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1 Introduction

Let Hn denote hyperbolic n-space, that is the unique connected simply connected Riemannian
manifold of constant curvature −1. By a hyperbolic n-orbifold we shall mean a quotient Hn/Γ
where Γ is a discrete group of isometries of Hn. If a hyperbolic n-manifold M is the totally geodesic
boundary of a hyperbolic (n+1)-manifold W , we will say that M bounds geometrically. It was shown
in [11] that if a closed orientable hyperbolic M4k−1 bounds geometrically, then η(M4k−1) ∈ Z.
Closed hyperbolic 3-manifolds with integral eta are fairly rare – for example, of the 11, 000 or so
manifolds in the census of small volume closed hyperbolic 3-manifolds, computations involving Snap
(see [3]) rule out all but 41. (We refer the reader to [24] which contains the list of manifolds in the
census with Chern-Simons invariant zero, as well as which of these have integral eta.)

Hyperbolic 3-manifolds with totally geodesic boundary are fairly easily constructed given the
Hyperbolization Theorem of Thurston [20], but to the authors’ knowledge, there was only one
known prior example of a closed hyperbolic n-manifold (with n ≥ 3) which bounded geometrically,
a somewhat ad hoc construction which appears in [18], based on a hyperbolic 4-manifold example
due to Davis [4]. The difficulty is that almost nothing is known about hyperbolic manifolds in
dimensions ≥ 4; some constructions exist (see [5], [6], [7]) but they do not appear to be sufficient to
address this problem.

This paper ameliorates this situation somewhat by providing a construction of examples in all
dimensions. We show,

Theorem 1.1 Let M be a nonorientable closed hyperbolic n-orbifold which can be immersed totally
geodesically into a closed orientable hyperbolic (n+ 1)-orbifold W .

Then M has a finite covering which is a manifold that bounds geometrically.

As we show using arithmetic techniques, infinitely many commensurability classes of such exam-
ples in all dimensions may readily be constructed. It is worth pointing out that although using the
separability of π1(M) in π1(W ) (see [10]) easily promotes some finite covering of M to an embed-
ded submanifold of a hyperbolic manifold, nothing in the proof of that theorem gives the control
necessary to guarantee that this embedding will be separating. The proof of Theorem 1.1 uses more
subtle considerations. In particular, we prove the following which is perhaps of independent interest.

Theorem 1.2 Let X be a nonorientable finite volume hyperbolic n-orbifold.
Then X has a nonorientable finite sheeted manifold covering.
∗This work was partially supported by the N. S. F.
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This paper is organized as follows. We begin by proving a simple lemma, 2.2, which finds a
carefully controlled torsion-free subgroup of finite index; we then show using subtle algebraic con-
siderations that one can construct representations of the required type (Theorem 2.6 and Theorem
2.8). The algebraic and geometric ingredients are assembled to prove the main theorem in Theorem
3.1.

The authors thank the referee for his careful and thorough reading of the first version of this
manuscript.

2 Preliminaries

We collect a few basic facts about finite co-volume groups of hyperbolic isometries as well as some
group theoretic lemmas which we shall use.

2.1

Recall that the full group of isometries of Hn can be identified with O0(fn; R) where fn is the
quadratic form< 1, 1, . . . 1,−1 >. The group of orientation-preserving isometries of Hn is a subgroup
of index 2 in O0(fn; R) consisting of those elements of determinant 1, denoted by SO0(fn; R).

We have the following consequence of Mostow Rigidity ([16]):

Theorem 2.1 Let W = Hn/Γ be a finite volume hyperbolic n-orbifold with n ≥ 3. Then we can
conjugate Γ in O0(fn; R) so that Γ has entries in a number field. tu

A number field L as in the conclusion of Theorem 2.1 is called a field of definition for Γ. As is
shown in [21] there is a minimal such field of definition.

2.2

The next lemma is the main tool that we use to carefully choose a torsion-free subgroup of finite
index.

Lemma 2.2 Let G be a group admitting epimorphisms θi : G → Fi, i = 1, 2 each of which has
torsion-free kernel. Define a homomorphism

Θ = θ1 × θ2 : G→ F1 × F2

and consider an element (α1, α2) ∈ F1 × F2 with α1 having order 2k1m, α2 having order 2k2 where
m is odd and k1 < k2. Denote the finite cyclic group generated by this element by < (α1, α2) >.

Then Θ−1 < (α1, α2) > is torsion-free.

Proof. The key claim here is that if one chooses any element ξ of the subgroup < (α1, α2) >, then
there is always a power ξs for which one factor is the identity and the other factor is not. Using the
fact that the homomorphisms θi had torsion free kernel, this will imply that ξ cannot have been the
image of a finite order element.

The claim is proved as follows. Suppose that ξ = γr is the r-th power of the generator γ =
(α1, α2) where we may assume that r|2k2m. If r = 2an where n divides m then we reduce to the
case when r = 2am by raising γr to the power m/n.

Now suppose that k1 ≤ a < k2. Then γ2am gives rise to an element which is the identity in the
first component and not the second, as required. If a < k1 < k2, then the element has order 2k1−a

in the first component and 2k2−a in the second and since k1 − a < k2 − a, taking a further power
proves the result in this case also. tu
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The proof of the lemma actually shows a more general statement, namely, if α1 has order k1 and α2

has order k2 and any prime which divides GCD(k1, k2) occurs with different multiplicity in k1 and
k2, then the same conclusion holds. We only use the simplified version stated here. Much of the
algebraic work of this paper is devoted to proving that representations to which Lemma 2.2 applies
can be constructed; our main result in this direction can be (informally) stated:

Theorem 2.3 Let Γ be a nonorientable finite co-volume hyperbolic n-orbifold group.
Then given an integer K, there is a homomorphism onto a finite group p : Γ → A for which

there is an orientation reversing element δp ∈ Γ of infinite order whose image has order 2k for some
k > K.

A more precise version (which involves more terminology) is given in Theorem 2.8. We also need
the following which goes back to Minkowski, for which we fix some notation.

Notation: Throughout, if k is a number field then Rk will denote the ring of integers in k, RS =
Rk[S] will denote a subring of k where a finite number of k-primes S are inverted. Also if ν is a
place of k then completion will be denoted by a subscript ν. The ring of ν-adic integers of kν will
be denoted Rν .

Lemma 2.4 Let L be a number field, S be a finite collection of prime ideals in RL, and ℘ ⊂ RS be
a prime ideal lying over the rational prime p 6= 2.

Then Ker{π℘ : GL(n,RS)→ GL(n,RS/℘)} contains no q-torsion for any primes q not divisible
by ℘.

Proof. We begin with some general comments. It will be convenient to pass to the completions of
L and RS , since these are principal ideal domains where unique factorization is particularly simple
(see [9] for details). For a place ν we have injections L ↪→ Lν and RS ↪→ RS,ν which induce a
homomorphism GL(n,RS) ↪→ GL(n,RS,ν). Note also that RS,ν = Rν away from the places ν
associated to primes in S. Let xν be a uniformizer for Lν so that every element in Lν has a unique
expression as xmν u for an integer m and ν-adic unit u.

Using the ring homomorphism Rν → Rν/ < xν > there are obvious reduction homomorphisms
induced from GL(n,Rν) → GL(n,Rν/ < xν >), and composition of inclusion and this reduction
map is an equivalent definition of the homomorphisms π℘, where ν is the place associated to the
prime ideal ℘.

Now fix x to be a uniformizer for our specific prime ℘, and suppose that τ is an element of
GL(n,RS) prime order q.

The element τ ∈ Ker(π℘) can be written τ = I + xtT for t ∈ Z+ and a matrix T ∈ M(n,Rν)
whose entries are not all divisible by x.

By the binomial theorem

τ q = I = I + qxtT +
q(q − 1)

2
x2tT 2 + O(x3t)

so that

qT +
q(q − 1)

2
xtT 2 = 0 mod x2tM(n,Rν)

and hence
qT = 0 mod xtM(n,Rν).

If x does not divide q then T = 0 mod x which is false. tu

Remark. Notice that there is a bound to the order of an element of finite order in GL(n,L) for L
a number field. This follows from the fact that the number of roots of unity of bounded degree over
Q is finite.
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2.3

We include here a result that follows from work of Weisfeiler [23] or Nori [12]. We give a proof in
§5 as it seems to us worthwhile to record this explicitly for groups of hyperbolic isometries.

We begin with a discussion of some notation and results from the theory of simple groups
arising from orthogonal groups. Let f be an m-dimensional quadratic form over the finite field F of
cardinality q = pn. To simplify some of the discussion we assume p is odd. In the case when m is
also odd, there is a unique orthogonal group O(m, q) up to isomorphism, and when m is even there
are two O±(m, q) (see [19] p 377 Theorem 5.8). Let SO(m, q) and SO±(m, q) denote the special
orthogonal groups in these cases. We remark that since the order of these orthogonal and special
orthogonal groups are divisible by large powers of p (see [19] pp 375–382), these groups do contain
elements of order p.

Let Ω(m, q) = [O(m, q),O(m, q)] when m is odd (resp. Ω±(m, q) = [O±(m, q),O±(m, q)] when
m is even) where [G,G] denotes the commutator subgroup of a group G. When m is even Ω±(m, q)
has index 2 in SO±(m, q) and has a center of order 1 or 2. Let PΩ±(m, q) be the central quotient
group.

We summarize the important facts for us in the following theorem (see [19] pp 383–384 for a
discussion):

Theorem 2.5

1. When m is odd, Ω(m, q) is a simple subgroup of O(m, q) of index 4.

2. When m is even, Ω(m, q) is a subgroup of O(m, q) of index 4 and the quotient PΩ±(m, q) is
simple whenever m ≥ 6.

3. When m = 4, PΩ+(4, q) ∼= PSL(2, q)× PSL(2, q) and PΩ−(4, q) ∼= PSL(2, q2).

Notation: We sometimes suppress the subscripts ±, and also use the notation Ω(f ; q), or Ω(f ; F)
where F is a finite field, or simply just Ω when no confusion will arise.

Now assume Γ is a finite co-volume subgroup of O0(fn; R). By Theorem 2.1 we can assume that Γ
is a subgroup of O0(fn;L) for L the minimal field of definition. Now Γ is finitely generated so that
Γ < O0(fn;R) for a subring R ⊂ L where a finite number of primes of RL are inverted. As in Lemma
2.4, apart from a finite number of primes we have homomorphisms π℘ : O(fn;R) → O(fn;R/℘).
These target groups are simply certain of the finite orthogonal groups which we have discussed above.
We require a generalization of The Strong Approximation Theorem [15] for arithmetic groups to
handle subgroups Γ. The generalization we want is ([12] and [23]):

Theorem 2.6 In the notation above, let q denote the cardinality of the residue class field RL/℘.
Then for all but a finite number of primes ℘, we have

1. Ω(n+ 1, q) ≤ π℘(Γ) ≤ O(n+ 1; q), when n+ 1 is odd.

2. PΩ±(n+ 1, q) ≤ Pπ℘(Γ) ≤ PO±(n+ 1; q), when n+ 1 is even (where the above notation indicates
that only the correct sign is chosen in the subscript).

We shall prove Theorem 2.6 in §5.

2.4

We include an alternative description of the groups Ω(m, q) that will be useful for us (see [14]
Chapters V and VI).
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Assume that F is a finite field of odd characteristic. In this case F/F∗2 has order 2. Let (V, f)
be a non-zero regular quadratic space over F. Any reflection in O(f ; F) is determined by a vector
v ∈ V , and acts by reflecting in the hyperplane orthogonal to v (with respect to the bilinear form
B defined by f). Denote such a reflection by τv. Any element τ of O(f ; F) is a product of such
reflections, say τ = τv1 . . . τvr and using this we can define a homomorphism, the spinor norm:

θ : O(f ; F)→ F/F∗2

by
θ(τv1 . . . τvr ) = f(v1) . . . f(vr) mod F∗2 ∈ F/F∗2.

That this is independent of the choice of how τ is written as a product of reflections is discussed in
[14] §55.

Restricting θ to SO(f ; F) it can be shown that Ker θ|SO(f ;F) = Ω ([14]). Thus a non-trivial
coset representative for SO(f ; F)/Ω is any element whose spinor norm is a non-square in F. We will
need some additional control over such a representative.

Any quadratic form f (as above) in at least two variables represents all elements of F, and hence
given e ∈ F a non-square, we can find v1 ∈ V with f(v1) = e. Let v2 ∈ V have f(v2) = 1. Let
τi be the reflections determined by vi for i = 1, 2. Then τ = τ1τ2 ∈ SO(f ; F) is of spinor norm e,
and hence does not lie in Ω. One sees easily from the fact that the spinor kernel is the commutator
subgroup that the quotient O/Ω is a Klein 4-group so we may take any other reflection to generate
the other element of order two in the quotient. Summarizing this discussion (see also [14]), we have

Corollary 2.7 Let (V, f) be as above.
Then O(f ; F)/Ω ∼= Z/2Z⊕ Z/2Z with coset representatives being {I, τ1, τ1τ2, τ2}. tu

2.5

As an application of Theorem 2.6 we now prove (where we assume as in §2.1 that Γ consists of
matrices with entries in the minimal field of definition L),

Theorem 2.8 Let Γ be a nonorientable finite co-volume hyperbolic n-orbifold group. Then given an
integer K, for infinitely many homomorphisms π℘ : Γ → O(fn; q) there is an orientation reversing
element δ℘ ∈ Γ of infinite order whose image has order 2k for some k > K.

This theorem requires the following lemma.

Lemma 2.9 Let L be a number field, and R = RS for some finite collection of L-primes S. Given
an integer K, then for infinitely many primes ℘ ⊂ R the groups O(fn;R/℘) contain an element
with determinant −1 and of order 2k for some k > K.

Proof. It suffices to exhibit such an element in O(3; F) for infinitely many fields F = R/℘. To
see this, note first that from Theorem 2.5 in the case of finite fields of odd characteristic, the groups
O(f3; F) and O(3; F) are isomorphic. Furthermore by considering the form fn =< 1 . . . , 1 > ⊕f3,
we see that there is a copy of G = O(f3;R/℘) < O(fn;R/℘). We shall exhibit an element g ∈ G of
order 2k, then one of the elements < ±1, 1, . . . , 1 > ⊕g is the required element.

To construct g consider the cyclic groups Ck =< y | y2k = 1 >. Such groups are subgroups
of O(3) = O(3; R) and by conjugating in O(3) we can assume that Ck consists of matrices whose
entries lie in the ring of integers Rk of the number field Nk. Now Lemma 2.4 applies in this case to
inject the cyclic groups into all but a finite number of the groups O(3;Rk/P ) where P is a prime
ideal of Rk. Hence we have the element of order 2k in these orthogonal groups.
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To get an element in those orthogonal groups arising from quotients obtained by reducing by
primes of L, we simply choose infinitely many primes that split completely in both L and Nk. The
existence of such a family follows by taking the number field U generated over Q by L and Nk. By
standard properties of ramification of primes in field extensions, if a prime p splits completely in
U it will split completely in the subfields L and Nk. It is a well-known consequence of how prime
ideals behave in finite extensions of Q, that there are infinitely many rational primes that split
completely in the finite extension U/Q, see [13] Theorem 4.12 for example. It then follows that for
these infinitely many primes the residue class fields obtained are isomorphic. This completes the
proof. tu

Proof of Theorem 2.8. In the notation established above, by Lemma 2.9, for infinitely many
primes ℘ with residue field of odd cardinality q, the groups O(fn; q) contain elements of large
2-power order and of determinant −1, so that if π℘ is a surjection, then we are done.

Otherwise, we argue as follows. Let

χ : O(fn; q)→ O(fn; q)/Ω(fn, q)

denote the projection homomorphism. From Corollary 2.7, this quotient group is the Klein 4-group.
Since we are assuming that π℘ does not surject, and since by hypothesis Γ contains an element

of determinant −1, it follows from Theorem 2.6 that the index of π℘(Γ) in O(fn; q) is precisely
two. Our strategy will be to exhibit in this image an element of order two which comes from an
orientation reversing element and has centralizer containing an element of large 2-power order.

The existence of the element of determinant −1 in π℘(Γ) together with Corollary 2.7 implies
that χπ℘(Γ) must contain either the image of τ1 or τ2 (in the notation of §2.3). Since π℘(Γ) contains
every element of Ω(fn, q) up to sign (the signs only being necessary in the even dimensional case),
it follows that at least one of the elements ±τ1, ±τ2 must actually belong to π℘(Γ). In any of these
cases, the centralizer of this element contains a group isomorphic to O(3, q) and since these latter
groups contain elements of large 2-power order (cf. the proof Lemma 2.9) this completes the proof.
tu

3 Proof of Theorem 1.1

The goal of this section is to prove the main theorem of the introduction:

Theorem 3.1 Let M be a nonorientable closed hyperbolic n-orbifold which can be immersed totally
geodesically into a closed orientable hyperbolic (n+ 1)-orbifold W .

Then M has a finite (manifold) covering which bounds geometrically.

We show in §4, that using arithmetic considerations one can construct infinitely many such examples.
To prove the theorem we shall promote the immersed non-orientable hyperbolic n-manifold to

an embedded non-orientable hyperbolic n-manifold in a hyperbolic (n+1)-manifold which is a finite
cover of W . Achieving this proves the theorem for we have,

Lemma 3.2 Suppose that M is a codimension 1 nonorientable embedded totally geodesic submani-
fold of a closed orientable hyperbolic manifold.

Then the orientation cover of M bounds geometrically.

Proof. Such a submanifold determines a canonical map π1(W ) → Z/2Z, for example by taking
the corresponding element of H1(W ; Z/2Z) and the corresponding covering p : W2 → W contains
the orientation cover M2 of M as a separating totally geodesic submanifold. Splitting W2 along M2

exhibits M2 as a geometric boundary. tu
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Remark. It is built into the construction η(M2) = 0 and so the obstruction of [11] (in dimensions
4k − 1) vanishes.

Proof of Theorem 3.1. To find the finite cover of W referred to above, we begin by exhibiting
an infinite order element of π1(M) which is orientation reversing and lies in a torsion-free subgroup
of finite index in π1(W ).

Let W = Hn+1/Γ with Γ < SO0(fn+1;L) and where by Theorem 2.1 we can arrange that
L is a number field. Since M is immersed in Q as a totally geodesic suborbifold, we can find a
totally geodesic copy of Hn in Hn+1, which we denote by H and a group of isometries ∆ of H
with H/∆ ↪→ Hn+1/Γ. We can assume that ∆ is the maximal subgroup of Γ preserving H, and
by a further conjugacy (of Γ) if necessary we can embed ∆ in Γ as a group of isometries of the
form < 1 > ⊕fn, where the coefficents of ∆ now lie in the minimal field of definition of ∆. Note
that since Γ < SO0(fn+1;L) a conjugacy of ∆ to preserve the form < 1 > ⊕fn is defined over a
number field, so that we now have Γ < SO0(fn+1;L1), where L1 is a finite extension of L. Indeed
Γ < SO0(fn+1;R) for some subring R ⊂ L1 where a finite collection S of primes of L1 are inverted.
Now L1 need not be the minimal field of definition of Γ, but it is the location of ∆ that is important
for us. To avoid clutter of notation we abuse notation and just use R for the ring of coefficients of
∆.

The torsion in Γ has bounded size (either from the above remark after Lemma 2.4 or from the
fact that Γ is cocompact [17]). Now from Theorem 2.8 and Lemma 2.4 we may assume that for
an infinite number of primes ℘ the homomorphism π℘ restricted to ∆ (with image in O(fn;R/℘))
satisfies the conclusion of Theorem 2.8.

We claim that we may now arrange a homomorphism of the type required by Lemma 2.2. To this
end, choose any reduction map π℘ (as above) restricted to (Γ and) ∆ and consider the order of the
quotient group O(fn;R/℘). Let 2a be the maximal power of 2 which divides the order |O(fn;R/℘)|.

By Theorem 2.8, we may find another prime ℘∗ so that ∆ contains an orientation-reversing
element δ℘∗ of infinite order whose image in the group O(fn;R/℘∗) is an element of determinant −1
and of order 2k2 where k2 > a. Moreover, when we consider the projection of δ℘∗ into O(fn;R/℘),
it has order 2k1m where k1 ≤ a < k2. Thus the hypotheses of Lemma 2.2 are satisfied, and we
may pass to a torsion-free subgroup Γ0 of finite index in Γ which contains the orientation reversing
element δ℘∗ . It now follows that the preimage of M in this covering will be a nonorientable totally
geodesic hyperbolic n-manifold M0 immersed in W0 = Hn+1/Γ0. Using the fact that M0 is totally
geodesic (the only place where this is used) there is a further finite sheeted covering of W to which M
has a preimage which is an embedding, see [10]. Renaming, we are now in the situation of having an
embedded nonorientable totally geodesic n-submanifold M of a closed orientable hyperbolic (n+1)-
manifold, W . Appealing to Lemma 3.2 completes the proof. tu

Remark The proof is easily modified to give Theorem 1.2 of the introduction. Here is a sketch:
Consider the discrete faithful representation ρ : π1(X)→ O(fn;R), where R is a finitely generated
integral domain coming from some ring of integers with a finite number of primes inverted. X is
nonorientable so there are some infinite order elements of determinant −1. Choose prime reductions
as above with torsion free kernel so that the hypotheses of Lemma 2.2 hold and the proof now
proceeds exactly as in 3.1; the higher dimensional manifold plays a minor role at this stage of the
proof.

4 Examples

There are two natural settings where the hypothesis of Theorem 1.1 hold, namely arithmetic sub-
groups of hyperbolic isometries and reflection groups. Recall the following construction of arithmetic
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subgroups of O0(fn; R).
Assume that k is a totally real number field, let f be a form in n+ 1 variables with coefficients

in k, and be equivalent over R to the form fn. Furthermore, if σ : k → R is a field embedding,
then the form fσ obtained by applying σ to f is defined over the real number field σ(k). We insist
that for embeddings σ 6= id, fσ is equivalent over R to the form in (n+ 1)-dimensions, of signature
(n+ 1, 0). Since f is equivalent over R to fn, SO(f ; R) is conjugate in GL(n+ 1,R) to SO(fn; R).
Thus there is an invertible matrix Φ such that ΦSO0(f ;Rk)Φ−1 < SO0(fn; R) defines an arithmetic
subgroup (see [2] or [1]).

The group ΦSO0(f ;Rk)Φ−1 is cocompact if and only if the form f does not represent 0 non-
trivially with values in k, see [2]. For our purposes it suffices to note that choosing a form de-
fined over a totally real field of degree at least 2 with the properties above ensures that the group
ΦSO0(f ;Rk)Φ−1 is co-compact. The reason being that at the non-trivial Galois embeddings the
form is definite and hence cannot represent 0 over R. The Hasse-Minkowski Theorem (see [14] for
instance) now implies the form cannot represent 0 globally over k.

Definition: We call an arithmetic subgroup of O0(fn; R) constructed in this way real arithmetic.

The class of real arithmetic groups is a proper subset of the class of (arithmetic groups/hyperbolic
manifolds) in odd dimensions. For convenience we shall also suppress the conjugacy.

Theorem 4.1 Let f be an n + 1-dimensional quadratic form defined over a totally real field k of
degree at least 2 with the properties above. Suppose in addition that Hn/O0(f ;Rk) is a non-orientable
hyperbolic n-orbifold.

Then there is a torsion-free real arithmetic subgroup ∆ in SO0(f ;Rk) for which Hn/∆ bounds
geometrically.

We note that the hypothesis that Hn/O0(f ;Rk) is nonorientable is easily achieved, for example by
taking a diagonal form; in this case the group O0(f ;Rk) contains a reflection.

Proof of 4.1. By hypothesis Hn/O0(f ;Rk) is a non-orientable hyperbolic n-orbifold.
The form q =< 1 > ⊕f is also defined over k, is of signature (n+1, 1) and has the right properties

at the other embeddings of k. Thus SO0(q;Rk) is a real arithmetic (and cocompact by the remarks
above) subgroup of SO0(fn+1; R). Furthermore Hn+1/SO0(q;Rk) is orientable.

Notice that we can inject O0(f ;Rk) ↪→ SO0(q;Rk) by mapping g ∈ O0(f ;Rk) to(
ρ(g) | 0

0 | g

)
where ρ : O0(f ;Rk) → {±1} is the determinant map, so that the image has determinant 1 as is
required for the image to be in SO(q). Now apply Theorem 1.1 to exhibit a group ∆ as required. tu

Remark. Although this result proves for example, that there are infinitely many hyperbolic 3-
manifolds which bound geometrically, the construction produces manifolds of very large volume. It
would be interesting to know if any of the 41 census examples not obstructed by the eta-invariant
do or do not bound in this sense.

The definition of real arithmetic groups and Theorem 4.1 easily imply:

Corollary 4.2 Let Γ be a real arithmetic subgroup of SO0(fn; R). Then Γ is commensurable with
a torsion-free subgroup ∆ for which Hn/∆ bounds geometrically. tu
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5 Proof of Theorem 2.6

Let L be the minimal field of definition of Γ. Since any group of isometries of hyperbolic space
contains a subgroup of index 2 consisting of elements preserving orientation, it suffices to assume
that Γ < SO0(fn;L) and establish the theorem in this case.

We begin with some preliminary remarks. The group SO(fn) is a connected semisimple (complex)
linear algebraic group defined over Q, and hence over L. Indeed SO(fn) is defined by polynomials
with integral coefficients, and with this in mind, it will often be convenient to view SO(fn) as a
linear algebraic group without specifying a base field for the affine space; above it is C, but we will
have recourse to consider algebraic closures of Qp and Fp. We make no further comment on this or
on reducing algebraic varieties and algebraic groups defined by integer polynomials modulo p (see
[15] Chaps 2 and 3 for more details). No confusion should arise.

A useful tool in algebraic geometry is restriction of scalars (see [15]). In our setting, if we view
SO(fn) as an algebraic group defined over L, the restriction of scalars produces an algebraic group
G = RL/Q(SO(fn)) ⊂ GL(N,C) for some integer N (in fact N = nd where d is the degree of L over
Q) such that GQ

∼= SO(fn;L) (see [15]). In particular, we induce a faithful rational representation
of Γ into GR where R = Z[S] and S is a finite set of rational primes. Denote this group by Γ′.
Note that apart from these primes in S (we also assume 2 ∈ S) we have homomorphisms πp as in
Lemma 2.4 with πp(Γ′) < GL(N,Fp). The results of Nori [12] (or Weisfeiler [23]) give control over
the image.

Let A denote the R-points of the Zariski closure of Γ′ in GL(N,Q). Note that since Γ is of
finite co-volume it is Zariski dense in SO(fn;L) (by Borel’s Density Theorem, see [16] Chapter 5,
for example), and so by definition of the restriction of scalars, the Zariski closure of Γ′ in GL(N,Q)
is GQ.

Let A(Fp) = πp(A) (where this is defined). Then we have the following due to Nori ([12] Theorem
5.1). We use the notation that if F is a field of characteristic p, and Q < GL(s,F), then Q+ will
denote the normal subgroup of Q generated by its elements of order p.

Theorem 5.1 For all but finitely many primes p, we have

A(Fp)+ ⊂ πp(Γ′) ⊂ A(Fp).

Now from the remarks above A(Fp) = GFp , thus we deduce

G+
Fp
⊂ πp(Γ′) ⊂ GFp .

For a rational prime p let V (p) denote the finite set of places of L lying above p. The theory of
completions (see [9]) gives L⊗Q Qp

∼=
⊕

ν∈V (p) Lν , and it follows that restriction of scalars induces
(see [15]):

GZp
∼=

∏
ν∈V (p)

SO(fn;Rν),

where Rν is the ring of ν-adic integers of Lν with xν a uniformizer. The key point to observe now is

GFp
∼=

∏
ν∈V (p)

SO(fn;Rν/ < xν >),

which can be seen directly from how the algebraic group G lies as a subgroup of GL(N)—regardless
of the base field of the affine space.

Denote this isomorphism by Φp and let

ψν :
∏

ν∈V (p)

SO(fn;Rν/ < xν >) −→ SO(fn;Rν/ < xν >)
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denote the projection homomorphism. Note that at all but a finite collection of places ν of L
completion induces a faithful representation of Γ in SO(fn;Rν). Using this and embedding Γ in
the product of such groups, it follows that (by construction) π℘(Γ) = ψν(Γ) where ν is the place
associated to ℘. Similarly, for all but a finite number of primes p ∈ Z we can inject Γ′ into GZp .

Since Φp is an isomorphism we deduce from Theorem 5.1 (and the subsequent remarks) that

Φp(G+
Fp

) < Φp(πp(Γ′)) < Φp(GFp),

and so for all but a finite number of places ν we get:

SO(f ;Rν/ < xν >)+ < ψνΦp(πp(Γ′)) < SO(f ;Rν/ < xν >).

¿From the discussion above, π℘(Γ) = ψνΦp(πp(Γ′)) and so,

SO(f ;Rν/ < xν >)+ < π℘(Γ) < SO(f ;Rν/ < xν >),

When fn is not 4-dimensional we are now done by Theorem 2.5, where in the case of n odd (so n+1
is even) we pass to the central quotient again.

For the case of n = 3, so that the form is 4-dimensional, the above argument works in the case
of PSL(2, q2) which is simple. In the case of PSL(2, q)×PSL(2, q) it is well known that PSL(2, q) is
generated by elements of order p and again we complete the proof in this case.
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