
Topics in Probability and Statistics

A Fundamental Construction

Suppose {S, P} is a sample space (with probability P ), and suppose X : S → R is a

random variable. The distribution of X is the probability PX on R defined by

PX(B) = P (X ∈ B) = P ({s ∈ S | X(s) ∈ B}), for B ⊂ R.

We then have a new sample space with probability, namely {R, PX}, and the function x

(i.e. f(x) = x) is a random variable which has the same distribution as X :

Px(B) = PX(x ∈ B) = PX(B).

A similar construction can be made with several random variables; if X, Y are random

variables on S, then the joint distribution of X, Y is the probability Px,y on R
2 given by

PX,Y (B) = P ((X, Y ) ∈ B) = P ({s ∈ S | (X(s), Y (s)) ∈ B}), for B ⊂ R
2.

Then {R
2, PX,Y } is a new sample space, and the functions x, y on R

2 are random variables

with the same joint distribution as X, Y . This all can be done for any collection of random

variables and is called the product space representation because the random variables are

represented as the coordinate functions on a product of copies of R.

Expectation

The definition of expectation or expected value of a random variable X : S, P → R

is supposed to formalize the intuitive idea of the ”average value” of X . As we know, the

elementary notion of the average of a collection of values is the sum of the values divided by

the number of values under consideration; furthermore in calculus one defined the average

of a function f(x) on an interval [a, b] to be the integral, (b − a)−1
∫ b

a
f(x) dx. (One can

prove rather easily that this integral is the limit of the elementary average of the values of

f at n equally spaced points in [a, b] as n → ∞.)

It is implicit in the above definitions that the various values under consideration are

weighted equally in taking the average (e.g., with n values, one weights each with a factor

1/n.) The expectation of a random variable is quite similar to the average of a function

and the general definition involves an integral; the main difference is that one wants to

weight the values of X with the probabilities that these values occur.

There are several ways to proceed. One can give a rather ad hoc definition of expectation

for various types of random variables which is rather elementary, but for which certain
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useful properties are not so easy to deduce or understand initially. This is the route taken

in our text. On the other hand, one can give a somewhat “fancier” definition for which

these useful properties are more transparent, and then observe that in particular cases the

fancy definition is just the one given in the text. I will follow this latter course here.

The general definition of the expectation of X , denoted E(X) is

E(X) =

∫

S

X(s) P (ds).

Of course, one has to define what this means; the idea is that it should be an integral (or

sum) of values of X weighted with the probabilities that these values occur. I won’t give a

complete definition here, but will rather indicate how the definition might be formulated;

this will be enough for our purposes.

Suppose first that X is a function which has value 1 on some event A and is equal to

0 elsewhere, i.e. X = 1A, the characteristic or indicator function of A. The we define

∫

S

X(s) P (ds) =

∫

S

1A(s) P (ds) = P (A).

More generally if X is a finite linear combination of characteristic functions,

X =
∑

i ci · 1Ai
, then

∫

S

X(s) P (ds) =

∫

S

(
∑

i

ci · 1Ai
(s)) P (ds) =

∑

i

ci · P (Ai).

This last formula is true for an infinite sum (series) also, provided the sums involved

converge absolutely.

A function of form X =
∑

i ci · 1Ai
is called a simple function. We have thus defined

the integral of a random variable which is a simple function. For more general random

variables X , one proceeds as follows. Find a sequence of random variables Xn which are

simple functions and for which limn→∞ Xn = X . Then define

∫

S

X(s) P (ds) = lim
n→∞

∫

S

Xn(s) P (ds).

(Of course, it takes some work to show that this makes sense for a certain class of random

variables X , that the definition is independent of the particular sequence chosen, etc, etc,

but this can be done, and it is not necessary to see all the details in order to have an

understanding of the resulting ideas.)

An property of the integral which follows easily from the definition is the following: if

X and Y are random variables on S
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equipped with P , and C and D are constants, then

∫

S

(C · X(s) + D · Y (s)) P (ds) = C ·
∫

S

X(s) P (ds) + D ·
∫

S

Y (s) P (ds).

This can also be stated:

E(CX + DY ) = CE(X) + DE(Y ).

This is a very important and useful property! (and it is less obvious if one uses the

definition of expectation that is given in the text.)

Now suppose that S is a finite sample space with P . (The discussion to follow also

applies if S is countable, provided the sums discussed converge properly.) Let X be a

random variable on S. Then X has only finitely many values, so X is actually a simple

function. (X =
∑

s∈S X(s) · 1{s}.) Therefore we have that

E(X) =
∑

s∈S

X(s)P (s).

We can often rearrange the above sum to get a possibly more compact expression. Namely,

it may be that the set {x1, x2, ..., xi, ...} of values of X is considerably smaller than S itself;

X may have the same value, xi, at many points of S. Then we could write

E(X) =
∑

s∈S

X(s)P (s) =
∑

i

(xi ·
∑

{s:X(s)=xi}
P (s)) =

∑

i

xi · P (X = xi).

This is the definition given in the text for the expectation of a discrete random variable.

Suppose next that X is a continuous random variable with pdf f(x). Assume for

simplicity that f is continuous. We can express the expectation of X in this case using

f(x) by reasoning as follows. Suppose we pick reals x1 < x2 < ... < xi < ... with (∆x)i =

xi+1−xi small. Then we could approximate X by the simple function which has the values

xi on the set {s : xi ≤ X(s) < xi+1} which has probability
∫ xi+1

xi
f(x) dx ≈ f(xi)(∆x)i.

The integral of this simple function is

∑

i

xi

∫ xi+1

xi

f(x) dx ≈
∑

i

xif(xi)(∆x)i.

These latter sums are an approximation to the integral
∫ ∞
−∞ xf(x) dx, so we see that in

this case

E(X) =

∫ ∞

−∞
xf(x) dx.

This is the definition given in the text for the expectation of a continuous random variable.
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The formulas derived above indicate that the expectation, E(X), of a random variable

X depends only on the distribution of X , and this is indeed true (and not difficult to show,

although we omit the proof.) Now we know that X on {S, P} has the same distribution

as x (the identity function) on {R, PX}. Thus, these have the same expectation:

E(X) =

∫

S

X(s) P (ds) =

∫ ∞

−∞
x PX(dx).

(The last integral is just a special case of the integral of a random variable discussed

above.) We can view this as a general formula including the special cases discussed above

for discrete random variables or continuous random variables with a pdf. In fact, if PX =
∑

i p(xi)δxi
(which is the case if X is discrete), then

∫ ∞

−∞
x PX(dx) =

∑

i

xip(xi) =
∑

i

xi · P (X = xi);

and if PX(dx) = f(x)dx, then

∫ ∞

−∞
x PX(dx) =

∫ ∞

−∞
xf(x) dx.

Another notation which is commonly used is to write dFX(x) for PX(dx). Here

FX(x) = P (X ≤ x) =
∫ x

−∞ PX(ds). For this reason PX(dx) is considered to be a ”gen-

eralized” derivative of FX . (Note that if X has a pdf f(x), then FX(x) =
∫ x

−∞ f(s)ds, so

dFX(x)/dx = f(x), or dFX(x) = f(x)dx in the usual sense if f is continuous.) Thus we

have

E(X) =

∫

S

X(s) P (ds) =

∫ ∞

−∞
x PX(dx) =

∫ ∞

−∞
x dFX(x).

Another fact of considerable importance and usefulness is that if h(X) is a funtion of

X , then the expectation of h(X) can be computed using the distribution of X . Precisely,

E(h(X)) =

∫ ∞

−∞
h(x) PX(dx) =

∫ ∞

−∞
h(x) dFX(x).

For the special cases that X is discrete or continuous with pdf f , this amounts to the

formulas

E(h(X)) =
∑

i

h(xi)P (X = xi) or E(h(X)) =

∫ ∞

−∞
h(x)f(x) dx.

This is often quite convenient, because computing the distribution of h(X) can be quite

complicated. However, this not necessary if one just wants E(h(X)).
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Samples and Sampling Distributions

In practice, what we often have to deal with is a set of numbers x1, . . . , xn, i.e., a sample.

In many cases, we interpret the xi as values of a collection of independent, identically

distributed random variables X1, . . . , Xn. (The Xi all have a common distribution PXi

and distribution function F (x). Independence of the Xi means that the joint distribution

of the Xi is the function F (x1, . . . , xn) = F (x1) · . . . · F (xn). The distribution function

F (x) may be unknown or partially known.) A real function g(x1, . . . , xn) of the sample

values is called a characteristic of the sample. This is a numerical value which we may use

to gain information concerning the distribution of the Xi. For example, we could consider

the sample mean,

g(x1, . . . , xn) = x =
x1 + . . . + xn

n

and try to use this as an estimate of the expectation E(Xi) (which is independent of i.) In

order to analyze the usefulness of such a characteristic, we consider also the random variable

g(X1, . . . , Xn). The distribution of this random variable is called the sampling distribution

of the characteristic g. Another characteristic often used is the sample variance

g(x1, . . . , xn) = s2 =
1

n

n
∑

i=1

(xi − x)2.

(Sometimes this is defined with a factor 1
n−1

instead of 1
n
.)

When we consider such characteristics as random variables, it is probably best to use a

capital letter, e.g. X, or S2, but this is not always done - often, the same symbol is used for

the characteristic considered as a numerical quantity or a random variable. For a random

variable, we may compute an expectation, variance, etc, so, for example, it makes sense to

compute the variance of the sample variance: V (S2). It probably takes some thought to

get used to such notions; there are several levels of abstraction involved.

One might reasonably ask whether the sample mean and sample variance (as numer-

ical quantities) are the mean and variance of some random variable. The answer is yes

(although they are certainly not usually equal to the mean and variance of the underlying

Xi.) To see this, we do the following: corresponding to the sample x1, . . . , xn, construct

a distribution on the real numbers R, which assigns probability 1/n to each of the values

x1, . . . , xn (with the understanding that if some value xi occurs k times among the sample

values then the corresponding probability assigned to this value is k/n.) In other words,

the probability distribution of the sample is

P ∗ =
1

n
(δx1

+ . . . + δxn
)

(where δxi
is the discrete probability measure assigning probability 1 to the point xi and

0 to every other point.) Then {R, P ∗} is a sample space, and the function x on this space
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is a random variable which we might denote by the symbol X∗. This random variable has

the distribution P ∗; we denote the distribution function of X∗ by F ∗(x).

(The function F ∗ is quite simple:

F ∗(x) =
1

n
{the number of xi ≤ x}.)

Now once we have a random variable, X∗, we can consider its expectation, variance,

moments, etc. These are exactly the sample mean, sample variance, sample moments,

etc. For example, V (X∗) is exactly the sample variance s2 defined above. (This is one

reason for utilizing the factor 1
n instead of 1

n−1 , although using the factor 1
n−1 produces a

characteristic whose expectation when considered as a random variable is V (Xi).)

Now V (X∗) and V (Xi) are quite different quantities in principle. However, we want

to use V (X∗) = s2 (or perhaps n
n−1

s2) as an estimate of V (Xi). To decide how good an

estimate this is, we need to know something about the distribution of the random variable

S2, e.g. E(S2) and V (S2). For example, we hope E(S2) is close to V (Xi), and V (S2) is

small; in such a situation we may consider s2 as a “good” estimate of V (Xi). One can

show (although we don’t do the calculation here) that E( n
n−1S2) = V (Xi), and also that

V (S2) = O( 1
n ) provided that the Xi have finite 4th moments.

We remark that the probability distribution P ∗ of a sample x1, . . . ,xn, where the

xi ∈ R
k, is defined in exactly the same way as in the case of scalar xi above. The sample

distribution function F ∗(x) is also defined analogously (replace xi and x in the above

definition by xi and x and interpret the xi ≤ x to mean that each component of xi is ≤
the corresponding component of x.)

The Space of Random Variables with Finite 2nd Moment

Consider all random variables on {S, P} with E(X2) < ∞. We also call such random

variables square integrable since E(X2) =
∫

S
X2 P (ds) =

∫ ∞
−∞ x2 PX(dx). This is a vector

space since E((X + Y )2) ≤ 2(E(X2) + E(Y 2)). (Note that (x + y)2 ≤ 2(x2 + y2) holds for

real x, y.) If X and Y have finite 2nd moments, then E(XY ) < ∞ (since |XY | ≤ X2+Y 2.)

Hence we can define an inner product on the square integrable random variables by:

< X, Y >= E(XY ) =

∫

S

X(s)Y (s) P (ds) =

∫ ∫

R2

xy PX,Y (dx dy).

(PX,Y is the joint distribution of X, Y .)

Note that this is the analog of the “dot” product on R
n. For vectors a, b in R

n,

< a,b >= a ·b =
∑n

i=1 aibi, a sum of products of components of a and b; the expectation

E(XY ) is an integral of products of values of X and Y . Once we have an inner product,
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we can do geometry. X and Y are defined to be orthogonal if < X, Y >= E(XY ) = 0, the

length or norm of X is defined to be

‖X‖ =
√

< X, X > =
√

E(X2)

and the distance between X and Y is defined to be

d(X, Y ) = ‖X − Y ‖ =
√

E((X − Y )2).

Note that the variance of X is

V (X) = ‖X − E(X)‖2

the standard deviation of x is

σ(X) = ‖X − E(X)‖ = d(X, E(X))

and the covariance of X and Y is

cov(X, Y ) =< X − E(X), Y − E(Y ) >= E[(X − E(X))(Y − E(Y ))].

More generally, if X1, . . . , Xn are random variables, their covariance matrix is the matrix

Λ whose ij entry is

λij = cov(Xi, Xj) = E[(Xi − E(Xi))(Xj − E(Xj))].

An important inequality (the Schwarz Inequality) is the following:

|E(XY )| ≤
√

E(X2)E(Y 2).

This is proved by observing that E((Y + tX)2) = E(Y 2) + 2tE(XY ) + t2E(X2) ≥ 0 for

real t; hence the discriminant of this quadratic polynomial,

−4E(X2)E(Y 2) + 4(E(XY ))2, must be ≤ 0 (the graph of the quadratic lies in the upper

half plane, so there is one or no real roots.) Note that if we replace X and Y by X −E(X)

and Y − E(Y ), then the inequality becomes

|cov(X, Y )| ≤ σ(X)σ(Y ).

From the proof of the Schwarz inequality, it is clear that equality holds exactly when the

polynomial E((Y + tX)2) = E(Y 2) + 2tE(XY ) + t2E(X2) has a real root (of multiplicity

2 necessarily); in this case, if the root occurs for t = −C, then Y = CX (with probability
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1.) The same argument shows that if |cov(X, Y )| = σ(X)σ(Y ), then Y − E(Y ) =

C(X − E(X)), which we can write as Y = CX + D where C, D are constants.

The correlation coefficient, ρ(X, Y ), of X and Y is defined to be the covariance divided

by the product of the standard deviations:

ρ(X, Y ) = E[(X − E(X))(Y − E(Y ))]/
√

E((X − E(X))2)
√

E((Y − E(Y ))2)

From the above discussion, we see that −1 ≤ ρ(X, Y ) ≤ 1, and if ρ(X, Y ) = ±1, then Y is

a linear function of X .

In the section on regression, we will show that ‖Y − (s + tX)‖ is minimized when

t = to = cov(Y, X)/V (X); s = so = E(Y ) − E(X)cov(Y, X)/V (X).

The minimum of the square of the distance is then given by

‖Y − (so + toX)‖2 = V (Y )(1 − ρ2(X, Y )).

Thus, the variance of Y is reduced by a factor of 1−ρ2, and this is the maximun reduction

that is possible by subtracting a linear function of X from Y. We can therefore think of

the correlation coefficient as a measure of the strength of a linear relation between X and

Y .

We denote the collection of square integrable random variables by L2(S, P ). This is a

vector space which is complete in the metric d(X, Y ) (in the same way that R
n is complete

in the usual metric - i.e. Cauchy sequences have limits; if you are not familiar with this

notion, that shouldn’t affect your understanding of what follows.)

An important notion is the following: If X is in L2(S, P ), and W is a (closed) subspace

of L2(S, P ), then the (orthogonal) projection of X onto W is the (unique) element wo ∈ W

which is closest to X , i.e. wo is the unique w ∈ W minimizing ‖X − w‖ (or equivalently

‖X − w‖2.) Of course, if X ∈ W , then the projection of X on W is X .

(Note: There is a “formula” of sorts for the projection of X on W . First construct a basis

of the subspace W consisting of mutually orthogonal random variables v, orthogonally

project X onto each basis vector using the formula: proj(X, v) =< X, v > v/ < v, v >,

and then add up all these projections. This isn’t explicit enough to be very useful in

general, though. The characterization as the element of W closest to X is often the best

way to think about the projection.)

We remark that if we stick with the way we defined the projection of X on W , then

it is not necessary that W is a subspace of L2(S, P ).

(A subspace is a subset which contains linear combinations of any of its members, ı.e., if

X1, X2 ∈ W , then C1X1 + C2X2 ∈ W also for any constants C1, C2.)
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The same construction works if W is a (closed) affine subset, i.e., a translate of a subspace

by a fixed vector (the analog in R
3 is a a line, plane, etc which doesn’t pass thru the

origin), or more generally any nonempty closed convex subset.

(“Closed” means that any sequence in W converging to something in the ambient space

L2(S, P ), actually converges to something in W . Subspaces of R
n are closed, but subspaces

of infinite domensional spaces are not necessarily closed. A set is convex if for each pair

of points in the set, the segment joining them is also in the set.)

The Normal Distribution

A random variable X has a normal distribution if its distribution has a pdf

1√
2πσ2

e−(x−µ)2/2σ2

.

This pdf is denoted N(µ, σ2). Then E(X) = µ, and V (X) = σ2. Now, suppose X1, . . . , Xn

are independent, identically distributed N(0, 1) random variables. The joint distribution

has pdf
1

(2π)n/2
e−

1
2

∑

i
x2

i .

Suppose Y1, . . . , Yn are random variables with

Yi =

n
∑

i=1

aijXj + µi, i = 1, . . . , n

where the aij and µi are constants. Setting Y,X, µ equal to column vectors consisting of

the Yi, Xi, µi respectively and A equal to the matrix with entries aij , these last relations

are equivalent to the equation

Y = AX + µ.

The Yi are said to have a joint normal distribution. We will determine the joint pdf of

the Yi assuming that A is nonsingular (invertible). (If A is singular the distribution is

concentrated on a subspace of dimension < n of R
n, but the calculations are similar.) Let

R be a subset of R
n. Then

P (Y ∈ R) = P (AX + µ ∈ R) = P (X ∈ A−1(R − µ))

=
1

(2π)n/2

∫

A−1(R−µ)

e−
1
2x·x dx1 . . . dxn = (setting x = A−1(R − µ))

1

(2π)n/2

∫

R

e−
1
2 A−1(y−µ)·A−1(y−µ) | detA|−1 dy1 . . . dyn.
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Now setting (A−1)tA−1 = (AAt)−1 = Λ−1, the last integral above becomes

1

(2π)n/2
√

det Λ

∫

R

e−
1
2Λ−1(y−µ)·(y−µ) dy1 . . . dyn

which exhibits the joint pdf of the Yi. The matrix Λ is the covariance matrix of the Yi,

i.e., the ij entry λij of Λ is cov(Yi, Yj). To see this note that

cov(Yi, Yj) = cov(
∑

k

aikXk,
∑

l

ajlXl) =
∑

k,l

aikajlcov(Xk, Xl) =
∑

aikajk = (AtA)ij .

(The next to the last equality follows from the fact that cov(Xk, Xl) = δkl (= 1 or 0

according as k = l or k 6= l.)

If cov(Yi, Yj) = 0, i 6= j, then Λ is a diagonal matrix with diagonal entries σ2
1 , . . . , σ2

n (with

σ2
i = V (Yi)), and then the joint pdf of the Yi is

1

(2π)n/2
√

det Λ

∫

R

e
− 1

2

∑

i

(yi−µi)
2

σ2
i dy1 . . . dyn

which factors into a product, and the Yi are independent. Hence we have the important

fact:

If jointly normal random variables are uncorrelated (have mutual covariance

0), then they are independent.

An important result concerning normal random variables is the following:

Theorem: Suppose X1, . . . , Xn are independent, identically distributed normal random

variables with E(Xi) = µ, V (Xi) = σ2.

Let S2 = 1
n−1

∑n
i=1(Xi − X)2 (where X = (X1 + . . . + Xn)/n.)

Then (n−1)S2/σ2 has the distribution of a sum of n−1 squares of independent, identically

distributed N(0, 1) random variables (this is called a chisquare distribution with n − 1

degrees of freedom), so E(S2) = σ2, and V (S2) = 2σ4/(n − 1).

Furthermore, S2 and X are independent.

Remark: The expression for E(S2) is correct even if the Xi are not normal (as long as

they are independent.) The expression for V (S2) follows from the known variance of the

chisquare distribution, and normality is necessary; however, if the Xi are just independent,

but have finite 4th moments, then V (S2) = O( 1
n ), so S2 is still an unbiased, consistent

estimator of σ2.

Proof of the theorem: Assume first that the Xi are indepenent and identically dis-

tributed with mean µ = 0, finite variance, but not necessarily normal. Then

n
∑

i=1

(Xi − X)2 =
n

∑

i=1

(X2
i − 2XiX + X

2
) =

n
∑

i=1

X2
i − nX

2
.
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Suppose that A is an orthogonal matrix (i.e. AAt = AtA = I) and whose first row is
1√
n
, . . . 1√

n
. (It doesn’t matter what the other rows are as long A is an orthogonal matrix.)

Then

A











X1
...
...

Xn











=









√
n X
U1
...

Un−1









and because A is orthogonal we have

n
∑

i=1

X2
i = nX

2
+

n−1
∑

i=1

U2
i = nX

2
+

n
∑

i=1

(Xi − X)2.

(The last equality makes use of the equation in the first line of the proof.)

Now the covariance matrices for











X1
...
...

Xn











and









√
n X
U1
...

Un−1









are equal, since if Y = AX, where the Xi are independent and identically distributed with

mean 0, and A is orthogonal, then

cov(Yi, Yj) = E(YiYj) = E(
∑

k

aikXk

∑

l

ajlXl) = E(
∑

k,l

aikajlXkXl)

=
∑

k,l

aikajlE(XkXl) =
∑

k

aikajkE(X2
k) = δijE(X2

k).

Hence

E(
n−1
∑

i=1

U2
i ) = E(

n
∑

i=2

X2
i ) = (n − 1)E(X2

i ) = E(
n

∑

i=1

(Xi − X)2)

(The equality of the first and last terms follows from the third equation in the proof.)

Hence

E(
1

n − 1

n
∑

i=1

(Xi − X)2) = E(X2
i )

and now replacing Xi by Xi −E(Xi) shows that E(S2) = σ2 even if the Xi have nonzero

mean. Now suppose that the Xi are normal. Since they are uncorrelated (orthogonal since

the means are still assumed = 0), so are the
√

nX, U1 . . . , Un−1, so X is independent of the

Ui and hence of
∑n−1

i=1 U2
i =

∑n
i=1(Xi −X)2. Also

∑n
i=1(Xi −X)2 has the distribution of
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the sum of n− 1 squares
∑n−1

i=1 U2
i of normal independent random variables with V (Ui) =

V (Xi), E(Ui) = 0. Dividing by σ2, we get that 1
σ2

∑n
i=1(Xi − X)2 has a chisquare

distribution with n − 1 degrees of freedom. If the Xi don’t have mean 0, we can replace

them by Xi − E(Xi) and argue as above.

The preceeding argument involving orthogonal transformations of normal random

variables occurs in many calculations in statistics, and it is worth stating the result in a

general form; the idea seems to have been used systematically by R. Fisher. The following

is

Fisher’s Lemma

Suppose X1, . . . , Xn are iid N(0, σ2), and suppose Y1, . . . , Yk are defined by

Yi = ai1X1 + . . . + ainXn, i = 1, . . . , k

where the vectors (ai1, . . . , ain) are orthonormal, i.e.

n
∑

j=1

aijalj = δil.

Then the quadratic form

Q =
n

∑

i=1

X2
i − Y 2

1 − . . . − Y 2
k

has the distribution of the sum of n− k independent N(0, σ2) random variables, and Q is

independent of Y1, . . . , Yk.

To see this, observe that we may find n − k further vectors (ai1, . . . , ain), i = k + 1, . . . , n

so that the matrix with entries aij is orthogonal, and define

Yi = ai1X1 + . . . + ainXn, i = k + 1, . . . , n.

By orthogonality, the Yi are iid N(0, σ2), and

n
∑

i=1

X2
i =

n
∑

i=1

Y 2
i

so

Q =

n
∑

i=k+1

Y 2
i .

The fact that Q is independent of Y1, . . . , Yk follows from the result proved earlier that

jointly normal random variables which are uncorrelated are independent.

12



Regression

The notion of regression arises in several different ways in statistics. In my opinion,

many texts don’t provide a good explanation of what is going on. My remarks here are

an attempt at an explanation of the various ideas. In the following discussion, all random

variables are assumed to have finite 2nd moments, i.e., they are in L2(S, P ). Suppose X

and Y are 2 such random variables. Sometimes we would like to express Y as a function,

f(X), of X “as well as possible” (even though it might not be the case that Y = f(X).)

The solution to this problem has been discussed above; let F(X) be the subspace of

L2(S, P ) consisting of random variables which are functions of X , and define

E(Y |X) = the orthogonal projection of Y on F(X).

In other words, E(Y |X) is the unique function f(X) minimizing

d(Y, g(X)) = ‖Y − g(X)‖ =
√

E((Y − g(X))2)

as g(X) ranges over all functions of X in L2(S, P ). If we consider the function f(x) for

which this minimum occurs as a function of a real variable x, this function is usually

denoted

f(x) = E(Y |X = x).

(Note: In some cases it is possible to define this function E(Y |X = x) directly in terms

of the joint distribution of X and Y , and then E(Y |X) is defined composing E(Y |X = x)

with X . In fact, this is the way it is done in most statistics texts, if it is done at all. To

do this, one has to first define the conditional probability distribution of Y given X = x

which is somewhat problematical since often P (X = x) = 0, and we sketch this briefly for

the case of continuous random variables; the discrete case is similar. Suppose f(x, y) is

the joint pdf of X, Y , and f(x) is the marginal pdf of X . The conditional pdf of Y given

X = x is defined by

f(y|x) = f(x, y)/f(x)

for those x for which the denominator f(x) is nonzero. The conditional expectation of Y

given X = x is then defined to be

E(Y |X = x) =

∫ ∞

−∞
yf(y|x) dy.

This is a function of x, and if we substitute X for x in this function, the result is E(Y |X).

This is sometimes useful, but generally it is best to think of E(Y |X) as it is defined at the

beginning of this section.)

13



Sometimes one wants to express Y “as well as possible” as a special type of function

of X , for example as a linear (or perhaps one should say affine) function β0 + β1X . The

way to do this is fairly clear; take the (orthogonal) projection of Y onto the subspace

of L2(S, P ) spanned by X and the constants (this subspace is “two dimensional”.) In

this case, there is a more explicit formula for the result. We are seeking to minimize the

function

h(β0, β1) = E((Y − β0 − β1X)2)

with respect to the 2 parameters β0, β1. This is a calculus problem; the minimum is found

by setting the derivatives of h(β0, β1) with respect to the βi equal to 0. The equations

obtained are

β0 + β1E(X) = E(Y ); β0E(X) + β1E(X2) = E(Y X).

An elementary calculation shows that the solution of these equations is

β1 = cov(Y, X)/V (X); β0 = E(Y ) − E(X)cov(Y, X)/V (X).

We remark that this procedure generalizes in an obvious way. For example, if we

have random variables Y, X1, . . . , Xn, we can express Y “as well as possible” as an affine

expression β0 +β1X1 + . . .+βnXn by minimizing E((Y −β0 −β1X1− . . .−βnXn)2). This

will require the solution of n + 1 linear equations in the n + 1 unknowns βi. In this latter

situation, the Xi might be functions of a single X , e.g. Xi = X i, in which case we are

trying to find a good fit to Y in the form of a polynomial β0 + β1X + . . . + βnXn in X .

This still involves the solution of linear equations in the βi.

Now suppose that what one has is a sample consisting of n points (x1, y1), . . . , (xn, yn).

We could try to find the straight line of form y = β0 + β1x which “best fits” these points

by minimizing the sum of squares

n
∑

i=1

(yi − β0 − β1xi)
2.

It is easy to see that this is precisely equivalent to the following: define the sample distri-

bution P ∗ on R
2 which assigns probability 1/n to each of the points (xi, yi) i = 1, . . . n,

and let x, y be the coordinate functions on {R
2, P ∗} considered as random variables. Then

minimize E((y − β0 − β1x)2). The solution of this problem has already been obtained

above. In the present situation, this becomes:

β1 =

∑

(yi − y)(xi − x)
∑

(xi − x)2
; β0 = y − β1x

14



where x = 1
n

∑

xi, etc. (Summations are over all relevant values of the index i when this

is not indicated explicitly. We assume
∑

(xi − x)2 6= 0.)

It seems to be standard notation to denote these values for β1, β0 by β̂1 and β̂0, and we

will do so in what follows, i.e.

β̂1 =

∑

(yi − y)(xi − x)
∑

(xi − x)2
; β̂0 = y − β̂1x (r1)

. We also put

ŷi = β̂0 + β̂1xi; ŷ = β̂0 + β̂1x. (r2)

We now derive a fundamental identity.

E((y − y)2) = E((y − ŷ + ŷ − y)2) = E((y − ŷ)2) + E((ŷ − y)2) + 2E((y − ŷ)(ŷ − y)).

The last term on the right hand side in the preceeding equation vanishes because

nE((y − ŷ)(ŷ − y)) =
∑

(yi − ŷi)(ŷi − y) =
∑

(yi − ŷi)ŷi +
∑

(yi − ŷ)y,

and the 2 sums on the right of the last equation vanish precisely because

∂

∂βi
E((y − β0 − β1x)2)|βi=β̂i

= 0.

Hence

E((y − y)2) = E((y − ŷ)2) + E((ŷ − y)2)

or equivalently
∑

(yi − y)2 =
∑

(yi − ŷi)
2 +

∑

(ŷi − y)2. (r3)

In order to attach statistical significance to these results, one considers the yi and

sometimes the xi as values of random variables, and then can study the sampling distribu-

tions of the βi, etc. However, if we replace both the yi and xi in (r1) by random variables

Yi and Xi, then the distribution of β1 is generally complicated to compute. A more con-

venient assumption is that the yi are values of random variabvles Yi, but the xi are just

considered as numerical parameters on which the Yi depend in some way. Specifically, we

shall assume that

Yi = β0 + β1xi + ei

where the ei are independent and identically distributed with E(ei) = 0, V (ei) = σ2.

(So E(Yi) = β0 + β1xi, V (Yi) = σ2.)
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Later we shall also assume that the ei are normal, but for now we omit this assumption.

Substituting Yi for yi in the equations (r1), (r2), (r3) above, we have

β̂1 =

∑

(Yi − Y )(xi − x)
∑

(xi − x)2
; β̂0 = Y − β̂1x (r1′)

.

Ŷi = β̂0 + β̂1xi. (r2′)
∑

(Yi − Y )2 =
∑

(Yi − Ŷi)
2 +

∑

(Ŷi − Y )2. (r3′)

(Recall that all sums indicated are over i = 1, 2, . . . n.)

The Yi are not identically distributed unless β1 = 0 (E(Yi) = β0 + β1xi), and it will be

convenient sometimes to work with the identically distributed random variables

Ki = β0 + β1x + ei = Yi − β1(xi − x). (r4)

Note that K = Y = β0 + β1x + e and E(Ki) = E(K) = β0 + β1x, V (Ki) = σ2.

A nice property of the β̂i is that they are unbiased estimators for the βi. To see this,

first note that

β̂1 =

∑

(xi − x)(Ki − K)
∑

(xi − x)2
+ β1.

From this, it follows immdiately, that E(β̂1) = β1. Also, from the last expression for β̂1

we have (noting that we may omit K since
∑

(xi − x) = 0),

V (β̂1) = V (

∑

(xi − x)Ki
∑

(xi − x)2
) =

σ2

∑

(xi − x)2
. (r5)

Hence,

E(β̂2
1) = V (β̂1) + β2

1 =
σ2

∑

(xi − x)2
+ β2

1 .

Next

E(β̂0) = E(Y − β̂1x) = β0 + β1x − β1x = β0. (r6)

We defer the computation of V (β̂0) (the calculation is a bit tedious) in order to exhibit

an unbiased estimator for σ2; this will be quite important when we construct confidence

limits for the βi. Consider the equation (r3′). We can’t use the term
∑

(Yi − Y )2 directly

to estimate σ2, because the Yi have different expectations. However, it turns out that

E
∑

(Yi − Ŷi)
2 = (n − 2)σ2 (r7)

and we prove this now. From (r1′), (r2′), we have

E
∑

(Ŷi − Y )2 = E(β̂2
1

∑

(xi − x)2) = σ2 + β2
1

∑

(xi − x)2,
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and

E
∑

(Yi − Y )2 = E
∑

[Ki − K + β1(xi − x)]2

= E
∑

[(Ki − K)2 + 2(Ki − K)β1(xi − x) + β2
1(xi − x)2]

= E
∑

[(Ki − K)2 + β2
1(xi − x)2] = (n − 1)σ2 + β2

1

∑

(xi − x)2,

and these last 2 equations together with (r3′) yield (r7).

We define

SSE =
∑

(Yi − Ŷi)
2; S2 =

SSE

n − 2
; SSY =

∑

(Yi − Y i)
2 (r8)

so S2 is an unbiased estimator for σ2.

Next we calculate V (β̂0). We have

β̂2
0 = (Y − β̂1x)2 = Y

2 − 2Y β̂1x + β̂2
1x2

so

V (β̂0) = E(Y
2
) − 2xE(Y β̂1) + x2E(β̂2

1) − β2
0 ,

and

E(Y
2
) = (β0 + β1x)2 +

σ2

n
; E(β̂2

1) = V (β̂1) + β2
1 =

σ2

∑

(xi − x)2
+ β2

1 .

Now

E(Y β̂1) =

∑

(xi − x)E(YiY )
∑

(xi − x)2
,

and

E(YiYj) = E[(β0 + β1xi + ei)(β0 + β1xj + ej)] = (β0 + β1xi)(β0 + β1xj) + δijσ
2

so

E(YiY ) = (β0 + β1xi)(β0 + β1x) +
σ2

n
,

and (using the fact that
∑

(xi − x) = 0 several times) we get

E(Y β̂1) = β1(β0 + β2
1x).

Finally, putting the previous equations together, we get

V (β̂0) =
x2

∑

(xi − x)2
σ2 +

σ2

n
= σ2

(

1

n
+

x2

∑

(xi − x)2

)

=

∑

x2
i

n
∑

(xi − x)2
σ2.
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If we put Sxx =
∑

(xi − x)2, then we have the following unbiased estimators for V (β̂i):

V (β̂1) ↔ S2 1

Sxx
; V (β̂0) ↔ S2

∑

x2
i

nSxx
(r9)

(S2 was defined in (r8).) We will use as estimators for σ(β̂i):

σ(β̂1) ↔ S

√

1

Sxx
; σ(β̂0) ↔ S

√

∑

x2
i

nSxx
(r10)

One can argue using the Central Limit Theorem that in the case of large samples, the

random variables
β̂1 − β1

S
√

1
Sxx

;
β̂0 − β0

S

√

∑

x2
i

nSxx

(r11)

may in many cases taken to be approximately N(0, 1) and use this to construct confidence

intervals and as a basis of hypothesis tests. However, the precise conditions under which

this is justified seem a bit problematical, and in addition one is often interested in the

small sample situation. For this reason, it is commonly assumed that the ei are normal.

With this additional assumption, it is not diffficult to show that the random variables in

(r11) have t distributions with n − 2 degrees of freedom. The proof is an application of

Fisher’s Lemma. We give the details below.

We also note that if we just wish to test the hypothesis Ho : β1 = 0, this can be done

as follows. Under this hypothesis, the random variable

β̂1

S
√

1
Sxx

has a t distribution with n − 2 degrees of freedom. The square of this random variable

which is easily seen to be
SSY − SSE

SSE/(n − 2)

(see (r8)) thus has an F distribution with 1 numerator and n − 2 denominator degrees

of freedom. Thus for a test of level α, we reject Ho if this statistic has, for the sample

being tested, a value greater than F 1
n−2,α (the appropriate percentage point for the F

distribution; i.e. P (F 1
n−1 > F 1

n−2,α) = α, where F 1
n−1 denotes a random variable whose

distribution is F with 1 and n − 2 degrees of freedom.)

We now sketch the argument that the random variables in (r11) have t distributions

when the ei are normal.
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A somewhat longwinded calculation shows that

∑

(Yi − Ŷi)
2 =

∑

(Yi − β0 − β1xi)
2 − n(Y − β0)

2 −
∑

(xi − x)2(β̂1 − β1)
2 (r12)

The variables Ui = Yi − β0 − β1xi are independent N(0, σ2), and if we put

W1 =
√

n(Y − β0) =
1√
n

∑

Ui

W2 =
√

Sxx(β̂1 − β1) =
1√
Sxx

∑

(xi − x)Ui

then (r12) becomes
∑

(Yi − Ŷi)
2 =

∑

(Ui)
2 − W 2

1 − W 2
2 . (r13)

Since the vectors 1√
n
(1, . . . , 1) and 1√

Sxx

(x1 − x, . . . , xn − x) are orthonormal, Fisher’s

Lemma implies that Y , β̂1, and
∑

(Yi − Ŷi)
2 are independent, and that 1

σ2

∑

(Yi − Ŷi)
2 has

a χ2 distribution with n − 2 degrees of freedom.
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