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LERF and the Lubotzky–Sarnak Conjecture

MARC LACKENBY

DARREN D LONG

ALAN W REID

We prove that every closed hyperbolic 3–manifold has a family of (possibly infinite
sheeted) coverings with the property that the Cheeger constants in the family tend to
zero. This is used to show that, if in addition the fundamental group of the manifold
is LERF, then it satisfies the Lubotzky–Sarnak conjecture.
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1 Introduction

We begin by recalling the definition of Property � . Let X be a finite graph, and let
V .X / denote its vertex set. For any subset A of V .X /, let @A denote those edges
with one endpoint in A and one not in A. Define the Cheeger constant of X to be

h.X /Dmin
�
j@Aj

jAj
WA� V .X / and 0< jAj � jV .X /j=2

�
:

Now let G be a group with a finite symmetric generating set S . For any subgroup
Gi of G , let X.G=Gi IS/ be the Schreier coset graph of G=Gi with respect to S .
Then G is said to have Property � with respect to a collection of finite index subgroups
fGig if infi h.X.G=Gi IS// > 0. This turns out not to depend on the choice of finite
generating set S . Also, G is said to have Property � if it has Property � with respect
to the collection of all subgroups of finite index in G .

In the context of of finite volume hyperbolic manifolds, Lubotzky and Sarnak made
the following conjecture. (See for example [21, Conjecture 7.5]).

Conjecture 1.1 The fundamental group of any finite volume hyperbolic n–manifold
does not have Property � .

It is easy to check that if a group G contains a finite index subgroup surjecting onto
Z, then G does not have Property � , and it is this that has attracted attention to the
Lubotzky–Sarnak conjecture recently. This is particularly relevant in the context of
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hyperbolic 3–manifolds (see [15] and [16] for example), in part due to the connection
to the virtual positive first Betti number conjecture from 3–manifold topology (see
[16] for a discussion).

While it appears to be much weaker than the virtual positive first Betti number conjecture,
it appears that there is no method known to show that the fundamental group of a
finite volume hyperbolic n–manifold does not have Property � without exhibiting a
surjection onto Z from a finite index subgroup. The main result of this note provides a
method for hyperbolic 3–manifolds.

To state the main result we require some additional terminology.

Let G be a finitely generated group and H a finitely generated subgroup. G is H –
separable if H is closed in the profinite topology on G , and G is called LERF or
subgroup separable if G is H –separable for every finitely generated subgroup H <G .
We say that H is engulfed in G if there is a proper finite index subgroup K < G

with H < K . In the context of hyperbolic 3–manifolds, it turns out that these two
notions are intimately related, see Long [17]. Another refinement of LERF for Kleinian
groups is GFERF; namely if G is a Kleinian group, then G is called GFERF if G is
H –separable for every geometrically finite subgroup H of G . This has a generalization
when G is a word hyperbolic group; G is called QCERF if G is H –separable for
every finitely generated, quasi-convex subgroup H of G .

We restrict attention to closed orientable hyperbolic 3–manifolds, since in this dimen-
sion, it is well-known that the fundamental group of a finite volume, non-compact
hyperbolic 3–manifold or a non-orientable closed hyperbolic 3–manifold surjects onto
Z.

Theorem 1.2 Let M DH3=� be a closed orientable hyperbolic 3–manifold. Assume
that � has the property that every infinite index, geometrically finite subgroup of � is
engulfed in � .

Then the Lubotzky–Sarnak Conjecture holds for � .

An immediate corollary of this is the followinwing (notation as in Theorem 1.2).

Corollary 1.3 If � is LERF, then the Lubotzky–Sarnak Conjecture holds for � .

There is now some evidence that the fundamental group of any finite volume hyper-
bolic 3–manifold is LERF (see Agol–Groves–Manning [2], Agol–Long–Reid [3] and
Haglund–Wise [13] to name a few). Moreover, Corollary 1.3 was previously known to
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hold, if in addition � contains a surface subgroup (see Section 3.2 where we give a
proof for convenience).

It is also interesting to compare Corollary 1.3 with the result that if an arithmetic lattice
in a semi-simple Lie group is LERF it cannot have the Congruence Subgroup Property
(see Long–Reid [18, Chapter 4] for example). It is a consequence of Clozel’s work [9]
(which is the culmination of work of many authors) that if an arithmetic lattice in a
semi-simple Lie group has the Congruence Subgroup Property it has Property � .

Another interesting corollary follows from Lackenby–Long–Reid [16] (see Section 3
for a proof).

Corollary 1.4 Assume that the fundamental group of every closed hyperbolic 3–
manifold is GFERF. Then, if � is an arithmetic Kleinian group, � is large.

It has recently been proved by Agol, Groves and Manning [2] that if every word
hyperbolic group is residually finite, then every word hyperbolic group is QCERF.
Combining this with the above result, we obtain the following unexpected conclusion.

Corollary 1.5 Assume that every word hyperbolic group is residually finite. Then
every arithmetic Kleinian group is large.

Finally we point out that while the Lubotzky–Sarnak Conjecture remains open, our
results have the following consequence even in the absence of the LERF hypothesis.
We let h.X / denote the Cheeger constant of a Riemannian manifold, possibly with
infinite volume. When the manifold has finite volume, this is defined to be

h.X /D infS

Area.S/
minfvol.X1/; vol.X2/g

where the infimum is taken over all smooth co-dimension one submanifolds S that
separate X into submanifolds X1 and X2 . When X has infinite volume, the Cheeger
constant is defined to be

h.X /D infS

Area.S/
vol.X1/

where the infimum is taken over all smooth co-dimension one submanifolds S that
bound a compact submanifold X1 .

Theorem 1.6 Let M be a closed hyperbolic 3–manifold.

Then there is a sequence of (possibly infinite) coverings Mi for which h.Mi/! 0.

This result has recently been used by the first author [14] to show that nonelementary
Kleinian groups which contain a finite noncyclic subgroup are either virtually free,
or contain the fundamental group of a closed orientable surface of positive genus. In
particular, co-compact arithmetic Kleinian groups contain surface subgroups.
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2 Two preliminary propositions

Let N be a possibly noncompact complete Riemannian manifold and � the Laplace–
Beltrami operator, with sign chosen so that this is a positive operator. Set

�0.N /D inf
�R

N jjrf jj
2R

N jf j
2

�
;

where the infimum is taken over smooth functions f of compact support. It is shown
in Cheng–Yau [8] that �0.N / is the greatest lower bound of the spectrum of � acting
on L2.N /.

Remark When N is a closed Riemannian manifold, �0.N / D 0, and it is �1.N /

(the first non-zero eigenvalue of �) that is computed by the above infimum, except
that f is required to be orthogonal to the constant functions.

Proposition 2.1 Let M be a closed Riemannian manifold, H an infinite index finitely
generated subgroup of �1.M / and N the cover of M corresponding to H . Suppose
that �1.M / is H –separable.

Then given � > 0, there is a finite sheeted cover zM of M for which �1. zM / <

�0.N /C � .

Proof Set ı D �=.1C �C �0.N //. By [8], we may fix some compactly supported
function f W N �!C for which

�0.N /C ı >

R
N jjrf jj

2R
N jf j

2
:

Choose some compact set X �N so that support.f /� interior.X /.

Since �1.M / is H –separable, we may find a finite sheeted covering, fM of M which
is subordinate to N and for which the compact set X is embedded by the projection
N �! fM (see Scott [23]). By choosing a larger covering if necessary, we may arrange
that

1

vol.fM /
j

Z
X

f j2 < ı

Z
X

jf j2:

Define a function gW fM �!C to be f on X and zero elsewhere. It follows that

�0.N /C ı >

R
zM
jjrgjj2R
zM
jgj2

:
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We need to adjust the function g slightly, since it is not orthogonal to the constant
functions. This is achieved by replacing g by g� D g � ˛ where ˛ is the constant
function whose value is .

R
zM

g/=vol.fM /. ThenZ
zM

jg�j2 D

Z
zM

jgj2�

Z
zM

˛g�

Z
zM

˛gC

Z
zM

j˛j2 D

Z
zM

jgj2� j

Z
zM

gj2=vol.fM /:

Now by construction of g ,
R
zM
jgj2 D

R
X jf j

2 and j
R
zM

gj2 D j
R
X f j2 , so that the

right hand side of this expression satisfiesZ
zM

jgj2� j

Z
zM

gj2=vol.fM /D

Z
X

jf j2� j

Z
X

f j2=vol.fM /

> .1� ı/

Z
X

jf j2 D .1� ı/

Z
zM

jgj2

so that .1� ı/�1 > .
R
zM
jgj2/=.

R
zM
jg�j2/.

Now, noting that rg� Drg we compute

�1.fM /�

Z
zM

jjrg�jj2
�Z

zM

jg�j2 D

Z
zM

jjrgjj2
�Z

zM

jg�j2

< .�0.N /C ı/

Z
zM

jgj2
�Z

zM

jg�j2

< .�0.N /C ı/=.1� ı/D �0.N /C �

as required.

The following result is an analogue of the above proposition, but using Cheeger constants
rather than the first eigenvalue of the Laplacian.

Proposition 2.2 Let M be a closed Riemannian manifold, H an infinite index finitely
generated subgroup of �1.M / and N the cover of M corresponding to H . Suppose
that �1.M / is H –separable.

Then given � > 0, there is a finite sheeted cover zM of M for which h. zM / < h.N /C� .

Proof Let X be some compact submanifold of N with zero codimension, and such
that Area.@X /=vol.X / < h.N /C � .

Since �1.M / is H –separable, we may find a finite sheeted covering, fM of M

which is subordinate to N and for which the compact set X is embedded by the
projection N �! fM . By choosing a larger covering if necessary, we may arrange that
vol.fM / > 2 vol.X /. So,

h.fM /� Area.@X /=vol.X / < h.N /C �
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as required.

3 Proof of Theorem 1.2

In the setting of the fundamental groups of closed Riemannian manifolds the definition
of Property � described in Section 1 is equivalent to the following (see Lubotzky [19,
Chapter 4]). Let X be a closed Riemannian manifold and let � D �1.X /. Then �
or X has Property � if there is a constant C > 0 such that �1.N / > C for all finite
sheeted covers N of X .

3.1

We need the following proposition. (For the definition of Hausdorff dimension we refer
the reader to Sullivan [24].)

Proposition 3.1 Let M DH3=� be a closed hyperbolic 3–manifold. Then � contains
an infinite sequence of finitely generated, free, convex cocompact subgroups fFj g such
that �0.H3=Fj /! 0.

Proof This is a consequence of results of Sullivan [24; 25] and L Bowen [4].

For, it is shown in [24] that if N D H3=� is a geometrically finite hyperbolic 3–
manifold and D the Hausdorff dimension of the limit set of � , then �0.N /D 1 if and
only if D � 1 and otherwise �0.N /DD.2�D/.

Now Bowen shows in [4] (actually he shows more than this, but this suffices for our
purpose) that if M DH3=� is a closed hyperbolic 3–manifold, then � contains an
infinite sequence of finitely generated, free, convex cocompact subgroups fFj g such
that the Hausdorff dimension of the limit sets of Fj tend to 2.

Remarks

(1) Using the solution to the Tameness Conjecture by Agol [1] and Calegari–Gabai
[7], all finitely generated free subgroups of a cocompact Kleinian group are
convex cocompact. However, Bowen proves that the subgroups Fj are convex
co-compact without appealing to this theorem (see [4, Lemma 5.3]).

(2) Note that it is a consequence of Sullivan’s result above that if N DH3=� is a
geometrically finite hyperbolic 3–manifold and �1 is a supergroup or subgroup
of � of finite index then �0.H3=�1/D �0.N /.

We can now complete the proof of our main result.
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Proof of Theorem 1.2 We begin with a reduction. We can assume that all finitely
generated subgroups F of � are geometrically finite. For, if not, then by the solution
to the Tameness Conjecture, F is the fundamental group of a virtual fibre in a fibration
over the circle. It is well known that the Lubotzky–Sarnak Conjecture holds in this
case.

Given Proposition 3.1, the remarks following it and Proposition 2.1 or Proposition
2.2 it clearly suffices to prove the following: given a finitely generated, free, convex
cocompact subgroup F in � then there is subgroup F 0 < � such that ŒF 0 W F � <1
and � is F 0–separable. This follows immediately from the engulfing hypothesis using
[17, Theorem 2.7].

Proof of Corollary 1.4 This is seen as follows. [16, Theorem 1.9] shows that if every
compact 3–manifold with infinite fundamental group does not have Property � , then
arithmetic Kleinian groups are large.

Now assuming the Geometrization Conjecture, this is well known for compact 3–
manifolds which are not hyperbolic (see eg the Appendix in [16]) and the remaining
case is provided by Theorem 1.2 (since GFERF obviously implies the engulfing property
for infinite index, geometrically finite subgroups).

Finally, Theorem 1.6 follows from the non-compact version of Cheeger’s inequality
�0.N /� h.N /2=4 applied to Proposition 3.1.

3.2

We include the following argument for convenience, and to emphasize Corollary 1.4.

Theorem 3.2 Let M DH3=� be a closed hyperbolic 3–manifold, and assume that
� contains the fundamental group of a closed surface of genus at least 2. Then if � is
LERF, then � is large.

Proof The surface subgroup corresponds to a closed incompressible surface immersed
in M . If S is geometrically infinite, then it is a virtual fiber in a fibration over the circle.
By passing to a finite sheeted cover, it follows from [10] that � must also contain a
closed quasi-Fuchsian surface subgroup. Thus we now work with F a quasi-Fuchsian
surface subgroup of � .

Using the LERF assumption, we invoke Scott’s result [23] to pass to a finite sheeted
cover M1 D H3=�1 so that M1 contains a closed embedded quasi-Fuchsian sur-
face with covering group F . This determines a free product with amalgamation
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decomposition A �F B or HNN–extension A�F for �1 . One can now arrange a
surjective homomorphism onto an amalgam of finite groups to finish the proof (see for
example Lubotzky [20]). Note that, since F is quasi-Fuchsian, the amalgam cannot be
Z=2Z�Z=2Z.

4 Final comments
(1) It is important in Bowen’s proof that there exist discrete, convex compact, free

Kleinian groups, where the Hausdorff dimension of their limit set is arbitrarily
close to 2. That there are examples of purely hyperbolic free subgroups whose
limit set is the entire sphere at infinity seems to have first been established by
Greenberg [12] (as points on the boundary of Schottky space which are limits
of convex cocompact groups). That the Hausdorff dimension of the limit sets
of these convex cocompact groups get arbitrarily close to 2 can be seen from
McMullen [22, Corollary 7.8] for example.
The existence of analogous subgroups in SO.n; 1/ for n� 4 is as yet unknown.
Their existence, together with the known generalization of Sullivan’s result [24;
25] to higher dimensions would prove that LERF implies the Lubotzky–Sarnak
Conjecture for higher dimensional hyperbolic manifolds.

(2) It is interesting to contrast Proposition 3.1 with what happens, for instance
for (free) subgroups of cocompact lattices in Sp.n; 1/, n � 2. If � is such a
lattice then it has Property T. It is shown in Brooks [5] (see Theorem 3), in
contrast to Proposition 3.1, that if � is a subgroup of � , which is either finite
or infinite index, there is a spectral gap for the smallest non-zero eigenvalue of
the Laplacian.
A similar result was established in Corlette [11] for the Hausdorff dimension;
namely that any infinite index convex cocompact subgroup of � (as above) has
Hausdorff co-dimension of its limit set being at least 2.
Neither LERF nor the Congruence Subgroup Property are known for any example
in this setting.

(3) Other situations where LERF is used to imply large were recently given in Button
[6].
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