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0. Preface

The present work is intended to be a comprehensive introduction to probability and

statistics. The mathematical prerequisites are primarily the contents of a standard (2

term) university undergaduate calculus course (including differentiation and integration

of functions of one and several variables, infinite series, etc) and a bit of linear algebra

(matrices), although the parts of the text dealing with finite sample spaces involves little

more than high school algebra, and some results involving calculus may make sense to

readers lacking the background in calculus if they are willing to accept these without

following the derivations. Actually, to really develop the subject properly, much more is

necessary - in particular a large portion of the apparatus of measure theory is required. Such

notions usually appear in graduate mathematics courses, and cannot be presented here.

However, we do make comme comments about existence of countably additive measures

which the reader can simply accept without any difficulty. These latter notions will not

play any crucial role in our presentation.

Section 1 introduces some basic notions in the context of coin tossing. These ideas

are quite important even though they occur in a very simple context. The reader should

make an effort to understand all the ideas in this section (which might even be considered

a “mini” course in probability b itself.) Later sections develop various topics in much more

detail.

Although the foundations of probability involve some abstract mathematical notions,

the theory originated in an attempt to provide models for real situations and processes;

many of the early writers were concerned with calculations related to gambling situations

(rolling dice, etc) or physics (statistical behavior of gasses and “random” phenomena). It is

our intent to preserve this “practical” aspect of the theory. After studying our presentation,

the reader should be able to understand the odds involved in gambling situations and

make informed decisions concerning these. For example, in poker, (when) should one draw

cards to an “inside” straight and in cases that this should be done, exactly what are the

quantitative advantages? What is the “best” strategy in various situations? If one really

has an advantage in some game, how long must one play to be fairly well assured of being

an overall winner, and what are the risks? (These latter questions involve some statistical

notions.) When can one draw significant conclusions from certain data? Etc.

It is our opinion that many of the elementary notions that occur in probability are

actually quite difficult to explain precisely. E.g., what does it mean when we say we toss

a “fair” coin? What does it mean when we are told we have a 1 in 4 chance of getting

cancer? Usually, these notions are not really precisely defined. It is true that one can
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consider such notions as axiomatic and then use them to calculate other more complicated

probabilities. However, it would be nice to have a more operational meaning for some of

these ideas, and we devote some space to this task (mostly in an appendix.)

Our numbering conventions for equations, theorems, definitions, etc are fairly simple.

All numbering is in the form < sec# > . < item# >, e.g., Theorem 3.2.1 is the 1st num-

bered theorem in section 3.2. Theorems, propositions, lemmas, corollaries and definitions

use the same numbering counter; this helps in locating a particular item in the text (I

find it confusing to look for a proposition 3.2.5 and find theorem 3.2.5, corollary 3.2.10,

definition 3.2.4 etc, all in the same vicinity as the proposition 3.2.5.) Equations and figures

have their own separate numbering counters, but follow the convention cited.
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1. Introduction

Probability theory provides a model of certain real situations which often provides

very useful insight and understanding. As is the case generally with models, the precise

connection with reality is problematical, but there is little doubt that the theory is highly

appropriate in many cases. We will have more to say about this later. For now, we will

discuss some examples which should serve to introduce the basic framework, terminology,

etc.

Consider the experiment E of tossing a “fair” coin once. Instead of using the term

“fair”, one also says that the “probability of obtaining a head (H) is 1/2.” Undoubtedly,

it is extremely difficult to give this notion a precise meaning in any operational way.

One sometimes hears the explanation that what is meant is that we have no knowledge

concerning the outcome. I don’t care for this explanation. For example, suppose we had

a coin which tended to produce H a substantially larger fraction of the time than T (e.g.

it might be 2-Headed), but we didn’t know that; in such a case, we have no knowledge,

but it does not seem correct to say that the probability of H is 1/2 ! So, lack of knowledge

seems a poor reason to assume a particular value for the probability of H. We would prefer

that the assignment of such a value is closely related to some intrinsic properties of the

coin and/or tossing procedure. One such approach is the “frequency interpretation” - we

explain the assignment of probability 1/2 to the outcome H, by stating that we believe

that in an unending sequence of tosses, the asymptotic relative frequency of H is 1/2, i.e.

lim
n→∞

#H in 1st n tosses

n
= 1/2. (1.1)

(The term “relative frequency” refers to the ratio of H outcomes to number of tosses;

usually, the terminology “frequency of H in 1st n tosses” means just the number of H

in the 1st n tosses. “Asymptotic” refers to the taking of the limit.) Of course, one may

question whether this is actually true, but it is possible to just consider it an assumption

which is part of our model for coin tossing. There are problems with this idea at least in

the overly simple-minded way it has been expressed here. One difficulty is that really much

more is probably implicitly assumed concerning the sequence of outcomes of independent

tosses of a fair coin. (The notion of “independence” will be discussed later, but it suffices

now to understand that the results of some particular toss have no bearing on the results

of some other toss.) For example, the sequence

H, T, H, T, H, T, . . . (etc)

satisfies (1.1), but this sequence is much too regular to serve as an example of what the

results of a sequence of coin tosses looks like. We return to this discussion much later
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when a more satisfactory discussion of the frequency interpretation will be given. Another

general problem with the frequency interpretation (even when properly formulated) is

that often the notion of repeating some experiment may be unconvincing. Consider, for

example, the question ”What is the probability that a cure for cancer will be discovered in

the next year?” Whatever value might be assigned to the probability of such an event, it

seems hard to understand this by means of a frequency interpretation. Another approach

and one that is usually taken in modern presentations of the theory is the axiomatic one.

We define a sample space S whose members are the elementary outcomes H and T , i.e.

S = {H, T} (1.2)

and a probability P for which

P (H) = 1/2, P (T ) = 1/2. (1.3)

This is our explanation of what is meant by the statement that the coin is fair; clearly,

there is nothing operational here - we are in essence refusing to assign any “explanation”

to the notion of fairness other than the assertion that it corresponds to this mathematical

construct. This may be somewhat philosophically unsatisfying, but nicely avoids the diffi-

culty of saying what is “really” meant. (In fairness, it must be admitted that it is likely not

possible to say in a completely satisfactory way what is “really” meant!) We might think

of the statement P (H) = 1/2 as an undefined notion somewhat like undefined notions in

geometry (point, line, plane etc, in the axiomatic development.) Actually, the probability

P is considered as a function assigning real values to subsets of S; in the present example,

there are not too many of these, namely: the empty subset ∅, S itself, {H}, and {T}. We

can define

P (∅) = 0, P (S) = 1, P ({H}) = 1/2, P ({T}) = 1/2. (1.4)

We usually identify a singleton set with its single member, in which case P ({H}) =

P ({T}) = 1/2 is equivalent to (1.3). The subsets of S are called events (for larger sample

spaces, the events are generally more interesting than in the present small example; it is

also the case that when S contains infinitely many elements, sometimes not every subset

of S is considered to be an event.)

A property which holds in the previous situation and which holds generally for sample

spaces and the associated probability P is:

P (A ∪ B) = P (A) + P (B) if A, B are events and A ∩ B = ∅. (1.5)

A consequence of this is the property:

P (A) =
∑

s∈A

P (s) if A is finite. (1.6)
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These properties have more general forms which will be considered later.

An alternate way to express probabilities is by using the notion of odds. As an

example, one says that when tossing a fair coin, the odds of obtaining a H are 1 to 1

(either “against” or “for” in this case.) This expresses the idea that H and T are equally

likely. The odds terminology is useful when considering what the payoffs on various bets

should be. For example, in the case being considered of tossing a fair coin, a fair bet might

consist of betting $1.00 on the result H; If you are wrong, you lose your $1.00; if you are

correct, you win $1.00 (in addition to getting your $1.00 bet returned.) Why is this “fair”?

The explanation one often finds in elementary discussions of probability is as follows: in

2 such bets, “on average” you will win one time and lose one time for a net profit of $0.

Although this seems reasonable, the precise meaning of the term “on average” is a bit

involved; to properly understand what is meant requires familiarity with the notions of

expectation and the law of large numbers. At the present time, we describe very briefly

the notion of expectation in order to give a possible meaning to the notion of “fair” in the

present example. Consider the function

X : S = {H, T} → R
1 (1.7)

defined by

X(H) = 1, X(T ) = −1. (1.8)

(This notation means that X is a function from S to R
1 [the real numbers].)

Generally, a function from a sample space S to R
1 is called a random variable. In the case

that S is finite, the expectation (or expected value) of X , denoted E(X) is defined by:

E(X) =
∑

s∈S

X(s)P (s). (1.9)

Notice that E(X) is a “weighted average” of the values of X (the “weights” are the values

P (s).) We interpret E(X) as an “average” value of X (the precise operational meaning of

this will have to wait till more machinery has been developed.) In the case of X given by

(1.7), (1.8) associated with the bet on H when a fair coin is tossed, the values X(H), X(T )

are your winnings and the expectation of X is

E(X) = 1 · (1

2
) + (−1) · (1

2
) = 0. (1.10)

The fact that your expected winnings (= E(X)) are 0 means that you have no advantage

or disadvantage; this is what is meant by the statement that the bet is “fair”.
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Now consider the experiment of tossing a coin where it is postulated that P (H) = 1/3,

P (T ) = 2/3. Our sample space is still S = {H, T}, but P is defined differently. We now

say that that the odds are 2 to 1 against obtaining a H when we toss the coin (note that

T is twice as likely to occur as H.) If you bet $1.00 on H, the bet is fair if you lose your

$1.00 if T occurs, but win $2.00 (plus get your $1.00 back) if H occurs - if X is the random

variable whose values are your winnings, then

X(H) = 2, X(T ) = −1 (1.11)

and

E(X) = 2 · (1

3
) + (−1) · (2

3
) = 0. (1.12)

(Again you have no advantage or disadvantage.) Note that the winnings of $2.00 when

$1.00 is bet on H are in the same proportion as the odds against H occurring (2-1.)

Now suppose that in the present situation, you could bet $1.00 on H and someone would

pay you $3.00 if H occurs (and return your original $1.00), but you would lose your $1.00

if T occurs. If this were the case, then you should be happy to make this bet repeatedly.

In this case, your winnings are

X(H) = 3, X(T ) = −1 (1.13)

and the expectation is

E(X) = 3 · (1

3
) + (−1) · (2

3
) = 1/3. (1.14)

Note that the elementary reasoning mentioned earlier leads to the same result: on average,

in 3 such bets, one wins one for a $3.00 gain and loses two for a $2.00 loss i.e., a $1.00 win

in 3 bets, hence an (average) gain of $1/3 per bet. You have an advantage (or an “overlay”

or “the best of it”) in this situation. Of course, you are not likely to find someone to make

such a bet with you unless they don’t like money. However, in more complicated situations

where the odds are not quite as obvious, it is sometimes possible to find betting situations

where you have such an advantage. (We will see later that in almost all casino games played

against the house, the house has the best of it; nevertheless, people continue to play these

games. One reason for this is that in most of these games there is a significant short term

luck factor; i.e., even though the player can’t win in the long run, it is possible to win

significantly for a while with good luck. We discuss this more later. But occasionally,

casinos either make mistakes or to lure customers actually allow the player to have an

advantage in some betting situation.)

Remark: We have made use of the notions of probability and odds. One should practice

converting between these two notions. For example, if an event A has probability 2/7 of
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occurring, then the odds against its occurrence are 5 to 2. (If an event has probability less

than 1
2 of occurring, then one usually states the odds against its occurrence.)

We present another application of the notion of expectation. Consider the experiment

of tossing a fair coin again (P (H) = P (T ) = 1/2.) Let X be the random variable equal to

the “number of H”, ı.e.,

X(H) = 1; X(T ) = 0. (1.15)

The expectation of X is

E(X) = 1 · (1

2
) + 0 · (1

2
) =

1

2
. (1.16)

This makes good heuristic sense - the “average” number of H in one toss is 1
2 since H

and T are equally likely. Notice that the expectation of X is not a value of X which

we “expect” to actually occur (even though the expectation is also called the “expected

value”); obviously, the outcome can’t be 1
2H ! How should one interpret the meaning of

the expectation of X in this case? Of course, it has a well-defined mathematical meaning,

but if one wishes to have a more operational meaning, then E(X) can be thought of as an

average over many independent repetitions of the experiment of tossing the coin, because

we will see that (1.1) holds with probability 1 (this is one form of the law of large numbers.)

We now return to the experiment of tossing a fair coin, but consider the case of 2

tosses. A natural sample space associated with this experiment consists of the 4 possible

outcomes:

S = {HH, TT, HT, TH} (1.17)

and it seems reasonable in this situation to set

P (HH) = P (TT ) = P (HT ) = P (TH) = 1/4. (1.18)

There are now some non-trivial events, e.g., the event A = {HH, HT, TH}. When we say

an “event occurs” we mean that the outcome of the experiment is a member of the event.

In this case, A is clearly the “event that at least one H occurs”, and (using (1.6)) we see

that P (A) = 3/4. We can define a random variable X equal to the “number of H” as

before:

X(TT ) = 0; X(HT ) = X(TH) = 1; X(HH) = 2. (1.19)

The event A just considered can then be expressed

A = {s ∈ S | X(s) ≥ 1}. (1.20)

It is standard probabilistic notation to express A by

A = {X ≥ 1} (1.21)
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and to write

P (X ≥ 1) = 3/4. (1.22)

In a similar way

{X = 0} = {TT}; {X = 1} = {HT, TH}; {X = 2} = {HH} (1.23)

and

P (X = 0) = 1/4; P (X = 1) = 1/2; P (X = 2) = 1/4. (1.24)

We can calculate the expectation of X by using (1.9):

E(X) = 0 · P (TT ) + 1 · P (HT ) + 1 · P (TH) + 2 · P (TT ) = 1. (1.25)

Notice that if we group the 2 terms with coefficient 1, we have:

E(X) = 0 · P (X = 0) + 1 · P (X = 1) + 2 · P (X = 2) = 1. (1.26)

This generalizes; if X is a random variable on a finite sample space S with probability P ,

then

E(X) =
∑

s∈S

X(s)P (s) =
∑

x

x · P (X = x) (1.27)

where the sum is over all the values x of the random variable X . The second form of the

sum in (1.27) is just obtained from the first by grouping terms as in the particular example

above; it is often simpler to compute since it may involve a much smaller number of terms.

In passing, we mention that when we know the values P (X = x), then we say that we

know the distribution of X ; a more complete discussion of this notion will be presented

later.

There is another way to compute the expectation of X which was done in (1.25), (1.26)

which will be quite important and useful in other examples. We first note that it follows

from (1.9) that for two random variables X and Y on a finite sample space

E(X + Y ) = E(X) + E(Y ). (1.28)

This is elementary:

E(X + Y ) =
∑

s∈S

(X(s) + Y (s)) =
∑

s∈S

X(s) +
∑

s∈S

Y (s) = E(X) + E(Y ). (1.29)

(Note that this additivity property is less obvious from the second form of the expectation

in (1.27) because generally the expression of P (X + Y = ξ) in terms of P (X = x) and

P (Y = y) is a little complicated.)
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Now we use this property of the expectation to compute E(X) for the X of (1.19) which

was done in (1.25). We note that

X = X1 + X2 (1.30)

where Xi (for i = 1, 2) is the random variable whose value is 0 or 1 depending on whether

the ith toss yields T or H respectively. (e.g., X1(HH) = X1(HT ) = 1, X1(TH) =

X1(TT ) = 0.) It should be clear that X1 and X2 both have the same expectation as the

random variable equal to the number of H when we toss a fair coin once (since Xi is the

number of H on the ith toss), and this expectation is 1/2. Hence from (1.29) and (1.30)

we get

E(X) = E(X1) + E(X2) = 1/2 + 1/2 = 1. (1.31)

Although this may not seem especially useful in the simple case being considered here,

a little reflection will indicate that this same line of reasoning is applicable to the case

of tossing a fair coin n times, leading to the result that the expected number of H will

be n/2. This result is much more complicated to compute directly from the definition of

expectation as we will see below.

We emphasize once again that the expectation is a kind of “average” of X and should

not be thought of as the value of X that we expect to occur; in the case of n tosses, n/2

is not a possible number of H if n is odd, (and even if n is even, the event that n/2 H

occur is not very likely when n is large as we will also see in what follows..)

Before leaving our discussion of tossing a fair coin twice, we make a final remark

concerning the sample space associated with this experiment. If we were only interested

in the number of H obtained, it might be appropriate to consider as our sample space

S = {0H, 1H, 2H}. (1.32)

There is nothing wrong with this choice, but in order to be consistent with the way we

assigned probabilities previously, we see that that we must have

P (0H) = 1/4; P (1H) = 1/2; P (2H) = 1/4. (1.33)

That is, the members of this S are not equaly likely outcomes. Generally, if it is possible

to choose a sample space for which the members all have equal probabilities, then the com-

putation of the probabilities of events amounts to just counting how many members these

events contain (i.e. combinatorial arguments.) However, if the members of S have different

probabilities, then the calculation of the probabilities of events is more complicated. For

this reason, it is usually preferable to choose a sample space consisting of equally likely

outcomes if this is possible.
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In order to have some less trivial example and to develop some further useful results,

we now consider in some detail the experiment of tossing a coin n times. We take the

probability of H to be a number 0 ≤ p ≤ 1 on each toss, and assume that the result

of any toss has no effect on the results of other tosses. (This means that the tosses are

“independent”; we discuss this notion in more detail later.) As sample space for this

experiment, we take the set of all sequences of length n consisting of H and T :

S = {HH . . .H, HH . . .HT, . . . }. (1.34)

(In (1.34), the sequence HH . . .H is a single member of S.)

There are 2n sequences in S, because to form a sequence n-long of H and T , we have to

decide whether the first entry in the sequence is H or T , i.e., we have 2 choices; then for

each of these choices, we have 2 choices for the next entry, etc. So altogether we can make

the choices for the n entries in 2 · 2 · . . . · 2 ways, which means there are 2n possibilities for

the result of all these choices. We indicate this by writing

card(S) = 2n or |S| = 2n. (1.35)

(card(S) or |S| denote the cardinality of S which for finite sets means the number of

members of the set.)

The reasoning just used can be stated as a useful combinatorial principle in the

following result (we also include a related principle):

Prop. 1.1 Suppose we have to select 1 from among m distinct possible choices, followed

by 1 from among n distinct possible choices. The number of ways of doing this is mn. If,

instead, we have to choose either 1 from among the m choices or 1 from the n choices, and

all the choices are distinct, then the number of ways of doing this is m + n.

Pf. In the first situation, we can make the choice from among the m possibilities in m

ways, and then for each of these ways, we can make the choice from among the n in n

ways. If we list all pairs of choices where the 1st choice can be any of m possibilities and

the 2nd choice can be any of n possibilities, then we will list mn pairs. In the second

situation, we essentially have to select 1 from a collection consisting of the m and the n

possibiities, which amounts to selecting 1 from m + n total possibilities; this can be done

in m + n ways.

(Note: This extends in an obvious way to making a sequence of more than 2 choices or

choosing 1 from among more than 2 sets of choices.)

We have to decide how to assign probabilities to the members of S in (1.34). If p =

1/2, then we would consider all the members of S as equally likely, so we could assign
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probability 2−n to each. In the general situation where p is not necessarily 1/2, we assign

the probabilities as follows:

P (s) = pkqn−k, if s is any sequence with k H and n − k T (q = 1 − p). (1.36)

(Note that there may be many such sequences with k H and n − k T unless k = 0 or n.)

The justification of (1.36) involves the notion of independence which hasn’t been covered

yet, so we present an ad hoc argument for its validity. Think about the frequency inter-

pretation of these probabilities. We envision an unending (or very large number N) of

repetitions of the experiment of tossing the coin n times.

(That is, we toss the coin n times, note the result, toss another n times, note the result,

and keep repeating this.)

Consider a member of S of form HT . . .H (a sequence of length n.) We are assigning this

sequence probability p · q · . . . · p. The idea is that in our repeated trials of the n tosses, we

expect the proportion of outcomes where the first toss yields H to be p; among these,

the proportion with the second toss yielding T should be q, etc; hence, the proportion of

outcomes which are of form HT . . .H should be p · q · . . . · p.

Once we know the probabilities of the members of S, we can calculate probabilities

of events (subsets of S), by addition. For example, let Ak be the event that exactly k H

occur.

Ak = {s ∈ S | s contains exactly k H} (1.37)

If we define a random variable X : S → R by

X(s) = k if s contains exactly k H (1.38)

then

Ak = {X = k}. (1.39)

We want to compute P (Ak) (or equivalently P (X = k).) To do this, we only need to

compute the number of members of Ak, since by (1.36) and (1.37), we have

P (Ak) = P (X = k) = |Ak| · pkqn−k. (1.40)

(Recall that |Ak| = card(Ak) = the number of members of Ak.)

Since Ak consists of sequences n-long of H, T with exactly k H appearing, it follows that

|Ak| is the same as the number of subsets of of size k of a set with n members (to form
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a sequence of Ak, we have to pick a subset of size k of the n positions in a sequence

of length n and set these k positions equal to H.) Now sets are unordered objects (a

set is determined by knowing its members; the notion of order has no meaning for sets,

even though the elements of a set are often listed in some particular order. Similarly, the

notion of repeated elements makes no sense for sets.) However, in counting members of a

set, it is often useful to consider order initially and then discount this later. In addition,

ordered collections of objects are important in their own right. We digress to present some

combinatorial notions. These will be useful in computing |Ak|.
Suppose we have a set W with n (distinct) members. Suppose we want to form an

ordered collection of k members of W . In how many ways can this be done? Well, to do

this we have to choose a 1st member which can be done in n ways, then a 2nd member

which can be done in n − 1 ways, . . ., and finally a kth member which can be done in

n − k + 1 ways. By Prop. 1.1, this can be done in n · (n − 1) · . . . · (n − k + 1) ways. This

last number is equal to n!/(n − k)! (where r! = r · (r − 1) · . . . · 1.) An ordered collection

of objects is called a permutation, and an ordered collection of k members of W is thus

a permutation of k members of W or a permutation of size k of the members of W . We

have shown:

Prop. 1.2 The number of permutations of size k of the members of a set of cardinality

(size) n is

P (n, k) = n · (n − 1) · . . . · (n − k + 1) = n!/(n − k)!. (1.41)

P (n, k) is also called “the number of permutations of n distinct objects taken k at a time.”

Another notation for P (n, k) is nPk.

An ordering of a set with n members is called a permutation of the n members, so we have

Cor. 1.3 The number of permutations of n distinct objects is P (n, n) = n!.

As an example, consider the set W = {1, 2, 3, 4}. We know that P (4, 2) = 4!/(4−2)! = 12.

Notice that there are 6 subsets of W , namely:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. (1.42)

Each of these subsets can be ordered in 2 ways, which produces exactly 12 permutations

of size 2.

The 6 subsets in (1.42) are called combinations of size 2 of the members of W .
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Combinations are unordered collections of objects. If we have n distinct objects, the

notation C(n, k) (or sometimes nCk) is used for the number of combinations (unordered

collections) of size k from the n. C(n, k) is also called “the number of combinations of

n distinct objects taken k at a time.” The notation

(

n
k

)

is also used for the quantity

C(n, k).

The above example indicates the relationship between P (n, k) and C(n, k); we have:

Prop. 1.4 The number of combinations of n distinct objects taken k at a time is

(

n
k

)

= C(n, k) = P (n, k)/k! =
n!

(n − k)!k!
. (1.43)

This is also the number of subsets of size k formed from the members of a set of cardinality

(size) n.

Pf. Since each combination can be ordered in k! ways, P (n, k) = k!C(n, k).

Because C(n, k) is the number of ways of choosing k objects from among n distinct objects

(with no ordering), C(n, k) is sometimes referred to by the locution “n choose k”.

Remark: An elementary property of the quantity

(

n
k

)

is the following

(

n
k

)

=

(

n
n − k

)

. (1.44)

Equation (1.44) follows immediately from the observation that every choice of k from n

distinct objects is paired with a unique subset of n−k of the objects (the ones not chosen.)

Finally, consider a set W with n members. How many subsets (of any size) does W

have? (This includes the empty set ∅, and W itself.) The easiest way to calculate this is

to reason that to form a subset we have to decide, for each member of W , whether it is in

the subset. So we have to decide “yes” or “no” n times to form the subset, and it follows

from Prop 1.1 that there are 2n subsets of W .

As an example, the sample space S associated with n tosses of a coin (see (1.34)) has

2n members. Hence the number of events (subsets of S) associated with this experiment is

2(2n). (Note that this is not the same as (22)n which is just 22n.) When n = 8, 2n = 512,

and the number of events is thus 2512. By comparison, the number of molecules in the

universe is estimated at about 1075 which is much smaller than 2512.

This indicates why some general combinatorial principles are necessary in dealing with

such situations.
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There is another way to compute the number of subsets of a set W (with card(W )=n.)

We could add the numbers of subsets of size k = 0, 1, . . . , n, i.e.,

C(n, 0) + C(n, 1) + . . . + C(n, n) =

(

n
0

)

+

(

n
1

)

+ . . . +

(

n
n

)

. (1.45)

To compute the sum in (1.45), we need the following result:

Thm. 1.5 (Binomial Theorem)

(a + b)n =
n
∑

k=0

(

n
k

)

an−k bk

(Note that 0! = 1)

Pf. This may be proved by induction, but there is an elementary combinatorial proof

which uses the notions we have developed. When we expand

(a + b)n = (a + b) · . . . · (a + b) [n factors] (1.46)

we get a sum of terms each formed by choosing either a or b from each factor (a + b) and

multiplying these choices. The total number of such terms which contain b chosen k times

(and hence a chosen n − k times) is the number of ways of choosing b from exactly k of

the factors (a + b). This is just

(

n
k

)

.

By Thm. 1.5 the sum in (1.45) is (1 + 1)n = 2n.

Now we can return to finish the calculation of the probability P (X = k) of obtaining

exactly k H when a coin with P (H) = p is tossed n times. Combining the combinatorial

results we have discussed and equation (1.40), we have

P (X = k) =

(

n
k

)

· pkqn−k =
n!

(n − k)!k!
· pkqn−k. (1.47)

Definition 1.6 A random variable X with values 0, 1, . . . , n satisfying (1.47) is said to

have a binomial distribution based on n and p.

We now calculate the expectation, E(X), of X . It is possible to obtain this by using

(1.47) directly:

E(X) =
n
∑

k=0

k · n!

(n − k)!k!
· pkqn−k. (1.48)
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In fact, we have

n
∑

k=0

k · n!

(n − k)!k!
· pkqn−k =

n
∑

k=1

n!

(n − k)!(k − 1)!
· pkqn−k (1.49)

and setting κ = k − 1, the last sum becomes

np

n−1
∑

κ=0

(n − 1)!

(n − 1 − κ)!(κ)!
· pκqn−1−κ = np (1.50)

because the sum
∑n−1

κ=0
(n−1)!

(n−1−κ)!(κ)! · pκqn−1−κ is the sum of the binomial probabilities for

the distribution based on n−1 and p, and the sum of these is 1 (this is just the probability

that the associated random variable has any value.)

A much simpler calculation of E(X) is performed by mimicking the method used in (1.31).

We define random variables Xi for i = 1, . . . n, where

Xi =

{

1 if the ith toss is H
0 otherwise

}

(1.51)

From the way in which the probabilities were defined in (1.36), it should be fairly clear

that P (Xi = 1) = p, P (Xi = 0) = q (this is easily checked), so that

E(Xi) = 1 · p + 0 · q = p. (1.52)

Since, X = X1 + . . . + Xn, we have

E(X) = E(X1) + . . . + E(Xn) = np. (1.53)

What is the operational meaning of (1.53)? It is, of course, not that we “expect” the

number of heads obtained in n tosses to be np or even close to np. Suppose, for example,

that p = 1/2. In this case, n/2 is not even a possible number of heads if n is odd. Suppose

we consider the case of an even number of tosses and the probability of obtaining n heads

in 2n tosses (with P (H) = 1/2). Using (1.47), we have

P (n H in 2n tosses) =
(2n)!

n!n!
2−2n. (1.54)

To estimate this quantity, it is useful to have an estimate of n! for large n, and this is

provided by Stirling’s formula:

n! ∼ nne−n
√

2πn. (1.55)
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The meaning of (1.55) is that the ratio of the terms on the right and left of the symbol ∼
tends to 1 as n → ∞ (however it is not true that these 2 terms are close in value for large

n). Using (1.55) for the factorials in (1.54), produces (after some simplification):

P (n H in 2n tosses) ∼ 1√
πn

(1.56)

and so

P (n H in 2n tosses) → 0 as n → ∞. (1.57)

(Remark: It is also true that the probability - that in 2n tosses of a fair coin the number

of H differs from n by not more than some fixed bound - still tends to 0 as n → ∞.)

This probably leads one to wonder what the “law of averages” actually says concerning

fair coin tossing! Roughly, the idea is that after a large number n of independent tosses

of a fair coin (with sample space as in (1.34) and P (H) = p), one expects the relative

frequency of H to be close to 1/2, even though the frequency of H generally won’t be too

close to n/2. More generally, suppose we are considering independent tosses of a coin for

which P (H) = p. Then the Weak Law of Large Numbers holds:

lim
n→∞

P

(
∣

∣

∣

∣

X1 + . . . + Xn

n
− p

∣

∣

∣

∣

≥ ε

)

= 0, for ε > 0. (1.58)

(The Xi are as in (1.51).) This will be proved later (in a more general form.)

Equation (1.58)can be written in the form

lim
n→∞

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Xi − p)

∣

∣

∣

∣

∣

≥ ε

)

= 0, for ε > 0. (1.59)

This indicates that perhaps the factor 1
n multiplying the sum in (1.59)is “too large” in a

certain sense, and that a more interesting result might be obtained by dividing by a factor

which decreases more slowly. This is in fact the case. The Central Limit Theorem (for the

special case of the Xi as in (1.51)and with P (H) = p) implies:

lim
n→∞

P

(

a <

∑n
i=1(Xi − p)√

npq
< b

)

=
1√
2π

∫ b

a

e−x2/2 dx. (1.60)

This result is extremely useful in understanding the behavior of the binomial distribution

(equation (1.47)) for large n. If we want to know the probability that X of (1.47) is in a

certain range, it is cumbersome and difficult to have to deal with a sum of terms of the

type appearing in (1.47); (1.60) is much easier to analyze, because tables of values of the

integral appearing in (1.60) are readily available. For example, it is known that about 95%
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of the area under the graph of 1√
2π

e−x2/2 is contained in the interval −2 ≤ x ≤ 2. We can

make use of this fact by setting a = −2, b = 2 in (1.60) and rearranging a bit to get:

P (np − 2
√

npq < X < np + 2
√

npq) ≈ .95, n large. (1.61)

(In (1.61), X =
∑n

i=1 Xi. How large n has to be depends on the value of p; for p ≈ .5,

n ≥ 35 is sufficient; more generally, the result in (1.61) is accurate if 0 < p±2
√

pq/n < 1.)

What (1.61) indicates is that in n tosses of a coin (with P (H) = p), fluctuations in the

random variable X (equal to the number of H) of the order of 2
√

npq from the expectation

np are not all that unlikely. For the case p = .5 (fair coin), the expectation of the number

of heads in n tosses is n/2, and fluctuations of size
√

n are not surprising. Note that
√

n

tends to ∞ with n. What this means, for example, is that if 2 players continually bet $1.00

on the result of tossing a fair coin (with $1.00 won or lost each time), then after many

bets, one of the players may be quite a bit ahead in $ won, even though the fraction of the

$ bet held by each player will likely be about 1/2 of the total wagered so far! (In a similar

way, if a group of poker players of essentially equal skill play for a long period of time

[e.g., months or years], then it is not unlikely that a few of the players will be significantly

ahead in winnings.) This is a result that is often not well understood even by professsional

gambler/writers. The case in which p 6= .5 is somewhat different; (1.61) provides useful

information concerning this case also. Suppose, for example, that p = .55, so the coin is

biased (H is more likely than T ), and suppose you know this, but your opponent doesn’t.

Then if you always bet on H, you should eventually break your opponent (assuming he

keeps playing the game - probably an unlikely supposition in practice!) In fact, if Wi is

your winnings on the ith toss,

E(Wi) = 1 · (.55) − 1 · (.45) = .1 (1.62)

so you have expected winnings of $.10 per toss. Note that your winnings after n tosses,

W , and X of (1.61)are related by the relation

W = X − (n − X) = 2X − n. (1.63)

Clearly, the expectation of W is .1n since W =
∑n

i=1 Wi. However, in order to sure of

winning anything, we need W = 2X − n > 0 or X > n/2. In order to be 95% sure that

W > 0, we therefore need, according to (1.61) that

np − 2
√

npq > n/2. (1.64)

(According to (1.61) , X could be as small as np − 2
√

npq even when we restrict to an

interval with probability .95 for X .)
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If we solve for n in (1.64), we find

n > 4pq/(p − .5)2 (1.65)

which, when p = .55 gives

n > 396. (1.66)

If p = .51, the analogous calculation gives

n > 9996. (1.67)

What this means is that even when you have an advantage, you may have to play for a long

time in order to be reasonably sure of being ahead. (A similar calculation shows that even

if you have a disadvantage, you can sometimes be ahead for a long time with reasonable

luck.) These kinds of calculations show that it can be quite difficult to know whether you

actually have an advantage by looking at your results even for a fairly long time. In casino

poker, for example, the advantage an expert player has is small compared to the possible

fluctuations that can occur, and even though he figures to be a winner in the long run,

the “long run” can sometimes be a matter of many months (or longer) of daily play. This

explains why experts can run bad and non-experts can do well for long periods.

1.1 Some Examples - Poker Probabilities

In the present section we calculate various probabilities related to the game of poker.

There are many variants of the game of poker, but in all of them, the object is to make

the best 5-card poker hand. The ranking of hands is (from lowest to highest):

(i) High card hand (no pair, straight or flush).

(ii) One pair

(iii) Two pair

(iv) Three of a kind (”trips”)

(v) Straight (5 cards in numerical sequence. Ace counts as “1” or “14”)

(vi) Flush (5 cards of the same suit)

(vii) Full house (3 of one kind, 2 of another)

(viii) Four of a kind

(ix) Straight flush (5 cards in numerical sequence, all of same suit)

Within each group, ranking is determined by comparing highest cards, or 2nd highest cards

if highest cards are equal, etc.
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In 5 card draw, usually each player antes some fixed amount (so there is something to

play for) and then is dealt 5 cards. The players then bet. (Sometimes there is a minimum

requirement to open the betting, e.g., a pair of Jacks.) Then each player may discard up

to 5 cards if desired and draw (receive) replacements for those discarded (in order to try

to make a better hand usually.) Then there is another round of betting after which the

hands are shown down. Highest hand takes the pot, unless there is a tie (in which case

the pot is split.) (This is just a bare outline of the game, of course.)

We calculate the probability of being dealt various hands in 5 card draw. There are
(

52
5

)

= 2, 598, 960 possible 5 card hands (more if a Joker is being used.)

One pair: There are

(

4
2

)

ways of picking a pair from some particular rank, and 13

ranks. To get a pair you must be dealt 2 of one rank and then 3 other cards of different

ranks (with no further pair.) The number of ways of getting the latter is

(

12
3

)

· 43 (the

factor 43 occurs because there are 4 suits each of the 3 can be.) Thus the probability of

being dealt a pair is
(

4
2

)

· 13 ·
(

12
3

)

· 43

(

52
5

) ≈ .422569. (1.1.1)

Two pair: To get two pair, you must be dealt pairs from 2 different ranks and then

1 other card of a further rank. The probability of this is

1
2
·
(

4
2

)

· 13 ·
(

4
2

)

· 12 · 11 · 4
(

52
5

) ≈ .047539. (1.1.2)

The initial factor 1
2

is present so that the ways of picking one pair and then another are

not counted twice in different orders.

Trips: Probability of being dealt trips is
(

4
3

)

· 13 ·
(

12
2

)

· 42

(

52
5

) ≈ .021128. (1.1.3)

Straight: Probability of being dealt a straight is

10 · 45

(

52
5

) ≈ .003940 (1.1.4)
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Flush: Probability of being dealt a flush is

(

13
5

)

· 4
(

52
5

) ≈ .001981. (1.1.5)

Full house: Probability of being dealt a full house is

(

4
3

)

· 13 ·
(

4
2

)

· 12

(

52
5

) ≈ .001441. (1.1.6)

4 of a kind: Probability of being dealt 4 of a kind is

(

4
4

)

· 13 · 48

(

52
5

) ≈ .000240. (1.1.7)

Straight flush: Probability of being dealt a straight flush is

10 · 4
(

52
5

) ≈ .000015. (1.1.8)

(Note: The probabi;lities computed for straights and flushes include the probability of

being dealt a straight flush. To get the probabilities for exactly straights or flushes, one

should subtract the probability of a straight flush.)

One can also compute the probabilities of improving various hands by discarding and

drawing cards. Suppose you have the hand

A♥, A♦, K♠, 7♣, 8♦ . (1.1.9)

You could keep the pair of Aces and discard 3, or keep the Aces and King kicker and

discard 2.

First we consider what happens if you discard 3.

Probability of improving to exactly two pair: This can occur if you draw a pair

of one of the 3 ranks you discarded (K,7,8) and then another card from 42 others (52 −
original 5 − 3 of rank that produced the new pair − 2 remaining Aces), or a pair of one of

the 9 ranks different from the ranks originally held and then another card from 41 others
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(52 − original 5 − 4 of rank that produced the new pair − 2 Aces.) The probability is

thus
(

3
2

)

· 3 · 42 +

(

4
2

)

· 9 · 41

(

47
3

) ≈ .159852. (1.1.10)

Probability of improving to exactly trips: This occurs if you draw one of the

Aces and one each from two of the 3 ranks you discarded, or one Ace and one of the 3

ranks you discarded and one from one of the remaining 9 ranks, or 1 Ace and 2 others

from different ranks from the 9 ranks remaining. The probability of this is

2 ·
(

3
1

)2

·
(

3
2

)

+ 2 ·
(

3
1

)

· 3 ·
(

4
1

)

· 9 + 2 ·
(

4
1

)2

·
(

9
2

)

(

47
3

) ≈ .114339. (1.1.11)

Probability of improving to a full house: This occurs if you draw another Ace

and either a pair from one of the 3 discarded ranks or one of the 9 remaining ranks, or 3

from one of the 3 discarded ranks or 9 remaining ranks. The probability is thus

2 ·
[(

3
2

)

· 3 +

(

4
2

)

· 9
]

+

(

3
3

)

· 3 +

(

4
3

)

· 9
(

47
3

) ≈ .010176. (1.1.12)

Probability of improving to 4 of a kind: There are 45 combinations of 3 cards

that include the remaining 2 Aces from the 47 you draw from, so the probability is

45
(

47
3

) ≈ .002775. (1.1.13)

Now suppose you discard 2, keeping A, A, K

Probability of improving to exactly two pair: This occurs if you draw one of the

remaining Kings and 1 from among 42 cards (52 − the original 5 − 2 Aces − 3 Kings), or

2 7s or 2 8s, or 2 of one of 9 remaining ranks, so the probability is

3 · 42 +

(

3
2

)

· 2 +

(

4
2

)

· 9
(

47
2

) ≈ .172063. (1.1.14)
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Probability of improving to exactly trips: For this to occur, you must draw 1

Ace and 1 of 42 (52 − 5 original − 3 Kings − 2 Aces) cards, so the probability is

2 · 42
(

47
2

) ≈ .077706. (1.1.15)

Probability of improving to a full house: You must draw 1 Ace and 1 King, or 2

Kings, so the probability is

(

2
1

)

·
(

3
1

)

+

(

3
2

)

(

47
2

) ≈ .008326. (1.1.16)

Probability of improving to 4 of a kind: You must draw the 2 remaining Aces.

The probability is
1

(

47
2

) ≈ .000925. (1.1.17)

Notice that if you keep the King kicker and draw 3, you have a better chance of

improving to 2 pair, but the chances of making the other (stronger) hands are decreased.

So what should you do? As usual, “it depends”. If you are trying to beat 2 pair smaller

than Aces up, you should keep the kicker, but if you think an opponent has trips, you

should draw 3, etc.

How do you decide what actions to take in playing a hand (i.e., bet, raise, check,

call, etc)? Generally, it is important to determine whether a given action has positive

expectation with regard to the amount that can be won. In 5 card draw, when deciding

whether to bet or call after receiving the initial cards, this is often fairly straightforward

and involves calculating whether the odds you will be getting from the pot are greater than

the odds against winning. For example, if you start with 5 cards that include 4 of one suit,

then the probability of completing the flush by drawing 1 card is 9/47 (9 cards out of 47

unseen help you), so the odds against making your flush are 38 to 9, or approximately 4 to

1. Suppose you have to call a $20 bet to stay in the hand and draw, but you estimate that

if you make the flush you will be ahead $100. Since you are getting 5 to 1 odds, you may

decide to play. Generally, you want the pot odds to be somewhat greater than the odds

against making your hand, because you are playing to make money, not break even; and

in addition, you must take into account that there may be raises which decrease your pot

odds, and you might make your hand and lose to a better hand if someone makes a miracle

draw (or you understimated the strengths of your opponents hands.) Your calculations
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will always be based on what you think your opponents hold (you can’t see any of their

cards), so the probabilities or odds you calculate are at best approximate. We give some

further examples of these calculations later.

Remark: When we calculate the probability of completing a 4-flush by drawing one

as 9/47, we are ignoring the possibility that some of our opponents may hold the cards

we need, and in fact, there aren’t 47 cards left that we are drawing from. In actuality,

sometimes the probability of making the flush is greater than 9/47 and sometimes less;

but it is not difficult to see that on average the probability is 9/47, and we get the correct

result by ignoring the fact that some cards are unavailable because they are in other players’

hands. All that matters is how many unseen cards remain. Of course, in games where

some of the opponents’ cards are seen, these should be taken into account.

We make a few comments concerning straights. If you have

7♥, 8♦, 9♣, 10♥, A♠ (1.1.18)

you can discard the Ace and draw to the open-ended straight; there are 8 cards that help

you (4 Sixes, 4 Jacks), so the probability of making the straight is 8/47.

If you have instead

7♥, 8♦, 9♣, J♥, Q♠ (1.1.19)

you can discard the Seven and draw to the inside straight. Here there are only 4 Tens

that help you, so the probability of making your straight is 4/47. One sometimes hears

the advice “never draw to an inside straight”, but this can be correct if the pot odds are

right.

(Of course, you can also discard the Seven and Eight and draw 2 to the King high straight,

but you must draw both a Ten and a King to make this hand. The probability of this is
(

4
1

)

·
(

4
1

)

/

(

47
2

)

≈ .014801. We hope our opponents routinely make draws like this!

When they make the hand, congratulate them on their play and be sure to send a limo to

pick them up for the next game!)

5 card draw is not played so much anymore; another game which is much more

popular is (Texas) Hold’em. This is played as follows. First, there are forced “blind” bets

usually by 2 of the players (this rotates) which act as antes (again so there is something

to play for; generally one of the blind bets is twice the other.) Then each player receives 2

cards. In order to play, each player must call the larger of the blind bets, and the player

making the small blind bet must put in enough to equal the large blind bet if she wishes to

continue in the hand. Raises are also allowed. (See [4] for a more complete description of

the mechanics of this and other poker games.) Next, the dealer puts 3 cards from the deck

on the table; this is called the “flop” (usually the cards are dealt out overlapping and face
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down and then “flopped” over.) There is then another round of betting. Then a 4th card

is dealt on the table (this is called the “turn”), and there is more betting. Finally, a 5th

card is dealt on the table (this is called the “river”), and there is a final round of betting.

Usually the bet limit on the last 2 cards is twice that after the deal and the flop (when

there are limits on the bet size.) Then the hands are shown down; each player makes the

best 5-card poker hand using 0, 1, or 2 of his cards, and 5, 4, or 3 of the cards on the table

(called the “board” cards) which are community cards used by all players. (It is fairly rare

that a player uses none of his original 2 cards to make his hand; this is “playing the board”,

and could happen, for example, if there were a flush or 4 of a kind on the board. If no

one could beat the board, the pot would be split among all players.) Hold’em is probably

the most common casino poker game and is the game played in the final $10,000 buy-in

event at the World Series of Poker (which takes place every year in May at the Horseshoe

in Las Vegas; this event is played no-limit.) There are many interesting and fairly easy

probabilistic calculations that can be done for this game, and we present some of these.

Good starting hands are pairs (“pocket pairs”), the larger the better, and big cards,

better if “suited” (i.e., both of the same suit.) Almost everyone agrees that a pair of Aces

is the best starting hand, followed by a pair of Kings. There is disagreement about what

is next, some preferring QQ, then perhaps JJ , others rating AK suited above QQ. But

certainly AK. AQ, are strong hands, although they are drawing hands - with AK you

don’t have anything really strong before the flop. Small pairs usually need another card of

the same rank on the flop in order to continue. For example, if you start with 22 and the

flop contains no 2, the hand is pretty much worthless if there is any action - any card can

pair a card in someone’s hand to beat you. If you have a pair and another card of that

rank appears on the board, then you have a “set”. (If there are 2 cards of a given rank

on the board matching one in your hand, you have “trips” - this is not nearly as strong as

having a set.) Suppose you have a pair, say 22. What is the probability of making a set

on the flop (e.g. the probability that there is at least one more 2 on the flop)? For this

to happen, the flop must contain one 2 and 2 from among 48 other cards or two 2s and 1

from among 48 other cards, so the probability is
(

2
1

)

·
(

48
2

)

+

(

2
2

)

· 48

(

50
3

) ≈ .117551. (1.1.20)

This could also be calculated by computing 1 − the probability that there is no 2 on the

flop. (The latter is

(

48
3

)

/

(

50
3

)

.)

Remark: It is easy to reason incorrectly in some of these calculations. As an example,

what is wrong with the reasoning that to have another 2 on the flop, we need to choose
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one 2 in

(

2
1

)

ways and then 2 of 49 other cards (one of which could be another 2.) This

gives
(

2
1

)

·
(

49
2

)

(

50
3

) = .12. (Wrong!) (1.1.21)

(Hint: Somethings are being counted twice in (1.1.21).)

Even though it is 8 to 1 against making a set on the flop, if you make it you may win a

big pot and get significantly better than 8 to 1 on your investment.

Here is an interesting calculation. Suppose you are “heads-up” against an opponent

who has AK, and you have 22. (“Heads-up” means only the two of you are contesting the

pot.) It is non-trivial to compare these hands in such a way that every possibility is taken

into account, but one can get a fairly good estimate of what happens if these are played

to the end against each other. In order to win, the 22 generally needs that no other A or

K appears in the 5 board cards. The probability of this is

(

42
5

)

/

(

48
5

)

≈ .503203. (1.1.22)

This indicates that the 22 is a slight favorite over AK when played to the end; in fact,

a simulation (dealing out random hands using Mike Caro’s Poker Probe software) shows

that actually the 22 is about an 11 to 10 favorite when played to the end. This, however, is

quite misleading. Hands are generally not played to the end, and the AK is a much beter

hand to have. The problem with 22 is that, as indicated earlier, any card can potentially

beat you, and you never know where you are in the hand. The AK can win if an A or K

comes on the flop and can fold if there is no improvement and a lot of action. (If there

is not much action on the flop, the AK can continue and hope for improvement on the

turn, etc.) Simulations are useful in many contexts, but often don’t reflect the dynamics

of actual play.

Suppose you “pick up a draw” on the flop (this means that you have 4 to a straight or

flush and hope to make it in the next 2 cards. You might also have 4 to a straight and 4

to a flush, or 4 to a flush and a big pair; these give you extra possibilities.) The number of

cards which will complete your hand is your “number of outs”. If you have a 4-flush, then

you have 9 outs; with 4 to a straight, you have 4 or 8 outs. If you have A♥ , J♥, and the

board is 10♥ , 5♥ , Q♠, then any of 9 ♥s will win for you, and K (♠,♣, or ♦) makes you

the best straight (and will likely win the whole pot), so you have 12 outs. With 2 cards to
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come, the probability that one of the 12 cards comes that makes your hand is

1 −

(

35
2

)

(

47
2

) ≈ .449584 (1.1.23)

which is quite good. Note that with 14 outs and 2 cards to come, the probability of making

your hand is

1 −

(

33
2

)

(

47
2

) ≈ .511563 (1.1.24)

so you are a favorite to make the hand.

The probability of picking up a flush draw on the flop (if you start with 2 suited cards)

is
(

11
2

)

·
(

39
1

)

(

50
3

) ≈ .109439 (1.1.25)

or about 9 to 1 against. The probability of actually completing the flush on the flop is

(

11
3

)

(

50
3

) ≈ .008418 (1.1.26)

or more than 100 to 1 against. If only one card of the suit you hold appears on the flop,

then you have a “backdoor flush draw”. The probability of making the flush (the last 2

cards must be your suit) is then

(

10
2

)

(

47
2

) ≈ .041628. (1.1.27)

Finally, if you start with 2 suited cards, the probability that by the 5th card you have

made a flush is
(

11
3

)(

39
2

)

+

(

11
4

)

·
(

39
1

)

+

(

11
5

)

(

50
5

) ≈ .063998 (1.1.28)
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which is about 15 to 1 against. (It is usually not worth playing 2 suited cards only to try

for a flush. Of course, if the cards you have don’t have much value except that they are

suited, then they are probably not too large, and the flush you could make won’t be the

nut flush, so playing for a flush in this situation is even worse than (1.1.28) indicates.)

The situation that often arises that is usually worth further play is the following.

Suppose you have a 4-flush on the flop. With 9 outs, the probability of making your hand

is

1 −

(

38
2

)

(

47
2

) ≈ .349676 (1.1.29)

so the odds against making the flush with 2 cards to come are approximately 2 to 1. If

you figure on getting somewhat better than 2 to 1 on your investment if you play to the

end, then you will probably play. (However, you have to also consider the possiblilty that

you make the flush and lose to a better hand. This could happen if the flush cards you

hold are not very big, or the board pairs and someone makes a full house, etc.) Another

problem occurs if you don’t make the flush on the turn. Then with one card to come, the

probability of making the flush is

1 −

(

37
1

)

(

46
1

) =
9

46
≈ .195652 (1.1.30)

so you are approximately a 4 to 1 underdog.

It is difficult to do many of the calculations presented above without a calculator, but

one can remember some of the results and use them during actual play. The calculations

involving “outs” after the flop are fairly easy, however, and can be done quickly if one

estimates a bit. The following is a simple rule that can be useful in these situations. Since

1/47 is slightly more than .02, when we want to calculate the probability of completing a

Hold’em hand with 1 or 2 cards to come, we can multiply the number of outs by .02 if there

is 1 card to come and double this figure if there are 2 cards to come. (The results with

1 card to come are underestimated a little, and the ones with 2 cards to come are a bit

larger than the true values but the results are still fairly good estimates, especially when the

number of outs is not very large.) For example, completing a 4-flush with 1 card to come:

9 outs × .02 = .18 or approximately 4 to 1 against since this method underestimates a bit.

For completing a 4-flush with 2 cards to come: 9 outs × .02 ×2 = .36 or approximately 2

to 1 against. Another example - with 14 outs and 2 cards to come, 14 × .02 ×2 = .56 (a

favorite to make the hand; note that the actual value computed in (1.1.24) is .511563, so

our estimate is a little too large.)
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2. Foundations and Basic Results

The basic mathematical ingredients of a probabilistic model are a sample space, S

consisting of the elementary outcomes of some experiment E and a probability (or probability

measure) defined on the events (a class of subsets) of S. We refer to the pair {S, P} as a

probability space.

We begin with some general remarks on sets and set theory. A set is a collection

of objects referred to as the members or elements of S. (Actually this is too broad a

notion and leads to inconsistencies which can only be removed by a careful and systematic

development which is a whole subject in itself and can hardly be even hinted at here.

Even so, one can’t prove that inconsistencies don’t remain, but the obvious ones can be

eliminated. The type of treatment we pursue is usually referred to as naive set theory,

although we barely scratch the surface of that approach.) The symbol ∈ is used to denote

membership, i.e.,

s ∈ S (2.1)

is read “s is a member of the set S”. If s is not a member of S, we write

s 6∈ S. (2.2)

The universal set , U , is the largest set one is interested in; for example, if one were

considering sets of real numbers, then the universal set might be taken to be the set, R
1, of

all real numbers, and in probabilistic models, the universal set is usually the sample space

S. The empty set, ∅, is the set with no members (∅ = {}.) For sets A and B, we say A is

a subset of B, and write A ⊂ B if every member of A is a member of B (this includes the

possibility that A = B.) The basic operations on sets are union (denoted ∪), intersection

(denoted ∩), and difference (denoted \.) For sets A and B,

A ∪ B = {x|x ∈ A or x ∈ B}, A ∩ B = {x|x ∈ A and x ∈ B},

A \ B = {x|x ∈ A and x 6∈ B}. (2.3)

(For the construct A \ B, it is not assumed or necessary that A ⊂ B.) A special case of

set difference (one of the most common cases) occurs when there is an implicit universal

set U . Then one denotes the difference U \ A by A or Ac; this is called the complement of

A. Some important relations involving these operations are

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (2.4)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (2.5)
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A ∪ B = A ∩ B, A ∩ B = A ∪ B (2.6)

((2.4) and (2.5) are called distributive laws for union over intersection and intersection

over union respectively, and (2.6) are the DeMorgan formulas.) The operations of union

and intersection and various relations extend to arbitrary families of sets; e.g., if {Ai}i∈I

is a family of sets indexed by I, then one defines

⋃

i∈I

Ai = {x|x ∈ Ai for some i ∈ I},
⋂

i∈I

Ai = {x|x ∈ Ai for all i ∈ I} (2.7)

and the DeMorgan formulas are
⋃

i∈I

Ai =
⋂

i∈I

Ai, etc.

(Exercise: What are
⋃

i∈I

Ai and
⋂

i∈I

Ai if I = ∅ ?)
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