be determined up
to L3(3) by reducing the last 13 coordinates modulo θ and comparing
with the list of elements of C⊥. For example, for one of the 156 roots,
the 0’s lie on one line of P 2F3, the ω̄’s lie on another, and the −1’s are
everywhere else, including the point where the lines intersect. (There
are 13 · 12 = 156 ways to choose the two lines.) The same method
applies to all vectors referred to in the proof. Also, R contains the
triflections in some less-complicated roots r satisfying 〈r|ρ〉 = θ, for
example the point roots. But for these, showing that R contains the
triflections in ρ+ r is harder. We chose these roots because both r and
ρ + r have small 0th coordinate.

Proof. Checking 〈r|ρ〉 = θ is just a computation. Now we show that R
has various roots r (meaning that it contains the triflections in them).
We will use the following fact repeatedly: if R has roots a and b, and
〈a|b〉 = ω − 1 or ω̄ − 1, then a + b is a root and R has it too. (This is
because 〈a, b〉 ∼= DE

4 , and the reflections in any two independent roots
of DE

4 generate the whole reflection group of DE

4 .) We know already
that R has the line roots and their images under scalars and 313:L3(3).

Step 1: R has the roots (θ; 13,−13, 07) with the 1’s collinear and the
−1’s collinear. Take b to be the line root (1; 14, 09), and try a having
the form (−ω; ?, 03, ?3, 06), where the ?’s are negated cube roots of 1,
lying along a different line. We try this a because a + b = (1− ω; . . . ),
so if we can choose the ?’s with 〈a|b〉 = ω±1 − 1, then we can conclude
that R has a root a + b = (1 − ω; . . . ), which we didn’t know before.
We may in fact achieve 〈a|b〉 = ω − 1, by taking (say) all the ?’s to be
−1. Then R has the root (1 − ω; 0, 13,−13, 06). Applying a scalar and
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an element of 313:L3(3) finishes step 1 (this part of the argument will
be left implicit in steps 2–5).

Step 2: R has the roots (2;−14, 13, 06) with the 1’s at three non-
collinear points, the 0’s on the lines joining them, and the −1’s ev-
erywhere else. Take b = (θ; 13,−13, 07) from step 1, and try a =
(1; ?, 02, ?, 02, ?2, 05), with the ?’s lying on a line that meets a 1 and a −1
of b. Solving for the ?’s as before reveals that a = (1; ω̄, 02, 1, 02, ?2, 05)
satisfies 〈a|b〉 = ω − 1. So R has the root (θ + 1;−ω, 12, 0,−12, ?2, 05)
where the ?’s are cube roots of 1—exactly which ones is unimportant.

Step 3: R has the roots (2; 16,−1, 06), where the 1’s all lie on two
lines through the −1. Take b = (1; 14, 09) and try a = (1; ?, 03, ?3, 06).
Solving for the ?’s reveals that a = (1; ω, 03, ?3, 06) satisfies 〈a|b〉 =
ω − 1. So R has the root a + b = (2;−ω̄, 13, ?3, 06) with the ?’s being
cube roots of 1.

Step 4: R has the roots (2 − ω̄;−13, 03, 17), with the −1’s collinear
and the 0’s collinear. Take b = (2; 16,−1, 06) from step 3, and try
a = (−ω̄; 06, ?, ?3, 03) where the ?’s all lie on a line through the −1
of b. Solving for the ?’s reveals that a = (−ω̄; 06,−ω, ?3, 03) satisfies
〈a|b〉 = ω̄ − 1. So R has the root a + b = (2 − ω̄; 16, ω̄, ?3, 03), where
the ?’s are negated cube roots of 1.

Step 5: R has the roots (2 + θ;−14, 16, 03) with the 0’s at non-
collinear points, the 1’s on the lines joining them and the −1’s ev-
erywhere else. Take b = (2 − ω̄;−13, 03, 17) from step 4, and try a =
(ω; ?, 02, ?, 02, ?2, 05). Solving for ?’s reveals that a = (ω; 1, 02, ω, 02, ω2,
05) satisfies 〈a|b〉 = ω̄−1, so R has the root a+b = (2+θ; 0,−12, ω, 02,
−ω̄2, 15).

Now we can prove the second claim of the lemma. If r is in the first
set of roots specified, then R has r by step 4 and ρ+r = (θ̄ω̄; 13,−ω3, 07)
by step 1. If r is in the second set of roots, then R has r by step 2 and
ρ + r = (−2 + ω;−ω4, 03, 16) by step 5.

Finally, we prove that the differences of the r’s span ρ⊥. We will only
need the second batch of roots briefly, so we define N to be the span
of the differences of the pairs of roots from the first batch. It consists
of vectors of the form (0; . . . ). Now we note that a root from the first
batch, minus one from the second, has the form (1; . . . ). Therefore it
suffices to show that N equals the set X of all vectors (0; x1, . . . , x13) ∈
L that are orthogonal to ρ, which is to say that x1 + · · ·+ x13 = 0. We
will restrict attention to the last 13 coordinates.

Begin by labeling the lines of P 2F3 by l1, . . . , l13, and write rij for the
root (2+θ; 03, ω̄3,−17) from the first batch, with the 0’s on li and the ω̄’s
on lj . Then N contains the vectors δij = −ω(rij−rji) = (0; 13,−13, 07).
The span of the δij is easy to understand, because if i, j, k and l are
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all distinct, then δij = −δji, |δij |2 = 6, 〈δij |δjk〉 = −3 and 〈δij|δkl〉 = 0.
It follows that N ⊗C admits a coordinate system using 13 coordinates
summing to 0, in which δij = (θ, θ̄, 011) with θ in the ith spot and θ̄
in the jth. (One just checks that the inner products of these vectors,
under the standard pairing, are the same as those of the δij .) Write
M for the span of the δij ; L3(3) acts on this coordinate system by
permuting coordinates as it permutes the lines of P 2F3.

Now, N is strictly larger than M , because computation shows that
if i, j and k are general lines, then 〈rij − rjk|δik〉 /∈ 3E . We can apply
lemma 6 to both N and X and conclude from the uniqueness proven
there that N = X. (We have also shown that N = X admits an
automorphism exchanging the vectors of the form (θ, θ̄, 011) with those
of the form (13,−13, 07).) �

Proof of theorem 1: It remains only to prove R = Aut L. The primitive
null vector ρ of lemma 9 has Leech type, because theorem 4 tells us that
the complex Leech lattice is the only Eisenstein Niemeier lattice whose
automorphism group contains L3(3). Lemmas 8 and 9 assure us that R
contains the unipotent radical of the stabilizer of ρ (U from the proof
of lemma 8). This acts transitively on the roots r ∈ L with 〈r|ρ〉 = θ,
so R contains all their triflections. Then the proof of theorem 4.1 of
[2] shows that R acts transitively on null vectors of Leech type, so R
contains the triflections in every root having inner product θ with some
null vector of Leech type. (These are all the roots of L by [4, prop. 4.3],
but we don’t need this.) The triflections in the point roots obviously
have this property, and those in the line roots do too (by conjugacy).
Therefore R is exactly the group generated by triflections in the roots
with this property, so R is normal in Aut L.

Therefore R’s intersection with the stabilizer H of ρ is normal in H .
Since we already know that R contains U ⊳ H , R is determined by its
image in H/U ∼= 6Suz . We also know (lemma 7) that R ∩ H contains
L3(3). By the simplicity of Suz , (R ∩ H)/U ⊆ 6Suz surjects to Suz .
Since 6Suz is a perfect central extension of Suz , its only subgroup
surjecting to Suz is itself. Therefore (R ∩ H)/U = 6Suz . It follows
that R∩H is all of H . We have shown that R acts transitively on the
primitive null vectors of Leech type, and contains the full stabilizer of
one of them. So R = AutL. �

Remark. One can recover Wilson’s L3(3)-invariant description of the
complex Leech lattice ΛE

24 (see the end of [9]) by writing down genera-
tors for ρ⊥ and then adding suitable multiples of ρ to shift them into
M ⊗E C, where M is from the proof of lemma 9.
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Remark. We observed that ρ has Leech type. One can show by patient
calculation that (θ; θ, 012) has E6 type, (θ; θ̄, 012) has A2 type, (3 +
ω; 14,−13, 06) has D4 type, and (2θ; θ4, 09) has E8 type. (In the last
case, we specify that the four θ’s are at 4 points of P 2F3 in general
position.)
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