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Abstract

Various formulations of the equations of motion for both finite- and infinite-
dimensional constrained Lagrangian dynamical systems are studied. The different
formulations correspond to different ways of enforcing constraints through mul-
tiplier fields. All the formulations considered are posed on ambient spaces whose
members are unrestricted by the need to satisfy constraint equations, but each for-
mulation is shown to possess an invariant set on which the constraint equations
and physical balance laws are satisfied. The stability properties of the invariant set
within its ambient space are shown to be different in each case. We use the specific
model problem of linearized incompressible elastodynamics to compare properties
of three different ambient-space formulations. We establish the well-posedness of
one formulation in the particular case of a homogeneous, isotropic body subject to
specified tractions on its boundary.

1. Introduction

The equations of motion for a Lagrangian system on a manifold defined by
configuration (or holonomic) constraints can be formulated in various different
ways. The three main possibilities are:

(a) Euler-Lagrange equations in local coordinates;
(b) Euler-Lagrange equations in ambient coordinates with explicit multipliers to

enforce the constraints (such equations may be obtained from Hamilton’s vari-
ational principle with a multiplier rule);

(c) lifted or extended equations in ambient coordinates with an invariant manifold
(such equations may be obtained by eliminating the multipliers in (b), and the
physically meaningful solutions reside in the invariant set).

A formulation as in (a) is often unavailable or inconvenient for infinite- or large
finite-dimensional systems, and in these cases a formulation as in (b) may be more
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natural. However, dealing with explicit constraints and multipliers can sometimes
be cumbersome in both analytical and numerical investigations, and this has led
many authors to consider formulations as in (c). We refer to (c) asambient-space
formulations. Such formulations have appeared in various guises [4,6,11,16,20,
23,28,31,33,35], but apparently there has been no systematic comparison between
their properties.

In this article we develop a number of results on ambient-space formulations for
Lagrangian systems subject to configuration constraints. We show that, dependent
on the precise manner in which constraints are introduced into Hamilton’s princi-
ple, ambient-space formulations with markedly different structural properties can
be constructed for a given constrained system. In particular, both Hamiltonian and
non-Hamiltonian ambient-space formulations can be constructed, and each can have
either a stable or unstable invariant set. The different formulations correspond to
different ways in which single multipliers of either pressure or striction type, or mul-
tiple multipliers of differing types, can be employed in Hamilton’s principle. Here
we describe a multiplier as pressure-like if it is associated with a configuration-level
constraint, and as striction-like if it is associated with a velocity-level constraint
[31,11].

An important structural property of an ambient-space formulation is the stability
of the associated invariant set. We show that stability depends crucially on the type
and number of multipliers used in constructing the formulation. In the context of
infinite-dimensional systems, the stability issue expands to include problems of
solvability and well-posedness, especially for initial data off the invariant set. In
contrast to the situation arising in finite-dimensional dynamics, well-posedness
need not be automatic for an ambient-space formulation in infinite dimensions. For
example, the velocity-impulse formulation of incompressible fluid dynamics given
byOseledets [35] has been shown byE & Liu [13] to be marginally ill posed.

Our motivations for studying ambient-space formulations are twofold. First,
these types of formulations can be useful within the context of numerical analysis.
For example, such formulations can assist in the analysis of discretization schemes
for a corresponding differential-algebraic formulation [29,20,3], or they can them-
selves be discretized to provide a basis for simulation [28,4,13]. For the analysis
and design of numerical schemes, we believe it is important to understand the sta-
bility properties of the invariant set. Second, ambient-space formulations can be
useful in analytical investigations. For example, ambient-space formulations can
be exploited to study dynamic stability [11], to develop regularity estimates [16,
23] and to characterize integrability [33] in constrained systems.

The presentation is structured as follows. In Section 2 we introduce and discuss
ambient-space formulations for finite-dimensional mechanical systems. Our main
definition in this section is motivated by various works that have appeared previ-
ously; for example, the work of Kozlov summarized in [2], works based on the
theory of Dirac [40,28], work based on the stabilization of differential-algebraic
equations [4], and the impetus-striction method developed in [31,11,12]. Within
the context of a simple model problem we illustrate three different approaches to
the construction of ambient-space formulations. These approaches lead to formula-
tions for which the invariant sets exhibit markedly different stability properties. In
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particular, formulations can be constructed for which the invariant set is unstable,
the level set of a first integral, or exponentially attractive in the sense that the values
of the constraints approach their values on the invariant set at an exponential rate.
Indeed, we describe new formulations that are Hamiltonian in the whole of the
ambient space while possessing exponentially attractive invariant sets.

In the remainder of the article we extend the finite-dimensional analysis to a
particular infinite-dimensional problem in linearized incompressible elastodynam-
ics. In Section 3 we present a standard formulation of the problem along with an
underlying variational structure that will be used to motivate three different types
of ambient-space formulations. The first type involves a pure pressure field, the
second a pure striction field, and the third employs a combination of pressure and
striction fields. The pure pressure formulation has an invariant set that is unstable
in an appropriate sense, while the pure striction formulation has an invariant set
that is the level set of a (pointwise) integral. Moreover, by including an appropriate
arbitrary parameter in the pure striction formulation, the invariant set can be made
exponentially attractive as in the case of finite dimensions.

For the elastodynamics problem, the pure striction approach leads to a for-
mulation with some peculiarities: boundary values for the striction variable are
determined by an explicit evolution equation on the boundary. This boundary equa-
tion appears to be inconvenient and it is unclear whether the formulation is well
posed. To circumvent this difficulty we develop a third formulation that employs
both pressure and striction multiplier fields. The use of multiple multipliers in this
case provides a means to avoid the peculiarities of the pure striction approach with-
out sacrificing stability of the invariant set. Moreover, we gain well-posedness, as
we prove in Sections 4 and 5 for the initial-boundary value problem correspond-
ing to a homogeneous, isotropic body with a specified traction on its boundary.
This well-posedness result provides a concrete example that illustrates the utility
of ambient-space formulations in analytical investigations.

The variables of displacement, momentum and pressure employed in pressure-
type formulations of constrained problems are all familiar physical quantities. In
contrast, the variables of displacement, impetus and striction employed in striction-
type formulations are not well known. A physical interpretation of these new vari-
ables is presented in Section 6.

2. Finite-Dimensional Systems

In this section we introduce the notion of an ambient-space formulation within
the context of a finite-dimensional model problem. Three ambient-space formula-
tions are constructed and their properties are summarized in a sequence of propo-
sitions. The proofs of the results stated in this section are straightforward and are
omitted for brevity. While the results presented here are for the case of a single
constraint and a simple, decoupled Lagrangian function of the form kinetic mi-
nus potential energies, all the results extend to multiple constraints and general
Lagrangians that are convex in the velocities.
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2.1. Model Problem: Constrained Formulation

Consider a particle of massm and positionq(t) ∈ R
n that is constrained to

lie on a smooth frictionless surfaceQ ⊂ R
n. We suppose thatQ is defined by the

zero level set of a functiong : R
n → R and that the particle moves under the

action of a conservative force field with potentialV : R
n → R. For such a system,

Hamilton’s principle provides a variational characterization of the motion in terms
of the Lagrangian functionL : R

n × R
n → R defined by

L(q, q̇) = 1
2 q̇ ·mq̇ − V (q), (2.1)

and there are two basic ways to formulate equations of motion. One way is to intro-
duce a local coordinate system inQ, restrict the Lagrangian (2.1) to the tangent bun-
dle TQ, and invoke Hamilton’s principle. This approach leads to Euler-Lagrange
equations in local coordinates. However, such coordinates are often inconvenient
to construct for large finite-dimensional systems, and may not be available at all
for infinite-dimensional systems.

A second approach is to work in the coordinates of the ambient spaceR
n×R

n.
Here we consider Hamilton’s principle for the Lagrangian (2.1) and enforce the
constraintg(q) = 0 with a multiplierλ. This approach leads to the Euler-Lagrange
equations

d

dt
D2L̂(q, q̇, λ) = D1L̂(q, q̇, λ),

0 = D3L̂(q, q̇, λ),

(2.2)

whereL̂ : R
n × R

n × R → R is the augmented Lagrangian function

L̂(q, q̇, λ) = L(q, q̇)− λg(q). (2.3)

When we introduce the momentum variablep = D2L̂(q, q̇, λ) ∈ R
n, the system

in (2.2) may be written as a first-order system inR
n × R

n × R, namely

q̇ = m−1p,

ṗ = −DV (q)− λDg(q),

0 = g(q),

(2.4)

whereDg(q) is the derivative of the constraint functiong at q, andλ(t) ∈ R is
interpreted as a multiplier that is determined by the condition (2.4)3. This formula-
tion is referred to asconstrained since there is no explicit evolution equation forλ.
Alternatively, due to the presence of the algebraic relation in (2.4)3, such formula-
tions are often described asdifferential-algebraic. Notice that smooth solutions of
(2.4) are restricted to lie in the set

A0 = {(q,p) ∈ R
n × R

n | f (q,p) = 0 and g(q) = 0}, (2.5)

wheref : R
n × R

n → R is defined byf (q,p) = Dg(q) ·m−1p.
For details on the theory of differential-algebraic systems such as (2.4) see [36],

and for details on the special difficulties associated with the numerical treatment of
these systems see [6]. Motivated by the difficulties in treating systems of the form
(2.4), we pursue alternate formulations.
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2.2. Ambient-Space Formulations: Definition

Consider a system of ordinary differential equations inR
n × R

n of the form

q̇ = m−1p(q, ξ),

ξ̇ = w(q, ξ),
(2.6)

wherep,w : R
n × R

n → R
n are smooth in an open setN . We say that (2.6)

is an ambient-space formulation for the constrained system (2.4) if the following
conditions hold:

1. The system possesses an invariant setM0 ⊂ N .
2. The mapχ : M0 → R

n × R
n defined by

χ(q, ξ) = (q,p(q, ξ))

is onto the setA0 defined in (2.5).
3. If (q, ξ)(t) is a solution inM0, then(q,p)(t) = χ(q, ξ)(t) is a solution of

(2.4) for someλ(t).

The invariant setM0 will be called the physical solution set of the ambient-space
formulation.

2.3. Ambient-Space Formulations: Examples

In preparation for the infinite-dimensional system to be considered later in
this article, we next construct three ambient-space formulations for the finite-
dimensional system (2.4). For a general constraintg(q) the formulations can be
quite complicated; however, they simplify considerably wheng(q) is linear, which
is a case of interest in infinite dimensions.

2.3.1. Standard Example. Our first ambient-space formulation follows directly
from (2.4) by eliminating the multiplierλ. To begin, we differentiate the constraint
equation (2.4)3 twice with respect to time, substitute from (2.4)1,2 and solve forλ
as a function of the phase variables to getλ = λ̂(q,p), where

λ̂(q,p) = [Dg(q) ·m−1Dg(q)]−1[m−1p ·D2g(q)(m−1p)

−Dg(q) ·m−1DV (q)
] (2.7)

andD2g(q) ∈ R
n×n is the Hessian ofg(q) at q. Given this expression forλ, we

consider the system of ordinary differential equations given by

q̇ = m−1ξ ,

ξ̇ = −DV (q)− λ̂(q, ξ)Dg(q).
(2.8)

The relation between (2.8) and (2.4) is contained in the following result.
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Proposition 2.1. Let f : R
n × R

n → R be defined by f (q, ξ) = Dg(q) · m−1ξ

and for any regular value c of g let

Mc = {(q, ξ) ∈ R
n × R

n | f (q, ξ) = 0 and g(q) = c}.
Then (2.8)has the following properties:

1. The function f (q, ξ) is an integral for (2.8).
2. The set Mc is an invariant set for (2.8).
3. The map χ : M0 → R

n × R
n defined by

χ(q, ξ) = (q,p(q, ξ)) where p(q, ξ) = ξ

is onto A0.
4. If (q, ξ)(t) is a solution of (2.8)in M0, then (q,p)(t) = χ(q, ξ)(t) is a solution

of (2.4)with λ(t) given by

λ(t) = λ̂(q(t), ξ(t)).

The above result shows that (2.8) is an ambient-space formulation for (2.4).
Notice that (2.8) is in general not Hamiltonian away from the physical solution set
M0. Moreover, this invariant set is unstable in an appropriate sense as shown in
the following result.

Proposition 2.2. Let (q, ξ)(t) be a solution of (2.8)with corresponding initial data
(q0, ξ0) in a neighborhood of M0. If the initial data satisfy

g(q0) = a and f (q0, ξ0) = b

for some constants a, b ∈ R, then the solution (q, ξ)(t) has the property that

g(q(t)) = a + bt and f (q(t), ξ(t)) = b.

Thus, solutions of (2.8) with initial data arbitrarily close to the physical solution
setM0 may move arbitrarily far away depending on the constraint functiong(q).

2.3.2. Striction-Based Example. Our second ambient-space formulation for
(2.4) follows from a generalization of the impetus-striction method developed in
[31,11]. First, rather than consider the given constraintg(q) = 0, we consider the
related constrainth(q, q̇) = 0 whereh : R

n × R
n → R is defined by

h(q, v) = Dg(q) · v + αg(q) (2.9)

andα ∈ R is a parameter. Next, we consider Hamilton’s principle for the Lagrangian
(2.1) and enforce the constrainth(q, q̇) = 0 with a multiplierµ. This approach
leads to the Euler-Lagrange equations

d

dt
D2L̃(q, q̇, µ) = D1L̃(q, q̇, µ),

0 = D3L̃(q, q̇, µ),

(2.10)
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whereL̃ : R
n × R

n × R → R is the augmented Lagrangian function

L̃(q, q̇, µ) = L(q, q̇)− µh(q, q̇). (2.11)

Introducing the conjugate variableξ = D2L̃(q, q̇, µ) ∈ R
n, the system in (2.10)

may be written as a first-order system inR
n × R

n × R, namely

q̇ = m−1[ξ + µDg(q)],
ξ̇ = −DV (q)− αµDg(q)− µD2g(q)[m−1(ξ + µDg(q))],
0 = Dg(q) ·m−1[ξ + µDg(q)] + αg(q).

(2.12)

Following [31,11], we refer toξ as the impetus andµ as the striction. Using (2.12)3
we can solve forµ as a function of the phase variablesq andξ to get

µ(q, ξ) = −[Dg(q) ·m−1Dg(q)]−1[Dg(q) ·m−1ξ + αg(q)]. (2.13)

Given this expression forµ, we consider the system of ordinary differential equa-
tions given by

q̇ = m−1[ξ + µ(q, ξ)Dg(q)],
ξ̇ = −DV (q)− αµ(q, ξ)Dg(q)

− µ(q, ξ)D2g(q)[m−1(ξ + µ(q, ξ)Dg(q))].
(2.14)

Properties of the formulation (2.14) and its relation to the constrained formulation
(2.4) are summarized in the following result.

Proposition 2.3. Let H : R
n × R

n → R be the Hamiltonian function for the free
particle, that is,

H(q,p) = 1
2p ·m−1p + V (q),

and for any regular value c of g let

Mc = {(q, ξ) ∈ R
n × R

n | g(q) = c}.
Then (2.14)has the following properties:

1. The system is Hamiltonian with Hamiltonian function H(q, ξ) defined by

H(q, ξ) = min
µ

[H(q, ξ + µDg(q))+ αµg(q) ].

2. The function g(q) is an integral for (2.14)if α = 0.
3. The set M0 is an invariant set for (2.14)for any α ∈ R.
4. The map χ : M0 → R

n × R
n defined by

χ(q, ξ) = (q,p(q, ξ)) where p(q, ξ) = ξ + µ(q, ξ)Dg(q)

is onto A0.
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5. If (q, ξ)(t) is a solution of (2.14) in M0, then (q,p)(t) = χ(q, ξ)(t) is a
solution of (2.4)with λ(t) given by

λ(t) = αµ(q(t), ξ(t))− d

dt
µ(q(t), ξ(t)).

The above result shows that (2.14) is an ambient-space formulation for (2.4).
Notice that the HamiltonianH(q, ξ) is in general not decoupled or separable even
though the original LagrangianL(q, q̇) is, and that the physical solution setM0
for (2.14) is different from the one for (2.8). The next result shows that the invariant
setM0 for (2.14) is exponentially attractive in an appropriate sense ifα > 0.

Proposition 2.4. Let (q, ξ)(t) be a solution of (2.14) with corresponding initial
data (q0, ξ0) in a neighborhood of M0. If the initial data satisfy g(q0) = a for
some a ∈ R, then the solution (q, ξ)(t) has the property that g(q(t)) = ae−αt .

2.3.3. Multi-Multiplier Example. Our third formulation combines aspects of
both the previous two approaches. This generalization is perhaps excessive in the
finite-dimensional case, but in extending the previous striction-based formulation
to infinite-dimensional problems such as linearized incompressible elasticity some
peculiarities arise in the boundary conditions. The ambient-space formulation de-
veloped in this section, based on using two multipliers in Hamilton’s principle, will
allow us to avoid these peculiarities.

The ambient-space formulation of this section may be motivated as follows.
First, notice that if the motion of a Lagrangian system satisfies the constraintg(q) =
0, then it also satisfies the related constrainth(q, q̇) = 0 whereh : R

n × R
n → R

is defined by
h(q, v) = Dg(q) · v.

With this in mind, we introduce into the variational principle of Hamilton a mul-
tiplier λ for the constraintg(q) = 0, and a second multiplierµ for the constraint
h(q, q̇) = 0. This approach leads to the Euler-Lagrange equations

d

dt
D2L̄(q, q̇, λ, µ) = D1L̄(q, q̇, λ, µ),

0 = D3L̄(q, q̇, λ, µ),

0 = D4L̄(q, q̇, λ, µ),

(2.15)

whereL̄ : R
n × R

n × R × R → R is the augmented Lagrangian function

L̄(q, q̇, λ, µ) = L(q, q̇)− λg(q)− µh(q, q̇). (2.16)

Introducing the conjugate variableξ = D2L̄(q, q̇, λ, µ) ∈ R
n, the system in (2.15)

may be written as a first-order system, namely

q̇ = m−1[ξ + µDg(q)],
ξ̇ = −DV (q)− λDg(q)− µD2g(q)[m−1(ξ + µDg(q))],
0 = g(q),

0 = Dg(q) ·m−1[ξ + µDg(q)].

(2.17)
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Using (2.17)4 we can solve forµ as a function of the phase variablesq andξ to get

µ(q, ξ) = −[Dg(q) ·m−1Dg(q)]−1Dg(q) ·m−1ξ . (2.18)

Given this expression forµ, and lettingλ = λ̂(q, ξ) for an arbitrary smooth function
λ̂, we consider the system of ordinary differential equations given by

q̇ = m−1[ξ + µ(q, ξ)Dg(q)],
ξ̇ = −DV (q)− λ̂(q, ξ)Dg(q)

− µ(q, ξ)D2g(q)[m−1(ξ + µ(q, ξ)Dg(q))].
(2.19)

Properties of the formulation (2.19) and its relation to the constrained formulation
(2.4) are summarized in the following result.

Proposition 2.5. Let λ̂ : R
n × R

n → R be an arbitrary, smooth function and for
any regular value c of g let

Mc = {(q, ξ) ∈ R
n × R

n | g(q) = c}.
Then (2.19)has the following properties:

1. The function g(q) is an integral for (2.19).
2. The set M0 is an invariant set for (2.19).
3. The map χ : M0 → R

n × R
n defined by

χ(q, ξ) = (q,p(q, ξ)) where p(q, ξ) = ξ + µ(q, ξ)Dg(q)

is onto A0.
4. If (q, ξ)(t) is a solution of (2.19) in M0, then (q,p)(t) = χ(q, ξ)(t) is a

solution of (2.4)with λ(t) given by

λ(t) = λ̂(q(t), ξ(t))− d

dt
µ(q(t), ξ(t)).

The above result shows that, for any smooth functionλ̂(q, ξ), the system (2.19)
is an ambient-space formulation for (2.4). The physical solution setM0 for this
formulation is an integral level set and hence is neutrally stable; however, its stability
can be controlled by introducing a stability parameterα as was done in the last
section and an analog of Proposition 2.4 can be obtained.

The functionλ̂(q, ξ) can be used to control some aspects of the “non-physical”
dynamics in (2.19). For example, the dynamics of the velocity-like variablem−1ξ

can be controlled in the direction ofDg(q), a direction normal to the physical
configuration manifold. In particular, the choice

λ̂(q, ξ) = [Dg(q) ·m−1Dg(q)]−1
{
−Dg(q) ·m−1DV (q)

+m−1[ξ − µ(q, ξ)Dg(q)] ·D2g(q)m−1[ξ + µ(q, ξ)Dg(q)]
}

gives rise to the extra integralf (q, ξ) = Dg(q) ·m−1ξ . In infinite dimensions the
analog of (2.18) is a boundary value problem, and an extra multiplier field such as
λ will provide some flexibility in the consideration of boundary conditions forµ.
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3. Infinite-Dimensional Systems

In this section we extend the finite-dimensional results of Section 2 to an infinite-
dimensional example. We first establish some notation and then introduce our main
model problem: a displacement-traction initial-boundary value problem for a lin-
earized incompressible elastic body inR

n. For more details on the physical and
mathematical structure of the field equations of elasticity presented in this section
see, for example, [43,21].

3.1. Preliminaries

Let Cm(�,F ) denote the set of allm-times continuously differentiableF -
valued functions on an open set� in R

n. Forw ∈ Cm(�,F ) we define

||w||m =
( ∑
|σ |�m

∫
�

||Dσw||2 d�
)1/2

where Dσ = ∂σ1+···+σn

∂X
σ1
1 · · · ∂Xσn

n

,

σ = (σ1, . . . , σn), |σ | = σ1+· · ·+σn, (X1, . . . , Xn) are the coordinates in� and
|| · || denotes the norm onF . If we let C̃m(�, F ) be the subset consisting of those
functionsw for which ||w||m < ∞, then the Hilbert spaceHm(�,F) is defined
to be the completion of̃Cm(�,F ) in the norm|| · ||m (see, e.g., [1]). The standard
inner-product onHm(�,F) is defined as

〈v,w〉m =
∑
|σ |�m

∫
�

Dσv ·Dσw d�,

where the dot on the right-hand side denotes the standard inner-product onF . For
brevity, we shall often omit the subscriptm for the casem = 0. If we let

◦
Cm(�,F )

denote the subset consisting of those functionsw with compact support, then the
completion of

◦
Cm(�,F ) in the norm||·||m is a closed subspace ofHm(�,F), which

we denote by
◦
Hm(�,F). Throughout our developments, Hilbert spaces of the type

Hs(�, F ) with s non-integer will arise, and these are defined via interpolation, see,
e.g., [30]. When there is no danger of confusion, we will sometimes abbreviate
Hm(�,F) to Hm.

3.2. Model Problem

In the remainder of our development we will study the linearized equations of
motion for an incompressible elastic body. We assume that the body, in its reference
or undeformed state, occupies a closed subset�̄ of R

n where� is a bounded path-
connected open set with piecewise smooth boundary∂�.

We denote the displacement field for the body relative to its reference con-
figuration byu : �̄ × [0, T ] → R

n, and we denote the pressure field byp :
�̄×[0, T ] → R. The pressure field is that part of the total stress field that enforces
the linearized incompressibility condition∇ ·u = 0, where∇ denotes the gradient
operator relative to the Cartesian coordinates(X1, . . . , Xn) in �.
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The constitutive or active stress field within the body is denoted by� : �̄ ×
[0, T ] → M

n. HereM
n is the vector space of all realn × n matrices equipped

with the standard (Euclidean) inner productA : B = AijBij where summation on
repeated indices is implied. In the linearized theory, the active stress� is related
to the displacement field via a local constitutive relation of the form

�(X, t) = C(X,∇u(X, t)), (3.1)

whereC : �̄ × M
n → M

n is a given field that characterizes the elastic response
of the material. For eachX ∈ �̄ the mappingC(X, ·) : M

n → M
n is a linear

transformation whose kernel contains the set of all skew-symmetric matrices and
whose range is contained in the set of all symmetric matrices inM

n. Furthermore,
C(X, ·) enjoys the symmetry property

A : C(X, B) = B : C(X, A) ∀A,B ∈ M
n. (3.2)

3.2.1. Classic Formulation. Let*σ ,*s and*u be disjoint, relatively open subsets
of ∂�defined such that∂� = *σ ∪ *s ∪ *u.The initial and boundary value problem
that we will study is the following:
Findu : �̄× [0, T ] → R

n andp : �̄× [0, T ] → R such that

ρ ü = ∇ · � − ∇p + b in �× (0, T ],
∇ · u = 0 in �× [0, T ],

�N − pN = 0 in *σ × [0, T ],
��N = 0 in *s × [0, T ],
u · N = 0 in *s × [0, T ],

u = 0 in *u × [0, T ],

u(·,0) = û0 in �̄,

u̇(·,0) = v̂0 in �̄,

(3.3)

where superposed dots denote differentiation with respect to time,∇ · � : � ×
[0, T ] → R

n is defined in components by the relation

[∇ · �(X, t)]i = ∂j-ij (X, t), (i = 1, . . . , n), (3.4)

and∂j denotes the partial derivative with respect to the coordinateXj .
In the above systemb is a prescribed body force density per unit reference

volume,ρ is the mass density of the body in its reference configuration,N is the
unit outward normal field on∂�, � is a tangential projection field defined at each
point of ∂� by the expression� = I − N ⊗ N , û0 is a prescribed displacement
field, andv̂0 is a prescribed material velocity field.

The partial differential equation (3.3)1 expresses the local balance of linear
momentum (whereas the local balance of angular momentum is implied by the
symmetry of the total stress field� − pI ), (3.3)2 is the local incompressibility
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condition, (3.3)3 is a pure traction boundary condition, (3.3)4,5 are sliding-type
boundary conditions, (3.3)6 is a pure displacement boundary condition, and (3.3)7,8
are initial conditions.

Remarks 3.1. 1. There is no real loss of generality in assuming homogeneous
boundary data. If the boundary conditions are not homogeneous, then in or-
der to proceed we assume that there exists some functionũ which satisfies all
the boundary conditions. Giveñu, we then solve a homogeneous problem for
u − ũ with b appropriately redefined.

2. The governing equations in (3.3)1,2 for u andp may be interpreted as a system
of differential-algebraic equations in a function space since no time derivatives
of the fieldp appear; that is, the time evolution of the pressure field is not given
explicitly.

3.2.2. Lagrangian Structure. The system in (3.3) has an underlying Lagrangian
structure that we will exploit throughout our developments. To bring this structure
into evidence, we first introduce the ambient Hilbert space

He
1 = {u ∈ H1 | u · N = 0 on *s, u = 0 on *u}, (3.5)

and a Lagrangian functionalL : He
1 ×H0 → R for the unconstrained elastic body,

namely

L(u, u̇) =
∫
�

1
2ρ|u̇|2 −W(·,∇u) d�. (3.6)

HereW : �̄× M
n → R is an energy density function of the form

W(X, A) = 1
2A : C(X, A) (3.7)

whereC is the elasticity field of (3.1). The notationW(·,∇u) is used to denote the
function on�̄ defined byX �→ W(X,∇u(X)).

We next consider Hamilton’s principle for the Lagrangian (3.6) and enforce
the pointwise constraint∇ · u = 0 with a multiplier fieldp ∈ H0. The associated
Euler-Lagrange equations then take the form

d

dt
D2L(u, u̇, p) · η = D1L(u, u̇, p) · η ∀ η ∈ He

1 , ∀ t ∈ (0, T ],
D3L(u, u̇, p) · φ = 0 ∀φ ∈ H0, ∀ t ∈ [0, T ],

(3.8)

whereL : He
1 ×H0 ×H0 → R is the augmented Lagrangian functional

L(u, u̇, p) = L(u, u̇)+
∫
�

p ∇ · u d�. (3.9)

HereD1L(u, u̇, p) · η denotes the (partial) directional derivative defined by

D1L(u, u̇, p) · η = d

dα

∣∣∣
α=0

L(u + αη, u̇, p), (3.10)

with similar expressions for the other derivatives.
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Integrating by parts in (3.8) and introducing the momentum variableπ = ρu̇

leads to the pointwise equations

u̇ = ρ−1π in �× (0, T ],
π̇ = ∇ · � − ∇p + b in �× (0, T ],
0 = ∇ · u in �× [0, T ],

�N − pN = 0 in *σ × [0, T ],
��N = 0 in *s × [0, T ],

(3.11)

where the displacement boundary conditions onu are contained in the definition
of He

1 . We interpret (3.11) as a set of evolution equations for(u,π , p) in the space
He

1 ×H0×H1, and we typically seek solutions with the following differentiability

u ∈ ∩1
k=0C

1−k([0, T ], Hk+1),

π ∈ ∩1
k=0C

1−k([0, T ], Hk),

p ∈ C([0, T ], H1).

(3.12)

Notice that solutions of (3.11), if they exist, are restricted to lie in the set

A0 = {(u,π) ∈ He
1 ×H0 | ∇ · u = 0, ∇ · [ρ−1π ] = 0

and ρ−1π · N |*u∪*s = 0}. (3.13)

While an arbitrary elementρ−1π ∈ H0 does not generally have a well defined
trace on∂�, we recall that the condition∇ · [ρ−1π ] = 0 impliesρ−1π · N ∈
H−1/2(∂�,R) = [H1/2(∂�,R)]′, thusA0 is well defined.

3.3. Ambient-Space Formulation: Definition

For a given Hilbert spaceH, and a given set of boundary conditions, consider
a system of evolution equations in the spaceHe

1 × H of the form

u̇ = ρ−1π(u, ξ),

ξ̇ = w(u, ξ),
(3.14)

whereπ(u, ξ) andw(u, ξ) are given vector fields that may depend non-locally on
u andξ . In exact parallel with the finite-dimensional case, we say that (3.14) is
an ambient-space formulation for the constrained system (3.11) if the following
conditions hold:

1. The system possesses an invariant setM0 ⊂ He
1 × H.

2. The mapχ : M0 → He
1 ×H0 defined by

χ(u, ξ) = (u,π(u, ξ))

is onto the setA0 defined in (3.13).
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3. If (u, ξ)(t) is a solution inM0, then(u,π)(t) = χ(u, ξ)(t) is a solution of
(3.11) for somep(t).

The invariant setM0 will be called the physical solution set of the ambient-space
formulation. Just as in the finite-dimensional case, ambient-space formulations
can be constructed for whichM0 is unstable, a level set for a first integral, or
exponentially attractive in an appropriate sense.

3.4. Ambient-Space Formulations: Examples

In this section we construct three ambient-space formulations for the con-
strained system (3.11). We do not pause to justify well-posedness of the formu-
lations, although some remarks along these lines are made throughout. Questions
regarding well-posedness are addressed in Section 4 within the context of a specific
initial-boundary value problem.

3.4.1. Pressure-Based Formulation. Our first ambient-space formulation fol-
lows directly from (3.11) by eliminating the multiplierp. To begin, we formally
differentiate the constraint equation (3.11)3 twice with respect to time and substitute
from (3.11)1,2 to obtain

∇ · [ρ−1∇p] = ∇ · [ρ−1(∇ · � + b)] in �. (3.15)

We next supplement this equation with two boundary conditions. From (3.11)4
we have

p = N · �N on *σ , (3.16)

and from (3.11)1,2 and the fact thatu ∈ He
1 we arrive at a condition on*u ∪ *s ;

namely,

∇p · N = N · [∇ · � + b] on *u ∪ *s. (3.17)

Given the above equations for the pressure field we next consider the following
problem: Findu : [0, T ] → He

1 andξ : [0, T ] → H0 such that

u̇ = ρ−1ξ in �× (0, T ],
ξ̇ = ∇ · � − ∇p̂(u)+ b in �× (0, T ],

�N − p̂(u)N = 0 in *σ × [0, T ],
��N = 0 in *s × [0, T ],

wherep̂ = p̂(u) is determined by

∇ · [ρ−1∇p̂] = ∇ · [ρ−1(∇ · � + b)] in �,

p̂ = N · �N in *σ ,

∇p̂ · N = N · [∇ · � + b] in *u ∪ *s.

(3.18)

The relation between (3.18) and (3.11) is summarized in the following proposition.
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Proposition 3.1. Let g : He
1 → H0(�,R) be defined by g(u) = ∇ · u, let f :

He
1×H0 → H−1(�,R) be defined by f (u, ξ) = ∇·[ρ−1ξ ], and for any c ∈ g(He

1)

let

Mc = {(u, ξ) ∈ He
1 ×H0 | g(u) = c, f (u, ξ) = 0

and ρ−1ξ · N |*u∪*s = 0}.
Then (3.18)has the following properties:

1. The function f (u, ξ) is an integral for (3.18).
2. The set Mc is an invariant set for (3.18).
3. The map χ : M0 → He

1 ×H0 defined by

χ(u, ξ) = (u,π(u, ξ)) where π(u, ξ) = ξ

is onto A0.
4. If (u, ξ)(t) is a solution of (3.18) in M0, then (u,π)(t) = χ(u, ξ)(t) is a

solution of (3.11)with p(t) given by

p(t) = p̂(u(t)).

The above results show that (3.18) is an ambient-space formulation for (3.11)
and follow by direct verification. For example, to see thatf (u, ξ) is an integral, let
(u, ξ)(t) be any solution of (3.18) inHe

1 ×H0. Then, using (3.18)2 and the defining
equations forp̂(u), we have

d

dt
f (u, ξ)(t) = 0,

which establishes the first result. The invariance ofMc follows from the fact that

d

dt
g(u)(t) = f (u, ξ)(t), (3.19)

and the surjectivity ofχ follows from the fact thatM0 = A0 andχ is the identity
onM0.

Remarks 3.2. 1. The traction boundary condition (3.18)3 can be replaced by its
tangential projection��N = 0 in *σ . The reason for this is that the normal
component of (3.18)3 appears in (3.18)6.

2. A system analogous to (3.18) is studied inEbin & Simanca [15] for the free-
boundary problem*σ = ∂�, and in the special case of constant density, homo-
geneous isotropic elastic material law and zero body force. They claim to show
that the initial value problem for a system of the form (3.18) is well posed on the
physical solution set, that is, when restricted to the invariant setM0 ⊂ He

1 ×H0.
Their study does not address the problem of well-posedness in the ambient space
He

1 ×H0.

The next result, which follows from (3.19) and the fact thatf (u, ξ) is an integral,
shows that the physical solution setM0 of (3.18) is unstable in an appropriate sense.
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Proposition 3.2. Let (u, ξ)(t) be a solution of (3.18) with corresponding initial
data (u0, ξ0) in a neighborhood of M0. If the initial data satisfy

g(u0) = a and f (u0, ξ0) = b

for some functions a, b : � → R, then the solution (u, ξ)(t) has the property that

g(u(t)) = a + bt and f (u(t), ξ(t)) = b.

3.4.2. Striction-Based Formulation. As in the finite-dimensional case, our sec-
ond ambient-space formulation for (3.11) follows from a generalization of the
impetus-striction method developed in [31,11]. First, rather than consider the given
constraint∇ · u = 0, we consider the related constraint

∇ · u̇ + α∇ · u = 0, (3.20)

whereα ∈ R is a parameter.
Introducing a multiplierµ ∈ H0 for the constraint (3.20) we consider an aug-

mented Lagrangian functionalL : He
1 ×He

1 ×H0 → R defined by

L(u, u̇, µ) =
∫
�

1
2ρ|u̇|2 −W(·,∇u)+ b · u − µ[∇ · u̇ + α∇ · u] d�, (3.21)

and following [31,11] we refer to the multiplierµ as the striction field. Substituting
the above Lagrangian into the variational principle of Hamilton leads to the Euler-
Lagrange equations

d

dt
D2L(u, u̇, µ) · η = D1L(u, u̇, µ) · η ∀ η ∈ He

1 , ∀ t ∈ (0, T ],
D3L(u, u̇, µ) · φ = 0 ∀φ ∈ H0, ∀ t ∈ [0, T ].

(3.22)

Integrating by parts in (3.22) and introducing the variableζ defined by

ζ = ρ u̇ + ∇µ (3.23)

leads to the equations

u̇ = ρ−1[ζ − ∇µ] in �× (0, T ],
ζ̇ = ∇ · � + α∇µ+ b in �× (0, T ],
0 = ∇ · [ρ−1(ζ − ∇µ)] + α∇ · u in �× [0, T ],

�N − (µ̇− αµ)N = 0 in *σ × [0, T ],
��N = 0 in *s × [0, T ].

(3.24)

To develop an ambient-space formulation we next solve for the strictionµ as a
function of the state variablesu andζ . Using (3.24)3 we get the equation

∇ · [ρ−1∇µ] = ∇ · [ρ−1ζ + αu] in �, (3.25)
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to which we must append appropriate boundary conditions in order to uniquely
determineµ. From (3.24)1 and the fact thatu ∈ He

1 we arrive at a Neumann-type
condition on*u ∪ *s ; namely,

∇µ · N = ζ · N on *u ∪ *s. (3.26)

For the portion*σ we note that a Dirichlet-type boundary condition is provided by
the evolution equation

µ̇ = N · �N + αµ on *σ (3.27)

which is derived from (3.24)4. Introducing a boundary densityν via the equation

ν = µ on *σ , (3.28)

we consider the following problem: Findu : [0, T ] → He
1 and ξ = (ζ , ν) :

[0, T ] → H0 ×H1/2(*σ ,R) such that

u̇ = ρ−1[ζ − ∇µ(u, ζ , ν)] in �× (0, T ],
ζ̇ = ∇ · � + α∇µ(u, ζ , ν)+ b in �× (0, T ],
ν̇ = N · �N + αν in *σ × [0, T ],

��N = 0 in *σ × [0, T ],
��N = 0 in *s × [0, T ],
whereµ = µ(u, ζ , ν) is determined by

∇ · [ρ−1∇µ] = ∇ · [ρ−1ζ + αu] in �,

µ = ν in *σ ,

∇µ · N = ζ · N in *u ∪ *s.

(3.29)

The relation between (3.29) and (3.11) is summarized in the following proposition.

Proposition 3.3. Let g : He
1 → H0(�,R) be as above and for any c ∈ g(He

1) let
Mc = {(u, ζ , ν) ∈ He

1 × H0 × H1/2 | g(u) = c}. Then (3.29)has the following
properties:

1. The function g(u) is an integral for (3.29)if α = 0.
2. The set M0 is an invariant set for (3.29)for any α ∈ R.
3. The map χ : M0 → He

1 ×H0 defined by

χ(u, ζ , ν) = (u,π(u, ζ , ν)) where π(u, ζ , ν) = ζ − ∇µ(u, ζ , ν)

is onto A0.
4. If (u, ζ , ν)(t) is a solution of (3.29)in M0, then (u,π) = χ(u, ζ , ν) is a solution

of (3.11)with p(t) given by

p(t) = d

dt
µ(u, ζ , ν)(t)− αµ(u, ζ , ν)(t).
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To establish the first result let(u, ζ , ν)(t) be an arbitrary solution of (3.29) in
He

1 ×H0 ×H1/2. Then

d

dt
g(u)(t) = ∇ · u̇(t) = −α∇ · u(t) = −αg(u)(t). (3.30)

If α = 0, we deduce thatg(u) is constant along arbitrary solutions, and the result
follows. Integrating (3.30) yields

g(u)(t) = e−αtg(u)(0), (3.31)

and the second result follows upon noting that any solution with initial data inM0
satisfiesg(u)(0) = 0. To establish the third result, consider an arbitrary element
(ū, π̄) ∈ A0, so ∇ · ū = 0, ∇ · [ρ−1π̄ ] = 0 and π̄ · N |*u∪*s = 0. Taking
u = ū, ζ = π̄ andν = 0 we findµ(u, ζ , ν) = 0, and the result follows since
(u, ζ , ν) ∈ M0 and χ(u, ζ , ν) = (ū, π̄). The fourth result follows by direct
verification.

The above results show that (3.29) is an ambient-space formulation for (3.11).
The next proposition summarizes the stability properties of the physical solution set
M0 of (3.29); in particular, the setM0 is exponentially attractive in an appropriate
sense ifα > 0.

Proposition 3.4. Let (u, ζ , ν)(t) be a solution of (3.29)with corresponding initial
data (u0, ζ 0, ν0) in a neighborhood of M0. If the data satisfy g(u0) = a for
some function a : � → R, then the solution (u, ζ , ν)(t) has the property that
g(u(t)) = ae−αt .

Remark 3.3. Forα = 0, the formulation in (3.29) possesses a Hamiltonian struc-
ture that can be developed by employing a slight generalization of the impetus-
striction formalism in [11,31]. As compared to those in [11,31], the above formu-
lation is more complicated in the sense that the impetus variableξ = (ζ , ν) has two
components: a bulk componentζ defined in the interior of the spatial domain and
a singular componentν defined on a portion of the boundary. In accordance with
the original formalism, the strictionµ is defined at any instant in time through a
minimization, but here one of the boundary conditions for the striction is governed
by an explicit evolution equation defined on the boundary. These complications do
not arise in the example of [11] because only one space dimension is considered,
and do not arise in the example of [31] because of the specific boundary conditions
appropriate for inviscid fluid flow.

3.4.3. Pressure-Striction Formulation. In this section we use a multi-multiplier
approach to construct an ambient space formulation without boundary evolution
equations. As shown earlier, a formulation based on a single pressure-type multi-
plier does not involve boundary evolution equations; however, its physical solution
set is unstable. By employing different types of multipliers we will be able to avoid
evolution equations on the boundary without sacrificing the stability of the physical
solution set.

Motivated as in Section 2 within the finite-dimensional case, we introduce a
multiplier λ ∈ H0 for the displacement-level constraint∇ · u = 0 and a multiplier
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µ ∈ H0 for the velocity-level constraint∇ · u̇ = 0, and we consider an augmented
LagrangianL : He

1 ×He
1 ×H0 ×H0 → R defined by

L(u, u̇, λ, µ) =
∫
�

1
2ρ|u̇|2 −W(·,∇u)+ b · u + λ∇ · u − µ∇ · u̇ d�. (3.32)

Notice that the multiplierλ is a pressure-like variable while the multiplierµ is
striction-like. Substituting the above Lagrangian into the variational principle of
Hamilton leads to the Euler-Lagrange equations

d

dt
D2L(u, u̇, λ, µ) · η = D1L(u, u̇, λ, µ) · η ∀ η ∈ He

1 ,∀ t ∈ (0, T ],
D3L(u, u̇, λ, µ) · φ = 0 ∀φ ∈ H0,∀ t ∈ [0, T ],
D4L(u, u̇, λ, µ) · φ = 0 ∀φ ∈ H0, ∀ t ∈ [0, T ].

(3.33)

Integrating by parts in (3.33) and introducing the variableξ defined by

ξ = ρ u̇ + ∇µ (3.34)

leads to the equations

u̇ = ρ−1[ξ − ∇µ] in �× (0, T ],
ξ̇ = ∇ · � − ∇λ+ b in �× (0, T ],
0 = ∇ · u in �× [0, T ],
0 = ∇ · [ρ−1(ξ − ∇µ)] in �× [0, T ],

�N − (λ+ µ̇)N = 0 in *σ × [0, T ],
��N = 0 in *s × [0, T ].

(3.35)

To develop an ambient-space formulation, we proceed as in the finite-dimen-
sional case and solve for the strictionµ as a function of the state variablesu andξ

while leavingλ arbitrary. Using (3.35)4 we get the equation

∇ · [ρ−1∇µ] = ∇ · [ρ−1ξ ] in �, (3.36)

to which we must append appropriate boundary conditions in order to uniquely
determineµ. From (3.35)1 and the fact thatu ∈ He

1 we arrive at a Neumann-type
condition on*u ∪ *s ; namely,

∇µ · N = ξ · N on *u ∪ *s. (3.37)

For the portion*σ we note that we can avoid the evolution term in (3.35)5 by
imposing the condition

µ = 0 on *σ . (3.38)

This choice forµ implies that the arbitrary multiplier fieldλ must now satisfy the
boundary condition

λ = N · �N on *σ . (3.39)
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As we remarked in Section 2, the multiplierλ can be used to control certain
aspects of the “non-physical” dynamics in an ambient-space formulation. For ex-
ample, ifλ satisfies the equation

∇ · [ρ−1∇λ] = ∇ · [ρ−1(∇ · � + b)] in �, (3.40)

then the functionf (u, ξ) = ∇ · [ρ−1ξ ] will be an integral in the resulting formu-
lation. This choice ofλ thus controls the divergence of the velocity-like variable
ρ−1ξ . To uniquely specifyλ it remains to specify boundary conditions on the por-
tion*u∪*s , and to this end we specify natural boundary conditions associated with
a weak formulation of (3.40), namely

∇λ · N = (∇ · � + b) · N on *u ∪ *s. (3.41)

Given the above expressions forµ andλ we consider the following problem:
Findu : [0, T ] → He

1 andξ : [0, T ] → H0 such that

u̇ = ρ−1[ξ − ∇µ(ξ)] in �× (0, T ],
ξ̇ = ∇ · � − ∇λ(u)+ b in �× (0, T ],

�N − λ(u)N = 0 in *σ × [0, T ],
��N = 0 in *s × [0, T ],

whereµ = µ(ξ) andλ = λ(u) are determined by

∇ · [ρ−1∇µ] = ∇ · [ρ−1ξ ] in �,

µ = 0 in *σ ,

∇µ · N = ξ · N in *u ∪ *s,

∇ · [ρ−1∇λ] = ∇ · [ρ−1(∇ · � + b)] in �,

λ = N · �N in *σ ,

∇λ · N = (∇ · � + b) · N in *u ∪ *s.

(3.42)

The relation between (3.42) and (3.11) is summarized in the following proposition.

Proposition 3.5. Let g : He
1 → H0(�,R) be as before and for any c ∈ g(He

1) let
Mc = {(u, ξ) ∈ He

1 ×H0 | g(u) = c}. Then (3.42)has the following properties:

1. The function g(u) is an integral for (3.42), thus M0 is invariant.
2. The map χ : M0 → He

1 ×H0 defined by

χ(u, ξ) = (u,π(u, ξ)) where π(u, ξ) = ξ − ∇µ(ξ)

is onto A0.
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3. If (u, ξ)(t) is a solution of (3.42)in M0, then (u,π)(t) = χ(u, ξ)(t) is a solution
of (3.11)with the pressure p(t) given by

p(t) = λ(u)(t)+ d

dt
µ(ξ)(t).

The above results show that (3.42) is an ambient-space formulation for (3.11)
and follow by direct verification. For example, to see thatg(u) is an integral, let
(u, ξ)(t) be any solution of (3.42) inHe

1 ×H0. Then, using (3.42)1 and the defining
equations forµ(ξ), we have

d

dt
g(u)(t) = 0,

which establishes the first result. To establish the surjectivity ofχ consider an
arbitrary element(ū, π̄) ∈ A0, so∇ · ū = 0,∇ · [ρ−1π̄ ] = 0 andπ̄ ·N |*u∪*s = 0.
Takingu = ū andξ = π̄ we findµ(ξ) = 0, and the result follows since(u, ξ) ∈
M0 andχ(u, ξ) = (ū, π̄).

In contrast with the pure pressure formulation, the physical solution setM0 of
(3.42) is neutrally stable since it may be interpreted as the level set of the integral
g(u). However, the stability properties ofM0 in the present case can be enhanced
by appropriately changing the boundary value problem for the strictionµ. To this
end, consider (3.42) with the following modified boundary value problem for the
strictionµ

∇ · [ρ−1∇µ] = ∇ · [ρ−1ξ ] + α∇ · u in �,

µ = 0 in *σ ,

∇µ · N = ξ · N in *u ∪ *s,

(3.43)

whereα ∈ R is a parameter. The relation between (3.42) subject to (3.43) and
(3.11) is summarized in the following proposition which may be readily verified.

Proposition 3.6. Consider (3.42)subject to (3.43)and let g(u) and Mc be as in
Proposition 3.5. Then (3.42)has the following properties:

1. The set M0 is invariant for any fixed α ∈ R.
2. The map χ : M0 → He

1 ×H0 defined by

χ(u, ξ) = (u,π(u, ξ)) where π(u, ξ) = ξ − ∇µ(ξ)

is onto A0.
3. If (u, ξ)(t) is a solution in M0, then (u,π)(t) = χ(u, ξ)(t) is a solution of

(3.11)with p(t) given by

p(t) = λ(u)(t)+ d

dt
µ(u, ξ)(t).
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4. The set M0 is exponentially attractive for α > 0 in the following sense: any
solution of (3.42)subject to (3.43)has the property

g(u)(t) = e−αtg(u)(0).

4. Existence and Uniqueness Results

In this section we state a well-posedness result for the pressure-striction ambient-
space formulation outlined in Section 3.4.3. We consider the inhomogeneous Neu-
mann problem defined by the conditions*u = ∅,*s = ∅ and*σ = *, and consider
a homogeneous, isotropic material.

In proving the well-posedness of our ambient-space formulation we prove ex-
istence and uniqueness for an inhomogeneous Neumann problem in linearized in-
compressible elastodynamics. For compressible elastodynamics we note that much
work has been done within both the linear and nonlinear settings.Various results for
the linear case are reviewed in [32], and results for the nonlinear case have appeared
more recently. For example, the initial value problem posed on all of space is con-
sidered in [22], the Dirichlet initial-boundary value problem is considered in [25,
7,10] and the Neumann initial-boundary value problem in two space dimensions
is considered in [38].

For incompressible elastodynamics, the initial value problem for nonlinear ma-
terials posed on all of space is treated in [14,17] and the Dirichlet initial-boundary
value problem is treated in [23]. The Neumann initial-boundary value problem for
the linearized case is treated in [15] and was subsequently extended to the nonlinear
case in [16]. Here we note that the aforementioned results for the incompressible
case have been restricted to constrained formulations of the problem. A different
approach to the initial value problem posed in all of space was taken in [39], where
results for the incompressible case were established by passing to a limit from the
compressible case.

Our well-posedness result for linearized incompressible elastodynamics, con-
tained in Theorem 4.1 below, generalizes a result claimed byEbin & Simanca
[15] who studied a different formulation of the same physical problem. (The weak
formulation given in [15] is not correct, actually. Proposition 3.17 in [15] is false,
for example.) In [15] the system of interest is formulated only for solutions that
satisfy the configuration constraints. In contrast, the system considered here is for-
mulated in an ambient space, which yields information regarding the stability of
the formulation to perturbations that fail to respect the physical constraints.

4.1. The Inhomogeneous Neumann Problem

The problem we will study is that of finding a displacement fieldu : �̄ ×
[0, T ] → R

n and an impetus fieldξ : �̄× [0, T ] → R
n such that
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u̇ = ρ−1[ξ − ∇µ(ξ)] in �× (0, T ],
ξ̇ = ∇ · � − ∇λ(u)+ b in �× (0, T ],

�N − λ(u)N = h in * × [0, T ],

u(·,0) = u0 in �̄,

ξ(·,0) = ξ0 in �̄,

∇ · [ρ−1∇µ] = ∇ · [ρ−1ξ ] in �,

µ = 0 on *,

∇ · [ρ−1∇λ] = ∇ · [ρ−1∇ · � + ρ−1b] in �,

λ = N · �N − N · h on *.

(4.1)

For the case of a homogeneous, isotropic material we suppose that the mass
density fieldρ > 0 is constant and that the constitutive stress field� is of the form

� = C(∇u) = 2ϑ sym[∇u] (4.2)

whereϑ > 0 is the constant shear modulus and sym[·] is the symmetric projection
onM

n.

Remark 4.1. The traction boundary condition (4.1)3 can be replaced by its tangen-
tial projection��N = �h in *. The reason for this is that the normal component
of (4.1)3 appears in (4.1)9.

4.2. Abstract Formulation and Main Result

In this subsection we set up a Hilbert space formulation of the system in (4.1)
and state the well-posedness result. To begin, we introduce the Hilbert spaces

V = H1(�,R
n),

W = H0(�,R
n),

equipped with the inner-products

〈·, ·〉V = α〈·, ρ ·〉0 + 〈∇(·),C∇(·)〉0,
〈·, ·〉W =

〈
·, ρ−1 ·

〉
0
,

whereα � 0 is a suitable constant. Forϑ > 0 the elasticity fieldC satisfies
a strong ellipticity condition and thus there is anα for which the inner-product
〈·, ·〉V is equivalent to〈·, ·〉1 (see, e.g., [32,18]). Recall that equivalence of the
inner products implies there is a constantd > 0 such that

1

d2 ||v||21 � 〈v, v〉V := ||v||2V � d2||v||21 ∀ v ∈ V.



308 O. Gonzalez, J. H. Maddocks & R. L. Pego

Similarly, the inner-product〈·, ·〉W is equivalent to〈·, ·〉0.
To develop an abstract formulation of (4.1) we introduce the following opera-

tors:

B : D(B) ⊂ V → W,

D(B) := {u ∈ V | u ∈ H2(�,R
n), ��(u)N = �h on*},

B(u) := ∇ · �(u)− ∇λ(u),

C : D(C) ⊂ W → V,

D(C) := {ξ ∈ W | ξ ∈ H1(�,R
n)},

C(ξ) := ρ−1[ξ − ∇µ(ξ)],

A : D(A) ⊂ V × W → V × W,

D(A) := D(B)×D(C),

A(u, ξ) := (C(ξ),B(u)).

(4.3)

Remarks 4.2. 1. For the operatorB to be well defined it is required thatλ(u) be
in H1(�,R) given thatu is in H2(�,R

n). To see that this is indeed the case,
assumeb is in H0(�,R

n) and thath is in H 1
2
(*,R

n). Then the equation

〈
∇λ̄, ρ−1∇φ

〉
0
=

〈
∇ · �(u)+ b, ρ−1∇φ

〉
0

∀φ ∈ ◦
H 1(�,R) (4.4)

has a unique solution̄λ(u) ∈ ◦
H 1(�,R), and the equations

∇ · [ρ−1∇λ̃] = 0 in �,

λ̃ = N · �(u)N − N · h on *
(4.5)

have a unique solutioñλ(u) ∈ H1(�,R) (see, e.g., [34,30]). Settingλ = λ̄+ λ̃

we see thatλ satisfies (4.1)8,9 andλ ∈ H1(�,R).
2. For anyφ ∈ ◦

H 1(�,R) we have

〈
B(u)+ b, ρ−1∇φ

〉
0
= 0. (4.6)

This follows from (4.4), (4.5) and the decompositionλ = λ̄+ λ̃.
3. For the operatorC to be well defined it is required thatµ(ξ) be inH2(�,R)

given thatξ is inH1(�,R
n). This follows from (4.1)6,7 and the standard theory

for such equations (see, e.g., [34,30]).
4. Note that∇ · C(ξ) = 0 for anyξ ∈ D(C).



Constrained Dynamical Systems 309

An abstract formulation of (4.1) can be stated as follows:

Givenb ∈ H0(�,R
n) andh ∈ H 1

2
(*,R

n), and initial data(u0, ξ0) ∈ D(A), find

a curve(u, ξ) : [0, T ] → D(A) ⊂ V × W such that(u, ξ)(0) = (u0, ξ0) and{
u̇

ξ̇

}
= A

{
u

ξ

}
+

{
0
b

}
∀ t ∈ (0, T ]. (4.7)

Our main result on the existence and uniqueness of solutions to (4.7) is contained
in the following statement.

Theorem 4.1. Assume the domain � is open, bounded and of class C2. Then, given
b ∈ H0(�,R

n), h ∈ H 1
2
(*,R

n) and initial data (u0, ξ0) ∈ D(A), there is a unique

continuously differentiable curve (u, ξ) : [0, T ] → D(A) ⊂ V × W satisfying
(4.7)and (u, ξ)(0) = (u0, ξ0).

5. Proof of Well-Posedness

In this section we prove Theorem 4.1. We first introduce an auxiliary problem
and show that, for appropriate inhomogeneous data, solutions of this problem satisfy
(4.7). We then use the theory of semigroups to establish existence and uniqueness
of solutions to the auxiliary problem with homogeneous data. This result is then
extended to inhomogeneous data by use of a variation of constants formula, and
the result for (4.7) will follow.

5.1. An Auxiliary Problem

In this subsection we introduce an auxiliary problem that will prove useful in
the analysis of (4.7). To begin, we define closed subspacesVdiv andWdiv as

Vdiv := {v ∈ V | ∇ · v = 0},
Wdiv := {w ∈ W |

〈
w, ρ−1∇φ

〉
0
= 0 ∀φ ∈ ◦

H 1(�,R)}, (5.1)

and introduce operatorsBdiv, Cdiv andAdiv as follows:

Bdiv : D(Bdiv) ⊂ Vdiv → Wdiv,

D(Bdiv) := {u ∈ Vdiv | u ∈ H2(�,R
n), ��(u)N = 0 on*},

Bdiv(u) := ∇ · �(u)− ∇q(u),

Cdiv : D(Cdiv) ⊂ Wdiv → Vdiv,

D(Cdiv) := {ξ ∈ Wdiv | ξ ∈ H1(�,R
n)},

Cdiv(ξ) := ρ−1ξ ,

Adiv : D(Adiv) ⊂ Vdiv × Wdiv → Vdiv × Wdiv,

D(Adiv) := D(Bdiv)×D(Cdiv),

Adiv(u, ξ) := (Cdiv(ξ),Bdiv(u)),

(5.2)
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whereq = q(u) is determined from

∇ · [ρ−1∇q] = ∇ · [ρ−1∇ · �(u)] in �,

q = N · �(u)N on *.
(5.3)

Remarks 5.1. 1. The boundary condition appearing in the definition ofD(Bdiv) is
a homogeneous version of that inD(B), and the system forq(u) is a “homoge-
neous” version of the system forλ(u).

2. For anyφ ∈ ◦
H 1(�,R) we have

〈
Bdiv(u), ρ

−1∇φ
〉
0
= 0. (5.4)

This follows from (5.3).
3. For anyξ ∈ D(Cdiv) note that∇ · Cdiv(ξ) = 0.

A problem closely associated with (4.7) is the following:

Given(f ,g) ∈ Vdiv×Wdiv and(v0,w0) ∈ D(Adiv), find a curve(v,w) : [0, T ] →
D(Adiv) ⊂ Vdiv × Wdiv such that(v,w)(0) = (v0,w0) and

{
v̇

ẇ

}
= Adiv

{
v

w

}
+

{
f

g

}
∀ t ∈ (0, T ]. (5.5)

The relation between (5.5) and (4.7) is established in the following proposition.

Proposition 5.1. Let b ∈ H0(�,R
n), h ∈ H 1

2
(*,R

n) and (u0, ξ0) ∈ D(A) be

given. Then (u, ξ) : [0, T ] → D(A) ⊂ V × W is a curve satisfying (4.7) if and
only if the curve (v,w) : [0, T ] → D(Adiv) ⊂ Vdiv × Wdiv, defined by

(v(t),w(t)) = (u(t)− u0, ξ(t)− ξ0), (5.6)

satisfies (5.5)with data

f = ρ−1[ξ0 − ∇µ(ξ0)],
g = ∇ · �(u0)− ∇λ(u0)+ b,

(v0,w0) = (0, 0).

(5.7)

Proof. Assume(u, ξ)(t) is a curve satisfying (4.7) with the given data. Then, for
anyφ ∈ ◦

H 1(�,R) we have

d

dt
〈u,∇φ〉0 = 〈u̇,∇φ〉0 = 〈C(ξ),∇φ〉0 = 0

d

dt

〈
ξ , ρ−1∇φ

〉
0
=

〈
ξ̇ , ρ−1∇φ

〉
0
=

〈
B(u)+ b, ρ−1∇φ

〉
0
= 0

∀ t ∈ (0, T ]

(5.8)
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which implies that(v,w)(t) is in Vdiv × Wdiv for all t ∈ [0, T ]. Next, note that
by construction we havev(t) ∈ H2(�,R

n) and w(t) ∈ H1(�,R
n). Because

u(t) ∈ D(B), it follows that

��(v(t))N = ��(u(t))N − ��(u0)N

= �h − �h = 0,
(5.9)

which implies that(v,w)(t) is in D(Adiv) for all t ∈ [0, T ].
Since(u, ξ)(t) satisfies (4.7), and(u, ξ) = (v + u0,w + ξ0), we find that

(v,w)(t) satisfies

v̇ = ρ−1[w − ∇µ(w)] + ρ−1[ξ0 − ∇µ(ξ0)],
ẇ = ∇ · �(v)− ∇λ(v + u0)+ ∇ · �(u0)+ b.

(5.10)

Noting thatµ(w) = 0, and that

λ(v + u0) = q(v)+ λ(u0), (5.11)

it follows that(v,w)(t) satisfies (5.5) with

f = ρ−1[ξ0 − ∇µ(ξ0)] ∈ Vdiv,

g = ∇ · �(u0)− ∇λ(u0)+ b ∈ Wdiv,

(v0,w0) = (0, 0).

(5.12)

The converse follows similarly.

To establish existence and uniqueness results for problem (4.7) onV×W, it thus
suffices to consider the auxiliary problem (5.5) on the closed subspaceVdiv×Wdiv.
Moreover, to establish results for (5.5) we need only consider the homogeneous
version of it, i.e.,(f ,g) = (0, 0). If we can show that the homogeneous prob-
lem generates a semigroup, then the existence of solutions for the inhomogeneous
problem will follow from a variation of constants formula.

5.2. The Semigroup Approach

Consider the Hilbert spaceX = Vdiv × Wdiv with inner-product defined by

〈(u, ξ), (v,w)〉X = 〈u, v〉V + 〈ξ ,w〉W . (5.13)

The goal of this section is to show that the operatorAdiv : D(Adiv) ⊂ X → X
defined in (5.5) is the infinitesimal generator of a (C0) semigroup{S(t) | t � 0} on
X . Recall that, ifS(t) is the semigroup generated byAdiv, then for anyx0 ∈ D(Adiv)

the curvex(t) = S(t)x0 lies inD(Adiv) and satisfies

ẋ = Adivx and x(0) = x0.

To establish the existence and uniqueness of a semigroup forAdiv we will employ
the following fundamental result.
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Theorem 5.2 (Lumer-Phillips). Let Adiv be a linear operator on a Hilbert
space X . Then Adiv is the generator of a (quasi-contractive) semigroup S(t) if
and only if

(i) D(Adiv) is dense in X ,
(ii) ∃β � 0 such that 〈x,Adiv x〉X � β ||x||2X , ∀ x ∈ D(Adiv),
(iii) (γ I − Adiv) : D(Adiv) → X is surjective for γ sufficiently large.

The next proposition establishes the existence of a semigroup forAdiv.

Proposition 5.3. Assume the domain � is open, bounded and of class C2. Then the
operator Adiv in (5.5) is the generator of a semigroup S(t) on X .

Proof. The result follows by direct verification of the conditions in the Lumer-
Phillips Theorem.

1. To establish the inequality in (ii) let(v,w) ∈ D(Adiv) be arbitrary. Then

〈(v,w),Adiv(v,w)〉X
= 〈(v,w), (Cdiv(w),Bdiv(v))〉X
= 〈v,Cdiv(w)〉V + 〈w,Bdiv(v)〉W
= α〈v, ρCdiv(w)〉0 + 〈∇Cdiv(w),�(v)〉0 +

〈
ρ−1w,Bdiv(v)

〉
0
.

Integrating the second term by parts, using the boundary condition on�(v) and
using the definition ofq(v) gives

〈(v,w),Adiv(v,w)〉X = α〈v, ρCdiv(w)〉0 + 〈q(v)Cdiv(w),N〉0,*
− 〈∇ · �(v),Cdiv(w)〉0 +

〈
ρ−1w,Bdiv(v)

〉
0
.

Applying the divergence theorem to the second term and using the fact that∇ ·
Cdiv(w) = 0 yields

〈(v,w),Adiv(v,w)〉X = α〈v, ρCdiv(w)〉0 + 〈∇q(v),Cdiv(w)〉0
− 〈∇ · �(v),Cdiv(w)〉0 +

〈
ρ−1w,Bdiv(v)

〉
0

= α〈v,w〉0,
where the last line follows from the definitions ofBdiv andCdiv. Applying the
Cauchy-Schwartz inequality we find that

〈(v,w),Adiv(v,w)〉X � α

2
(||ρ1/2v||20 + ||ρ−1/2w||20) � β ||(v,w)||2X ,

whereβ = max(1, α)/2.

2. To establish condition (iii), for any(f ,g) ∈ X we consider the equation

(γ I − Adiv)(v,w) = (f ,g). (5.14)
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For γ sufficiently large, our goal is to show that given(f ,g) there is a unique
(v,w) ∈ D(Adiv) satisfying (5.14). Writing the above system in components and
rearranging terms yields the system

w = ρ(γ v − f ),

γ 2ρv − Bdiv(v) = γρf + g.
(5.15)

Hence, givena = γρf + g ∈ Wdiv we seekv ∈ D(Bdiv) ⊂ Vdiv such that

Lγ 2(v) := γ 2ρv − Bdiv(v) = a. (5.16)

To solve (5.16) we consider an associated weak formulation obtained by multiplying
by an arbitrary elementη of Vdiv and integrating by parts. The resulting weak
equation is

γ 2〈ρv, η〉0 + 〈C∇v,∇η〉0 = 〈a, η〉0 ∀ η ∈ Vdiv. (5.17)

For γ 2 � α we note that the left-hand side is equivalent to the inner-product on
Vdiv ⊂ H1(�,R

n). Hence, by the Lax-Milgram Theorem [27], there exists a unique
v ∈ Vdiv satisfying (5.17). Using regularity results for Neumann boundary value
problems for Stokes-type systems given inGiaquinta & Modica [19, Theorem
1.2, p. 198; Remark 2.6, p. 206] (slightly generalized to include the termγ 2〈ρv, η〉0
above), we havev ∈ Vdiv ∩H2(�,R

n).
It thus remains to show thatv ∈ D(Bdiv), that is, to showv satisfies the

appropriate boundary conditions. To this end, consider the linear functional7 :◦
H 1 → R defined for anyη ∈ ◦

H 1 by

7(η) = γ 2〈ρv, η〉0 + 〈C∇v,∇η〉0 − 〈a, η〉0. (5.18)

It is straightforward to show that there is a constantC, independent ofη, such that

|7(η)| � C||η||1.
Thus7 ∈ H−1 = (

◦
H 1)

′. From (5.17) we have

7(η) = 0 ∀ η ∈ ◦
H 1 ∩ Vdiv

and by Propositions 1.1 and 1.2 inTemam [42, p. 14] there exists âq ∈ H0 such
that

〈
q̂,1

〉
0 = 0 and

7(η) = 〈
q̂,∇ · η〉

0 ∀ η ∈ ◦
H 1,

or

γ 2〈ρv, η〉0 + 〈�(v),∇η〉0 − 〈a, η〉0 = 〈
q̂,∇ · η〉

0 ∀ η ∈ ◦
H 1. (5.19)

Using (5.19) together with the fact thatv is inH2 it is straightforward to show that
q̂ ∈ H1. Moreover, integrating by parts in (5.19) we find that

∇ · �(v)−∇q̂ = γ 2ρv − a in �. (5.20)
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Now, consider a mappingP : H1 → ◦
H 1 defined by

P(η) = θ(η)− �(η),

whereθ = θ(η) is defined by the Laplace equation

8θ = 0 in �,

θ = η −
[∫

*
η · N d*∫
*

d*

]
N in *,

and� = �(η) is defined by the Stokes equations

8� − ∇ξ = 0 in �,

∇ · � = 0 in �,

� = θ in *.

That θ(η) is well defined follows from the standard theory for elliptic equations,
see, e.g., [30], and that�(η) is well defined follows from the standard theory for
the Stokes equations, see, e.g., [42]. Using the definition ofP together with (5.19)
we thus have

γ 2〈ρv,P(η)〉0 + 〈�(v),∇P(η)〉0 − 〈a,P(η)〉0
= 〈

q̂,∇ · P(η)
〉
0 ∀ η ∈ H1,

(5.21)

and using the fact that�(η) ∈ Vdiv together with (5.17) the above equation reduces
to

γ 2〈ρv, θ(η)〉0 + 〈�(v),∇θ(η)〉0 − 〈a, θ(η)〉0
= 〈

q̂,∇ · θ(η)〉0, ∀ η ∈ H1.
(5.22)

Integrating the above equation by parts and using (5.20) we obtain

0 = 〈
θ(η),�(v)N − q̂N

〉
0,*

= 〈
η,�(v)N − q̂N

〉
0,*

−
[∫

*
η · N d*∫
*

d*

] 〈
N ,�(v)N − q̂N

〉
0,* ∀ η ∈ H1.

(5.23)

To establish thatv satisfies the appropriate boundary condition consider anyη ∈ H1
such thatη = ��(v)N on* where�(X) is the projection onto the tangent plane
to * atX. For any suchη we haveη · N = 0 on* and (5.23) yields

〈��(v)N ,��(v)N〉0,* = 0. (5.24)

The above equation implies��(v)N = 0 on* which is the appropriate boundary
condition forv. We thus havev ∈ D(Bdiv) and (5.15)1 yieldsw ∈ D(Cdiv). The
surjectivity condition is thus proved.
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3. SinceD(Cdiv) is dense inWdiv, condition (i) will follow from the dense-
ness ofD(Bdiv) in Vdiv. To establish the denseness ofD(Bdiv) consider any
v ∈ [D(Bdiv)]⊥. Then, for anyu ∈ D(Bdiv), we have

0 = 〈v,u〉V = α〈v, ρu〉0 + 〈∇v,�(u)〉0
= 〈αρu − ∇ · �(u)+ ∇q(u), v〉0
= 〈Lα(u), v〉0 = 〈Lα(u), ρv〉W .

Since the operatorLα mapsD(Bdiv) ontoWdiv andρv ∈ Wdiv, we deduce that
v = 0, thus proving the denseness ofD(Bdiv).

5.3. Proof of Theorem 4.1

By Proposition 5.3 the operatorAdiv generates a semigroupSdiv(t) on Vdiv ×
Wdiv. Given any(v0,w0) ∈ D(Adiv) and any(f ,g) ∈ Vdiv × Wdiv, we can solve
(5.5) via the variation of constants formula

(v,w)(t) = Sdiv(t)(v0,w0)+
∫ t

0
Sdiv(t − τ)(f ,g) dτ. (5.25)

In particular,(v,w)(t) is a continuously differentiable curve inD(Adiv) ⊂ Vdiv ×
Wdiv satisfying (5.5) and(v,w)(0) = (v0,w0), see, e.g., [24, Chapter IX, Section
1.5]. Theorem 4.1 now follows from Proposition 5.1 by taking

f = ρ−1[ξ0 − ∇µ(ξ0)] ∈ Vdiv,

g = ∇ · �(u0)− ∇λ(u0)+ b ∈ Wdiv,

(v0,w0) = (0, 0).

(5.26)

6. Discussion

We have shown that when considering finite- and infinite-dimensional La-
grangian dynamical systems subject to holonomic constraints, there can be some
advantage in enforcing velocity-level constraints either instead of, or in addition to,
configuration-level constraints.All the formulations we consider areambient-space
formulations: they are defined (at least formally) on the whole of an ambient space
and they possess a physical solution set, that is, an invariant set on which physical
balance laws and constraints are satisfied. Depending on how constraints are intro-
duced into the underlying action principle, using multipliers of striction or pressure
type, different ambient-space formulations can be constructed for which the phys-
ical solution set is either unstable, the level set of a first integral, or exponentially
attractive in an appropriate sense.
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6.1. Ambient-Space Formulations

As mentioned in the Introduction, our motivations for studying ambient-space
formulations are twofold. First, we believe that these types of formulations may be
useful within the context of numerical simulation and analysis. In particular, the
ability to control the stability properties of the physical solution set while maintain-
ing a Hamiltonian structure is a potentially important freedom that does not appear
to have been fully exploited in the literature on constrained systems, especially in
the infinite-dimensional case. Second, ambient-space formulations can sometimes
allow standard analysis techniques, such as stability calculations via Lyapunov ar-
guments [11] or existence and regularity theory as considered here, to be brought
to bear more simply and concretely than for analogous formulations restricted to
constraint manifolds.

We believe ambient-space formulations to be of practical interest for both finite-
and infinite-dimensional systems. Many constrained Lagrangian systems of con-
temporary interest are intrinsically finite-dimensional, and ambient-space formu-
lations could provide a practical means for their numerical treatment. Indeed, var-
ious studies have been made along these lines [4,28]. However, the Hamiltonian
ambient-space formulation introduced here does not seem to have appeared before,
and perhaps deserves further study in such contexts.

In this article we have considered ambient-space formulations for both finite-
and infinite-dimensional constrained Lagrangian systems. However, we did not
probe into the connections between a given infinite-dimensional system and associ-
ated finite-dimensional approximations, such as would arise from spatial discretiza-
tion. If, for example, one considers spatial discretizations that preserve Lagrangian
structure, then one can immediately consider two finite-dimensional ambient-space
approximations depending on whether one first passes to an ambient-space formu-
lation and then discretizes, or vice-versa. In such cases the numerical treatment of
constrained infinite-dimensional systems via an ambient-space formulation would
seem to necessitate a firm understanding of how the discretization process interacts
with the passage to an ambient space.

6.2. Multiple Multipliers

When a linear combination of the original configuration-level constraint and
its associated velocity-level constraint, as in (2.9) or (3.20), are introduced into the
action principle, we refer to the associated multiplier as being of striction type.
This type of multiplier can be eliminated via an appropriate minimization, and the
resulting ambient-space formulation is Hamiltonian. Moreover, the formulation
possesses an exponentially attractive physical solution set when the parameterα

appearing in (2.9) or (3.20) is positive. This observation, which appears to be new
in both the finite- and infinite-dimensional cases, is one extension of the impetus-
striction approach as described in [31,11], which constructed only the neutrally
stable case.

For infinite-dimensional problems, we showed that use of a single multiplier
field of striction type can lead to boundary evolution equations that may be un-
usual to use or analyze. However, in our second extension of the impetus-striction
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method, we showed that boundary evolution equations can be avoided by introduc-
ing multiplier fields of both striction and pressure type. The physical solution set in
the resulting multi-multiplier formulation, which no longer need be Hamiltonian,
enjoyed all the stability properties of the pure striction approach. For the specific
initial-boundary value problem in linearized incompressible elastodynamics corre-
sponding to a body with a specified traction on its boundary, the multi-multiplier
formulation was proven to be well posed in the sense stated in Theorem 4.1.

6.3. Impetus and Impulse

When constraints of the form (2.9) or (3.20) are introduced into the action
principle the natural conjugate variable is not the classic momentum, but a related
quantity that we call theimpetus [31,11]. In each case, impetus determines the stric-
tion and velocity fields according to a rule of decomposition guaranteeing that the
constraints remain satisfied. The impetus and striction variables have an interesting
physical meaning that can be explained as follows. Consider first an unconstrained
finite-dimensional system, analogous to those considered in Section 2, subject to
an additional external forcef (t) so that

q̇ = m−1p, ṗ = −DV (q)+ f . (6.1)

Suppose the system at timet = 0 is in a prescribed configurationq0 with prescribed
momentump0. Assuming the forcef (t) to be of short durationε > 0, we integrate
(6.1) to obtain

[[q]]ε0 = O(ε), [[p]]ε0 =
∫ ε

0
f (t) dt + O(ε), (6.2)

where[[q]]ε0 = qε − q0, and so on.
If f (t) is a classicimpulsive force, that is, a force of such large magnitude and

short duration that it can be well approximated by the Dirac distributioniδ(t) with∫ ε

0
f (t) dt = i ∀ ε > 0, (6.3)

then we calli theimpulse associated withf (t), and (6.2) yields the jump conditions

[[q]]0 = 0, [[p]]0 = i, (6.4)

where[[q]]0 = limε↓0 [[q]]ε0, etc. Thus, if impulse is defined as the time integral of
an impulsive force, then the impulse is the jump in momentum. In particular, if the
system is at rest at timet = 0, the impulse is the momentum at timet = 0+.

Now consider the (holonomically) constrained finite-dimensional system de-
scribed by equations (2.4) in Section 2. When the system is subject to an additional
external forcef (t) the equations become

q̇ = m−1p,

ṗ = −DV (q)− λDg(q)+ f ,

0 = g(q).

(6.5)
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Suppose the system at timet = 0 has a prescribed configurationq0 satisfying
g(q0) = 0, and has a prescribed momentump0 consistent with (6.5)3 in the sense
thatDg(q0) ·m−1p0 = 0. Integrating as before we find

[[q]]ε0 = O(ε),

[[p]]ε0 = −
[∫ ε

0
λ(t) dt

]
Dg(q0)+

∫ ε

0
f (t) dt + O(ε).

(6.6)

If f (t) is an impulsive force as before with impulsei #= 0, then in order that the
momentumpε satisfyDg(qε) ·m−1pε = 0 for all ε > 0, the multiplierλ(t) must
admit the limit∫ ε

0
λ(t) dt → Dg(q0) ·m−1i

Dg(q0) ·m−1Dg(q0)
as ε ↓ 0. (6.7)

Thus the pressure-like multiplier is an impulsive variable.
On the other hand, in view of Proposition 2.3, the striction variableµ(t) for

(6.5) satisfies the equation

µ̇− αµ = −λ, (6.8)

whereα ∈ R is a parameter. Integrating, we obtain

[[µ]]ε0 = −
∫ ε

0
λ(t) dt + O(ε), (6.9)

so that in the limitε ↓ 0 the striction multiplier has a simple discontinuity according
to the relation

[[µ]]0 = − Dg(q0) ·m−1i

Dg(q0) ·m−1Dg(q0)
. (6.10)

Moreover, from (6.6)2 we find the jump in momentum to be

[[p]]0 = i −
[

Dg(q0) ·m−1i

Dg(q0) ·m−1Dg(q0)

]
Dg(q0). (6.11)

Finally, the impetus variableξ for (6.5) by definition satisfies

ξ(t) = mq̇(t)− µ(t)Dg(q(t)), (6.12)

so that

[[ξ ]]ε0 = [[p]]ε0 − [[µ]]ε0Dg(q0)+ O(ε). (6.13)

Combining (6.13), (6.9) and (6.6), and passing to the limitε ↓ 0, leads to the jump
conditions

[[q]]0 = 0, [[ξ ]]0 = i. (6.14)

Thus, for a constrained system,the impulse is equal to the jump in impetus. In
particular, if the system has zero impetus at timet = 0, the impulse is the impetus at
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time t = 0+. Furthermore, from (6.10) and (6.11) we see that, for a given impulse,
the jump in momentum and the jump in striction are determined according to a
decomposition rule exactly analogous to (6.12), namely

i = [[p]]0 − [[µ]]0Dg(q0). (6.15)

We now consider the case of linearized incompressible elasticity discussed in
Section 3. Consider the system described by (3.3) and suppose this system is subject
to a body force fieldb in � and a boundary pressure fieldh on*σ , so the equations
under consideration are

ρ ü = ∇ · � − ∇p + b in �× (0, T ],
∇ · u = 0 in �× [0, T ],

�N − pN = −hN in *σ × [0, T ],
��N = 0 in *s × [0, T ],
u · N = 0 in *s × [0, T ],

u = 0 in *u × [0, T ].

(6.16)

Suppose the system at timet = 0 has a prescribed configurationu0 satisfying
the boundary conditions and the constraint∇ ·u0 = 0, and has a prescribed velocity
u̇0 consistent with (6.16)2 in the sense that∇ · u̇0 = 0. Assuming that the external
loadsb andh are of short durationε > 0, and that (6.16) admits sufficiently regular
solutions for these loads, we formally integrate (6.16)1 to obtain

[[ρu̇]]ε0 = −∇
[∫ ε

0
p dt

]
+

∫ ε

0
b dt + O(ε) in �, (6.17)

and integrate (6.16)3 to obtain
∫ ε

0
p dt =

∫ ε

0
h dt + O(ε) on *σ . (6.18)

If the body forceb and boundary pressureh are impulsive loads with impulses
i� andi*σ respectively, so that

∫ ε

0
b dt = i� and

∫ ε

0
h dt = i*σ ∀ ε > 0,

then in order that the velocity satisfy∇·u̇ε = 0 for allε > 0, the pressure multiplier
p must admit the formal limit

∫ ε

0
p dt → φ

for an appropriate fieldφ depending oni� andi*σ . The pressure multiplier is thus
an impulsive field. In view of (6.17), the fieldφ satisfies the equation

∇ · (ρ−1∇φ) = ∇ · (ρ−1i�) in �
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and, in view of (6.18), the boundary condition

φ = i*σ on *σ .

Assuming the normal component of the velocityu̇ε has a well defined trace on
*u ∪ *s , we have also the boundary condition

∇φ · N = i� · N on *u ∪ *s

obtained from (6.17) together with (6.16)5,6.
On the other hand, in view of Proposition 3.3, the striction variableµ for (6.16)

satisfies the equation

µ̇− αµ = p, (6.19)

whereα ∈ R is a parameter. Integrating we obtain

[[µ]]ε0 =
∫ ε

0
p(t) dt + O(ε), (6.20)

and we find that, in the limitε ↓ 0, the striction multiplier has a discontinuity in
time according to

[[µ]]0 = φ,

whereφ is as defined above. Moreover, from (6.17) we find the jump in physical
momentum to be

[[ρu̇]]0 = −∇[[µ]]0 + i�. (6.21)

Finally, the impetus variableξ = (ζ , ν) for (6.16) by definition satisfies

ζ (t) = ρu̇(t)+ ∇µ(t) in �,

ν(t) = µ(t) on *σ ,
(6.22)

and thus

[[ζ ]]ε0 = [[ρu̇]]ε0 + ∇[[µ]]ε0 in �,

[[ν]]ε0 = [[µ]]ε0 on *σ .
(6.23)

Combining (6.23), (6.20), (6.18) and (6.17), and passing to the limitε ↓ 0, leads
to the jump conditions

[[ζ ]]0 = i� in �,

[[ν]]0 = i*σ on *σ .
(6.24)

Thus, for a constrained infinite-dimensional system such as linearized incompress-
ible elasticity, the body impulse equals the jump in body impetus, and the boundary
impulse equals the jump in boundary impetus.

The above arguments are in concordance with the classic notions of impul-
sive force and impulse dating back toKelvin & Lamb [26]. They show that, just
as momentum and impulse are related but different quantities for unconstrained
systems, impetus and impulse are related but different quantities for constrained
systems. In the particular context of fluid dynamics, variables analogous to what we
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call impetus have been called “impulse variables” [41,37,9], and in one instance
a “magnetization variable” [8]. We prefer to call our conjugate variable impetus,
rather than impulse, for the above reasons and the fact that the name impetus signals
unequivocally that a constrained system is at hand. Moreover, use of the term im-
pulse can lead to a second confusion because, while the classic definition is as the
time integral of an applied impulsive force, some authors reserve the term for the
conserved quantity associated with the symmetry of homogeneous media (see, e.g.,
[5] for a general discussion, or [11] for an analysis in which impetus, momentum
and impulse in the sense of [5] all play important and distinct roles).
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Foundation.
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