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Abstract

Various formulations of the equations of motion for both finite- and infinite-
dimensional constrained Lagrangian dynamical systems are studied. The different
formulations correspond to different ways of enforcing constraints through mul-
tiplier fields. All the formulations considered are posed on ambient spaces whose
members are unrestricted by the need to satisfy constraint equations, but each for-
mulation is shown to possess an invariant set on which the constraint equations
and physical balance laws are satisfied. The stability properties of the invariant set
within its ambient space are shown to be different in each case. We use the specific
model problem of linearized incompressible elastodynamics to compare properties
of three different ambient-space formulations. We establish the well-posedness of
one formulation in the particular case of a homogeneous, isotropic body subject to
specified tractions on its boundary.

1. Introduction

The equations of motion for a Lagrangian system on a manifold defined by
configuration (or holonomic) constraints can be formulated in various different
ways. The three main possibilities are:

(a) Euler-Lagrange equations in local coordinates;

(b) Euler-Lagrange equations in ambient coordinates with explicit multipliers to
enforce the constraints (such equations may be obtained from Hamilton’s vari-
ational principle with a multiplier rule);

(c) lifted or extended equations in ambient coordinates with an invariant manifold
(such equations may be obtained by eliminating the multipliers in (b), and the
physically meaningful solutions reside in the invariant set).

A formulation as in (a) is often unavailable or inconvenient for infinite- or large
finite-dimensional systems, and in these cases a formulation as in (b) may be more
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natural. However, dealing with explicit constraints and multipliers can sometimes
be cumbersome in both analytical and numerical investigations, and this has led
many authors to consider formulations as in (c). We refer to (e)vdsent-space
formulations. Such formulations have appeared in various guises [4,6,11,16, 20,
23,28,31, 33, 35], but apparently there has been no systematic comparison between
their properties.

In this article we develop a number of results on ambient-space formulations for
Lagrangian systems subject to configuration constraints. We show that, dependent
on the precise manner in which constraints are introduced into Hamilton’s princi-
ple, ambient-space formulations with markedly different structural properties can
be constructed for a given constrained system. In particular, both Hamiltonian and
non-Hamiltonian ambient-space formulations can be constructed, and each can have
either a stable or unstable invariant set. The different formulations correspond to
different ways in which single multipliers of either pressure or striction type, or mul-
tiple multipliers of differing types, can be employed in Hamilton’s principle. Here
we describe a multiplier as pressure-like if itis associated with a configuration-level
constraint, and as striction-like if it is associated with a velocity-level constraint
[31,11].

Animportant structural property of an ambient-space formulation is the stability
of the associated invariant set. We show that stability depends crucially on the type
and number of multipliers used in constructing the formulation. In the context of
infinite-dimensional systems, the stability issue expands to include problems of
solvability and well-posedness, especially for initial data off the invariant set. In
contrast to the situation arising in finite-dimensional dynamics, well-posedness
need not be automatic for an ambient-space formulation in infinite dimensions. For
example, the velocity-impulse formulation of incompressible fluid dynamics given
by OseLEDETS [35] has been shown Wy & Liu [13] to be marginally ill posed.

Our motivations for studying ambient-space formulations are twofold. First,
these types of formulations can be useful within the context of numerical analysis.
For example, such formulations can assist in the analysis of discretization schemes
for a corresponding differential-algebraic formulation [29, 20, 3], or they can them-
selves be discretized to provide a basis for simulation [28,4,13]. For the analysis
and design of numerical schemes, we believe it is important to understand the sta-
bility properties of the invariant set. Second, ambient-space formulations can be
useful in analytical investigations. For example, ambient-space formulations can
be exploited to study dynamic stability [11], to develop regularity estimates [16,
23] and to characterize integrability [33] in constrained systems.

The presentation is structured as follows. In Section 2 we introduce and discuss
ambient-space formulations for finite-dimensional mechanical systems. Our main
definition in this section is motivated by various works that have appeared previ-
ously; for example, the work of Kozlov summarized in [2], works based on the
theory of Dirac [40, 28], work based on the stabilization of differential-algebraic
equations [4], and the impetus-striction method developed in [31,11,12]. Within
the context of a simple model problem we illustrate three different approaches to
the construction of ambient-space formulations. These approaches lead to formula-
tions for which the invariant sets exhibit markedly different stability properties. In
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particular, formulations can be constructed for which the invariant set is unstable,
the level set of a first integral, or exponentially attractive in the sense that the values
of the constraints approach their values on the invariant set at an exponential rate.
Indeed, we describe new formulations that are Hamiltonian in the whole of the
ambient space while possessing exponentially attractive invariant sets.

In the remainder of the article we extend the finite-dimensional analysis to a
particular infinite-dimensional problem in linearized incompressible elastodynam-
ics. In Section 3 we present a standard formulation of the problem along with an
underlying variational structure that will be used to motivate three different types
of ambient-space formulations. The first type involves a pure pressure field, the
second a pure striction field, and the third employs a combination of pressure and
striction fields. The pure pressure formulation has an invariant set that is unstable
in an appropriate sense, while the pure striction formulation has an invariant set
that is the level set of a (pointwise) integral. Moreover, by including an appropriate
arbitrary parameter in the pure striction formulation, the invariant set can be made
exponentially attractive as in the case of finite dimensions.

For the elastodynamics problem, the pure striction approach leads to a for-
mulation with some peculiarities: boundary values for the striction variable are
determined by an explicit evolution equation on the boundary. This boundary equa-
tion appears to be inconvenient and it is unclear whether the formulation is well
posed. To circumvent this difficulty we develop a third formulation that employs
both pressure and striction multiplier fields. The use of multiple multipliers in this
case provides a means to avoid the peculiarities of the pure striction approach with-
out sacrificing stability of the invariant set. Moreover, we gain well-posedness, as
we prove in Sections 4 and 5 for the initial-boundary value problem correspond-
ing to a homogeneous, isotropic body with a specified traction on its boundary.
This well-posedness result provides a concrete example that illustrates the utility
of ambient-space formulations in analytical investigations.

The variables of displacement, momentum and pressure employed in pressure-
type formulations of constrained problems are all familiar physical quantities. In
contrast, the variables of displacement, impetus and striction employed in striction-
type formulations are not well known. A physical interpretation of these new vari-
ables is presented in Section 6.

2. Finite-Dimensional Systems

In this section we introduce the notion of an ambient-space formulation within
the context of a finite-dimensional model problem. Three ambient-space formula-
tions are constructed and their properties are summarized in a sequence of propo-
sitions. The proofs of the results stated in this section are straightforward and are
omitted for brevity. While the results presented here are for the case of a single
constraint and a simple, decoupled Lagrangian function of the form kinetic mi-
nus potential energies, all the results extend to multiple constraints and general
Lagrangians that are convex in the velocities.
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2.1. Model Problem: Constrained Formulation

Consider a particle of mass and positiong (z) € R” that is constrained to
lie on a smooth frictionless surfagg c R”. We suppose tha® is defined by the
zero level set of a functiog : R” — R and that the particle moves under the
action of a conservative force field with potential: R” — R. For such a system,
Hamilton’s principle provides a variational characterization of the motion in terms
of the Lagrangian functiod : R" x R" — R defined by

L(g.q) = 3¢ -mg — V(q), (2.1)

and there are two basic ways to formulate equations of motion. One way is to intro-
duce alocal coordinate system(nrestrict the Lagrangian (2.1) to the tangent bun-
dle T Q, and invoke Hamilton’s principle. This approach leads to Euler-Lagrange
equations in local coordinates. However, such coordinates are often inconvenient
to construct for large finite-dimensional systems, and may not be available at all
for infinite-dimensional systems.

A second approach is to work in the coordinates of the ambient $JageR”.
Here we consider Hamilton’s principle for the Lagrangian (2.1) and enforce the
constraintg(¢g) = 0 with a multiplieri. This approach leads to the Euler-Lagrange
equations

d . .
—DoL(q,q,)) = D1L(q, q, 7),
7, P2L(q.4. %) 1L(q.4. %) 2.2)
0= Ds3L(q.q, ),
whereL : R" x R" x R — R is the augmented Lagrangian function
L(g.4.%) = L(g. ) — 18(@). (2.:3)

When we introduce the momentum varialple= DoL(q, ¢, ) € R", the system
in (2.2) may be written as a first-order systen®if x R” x R, nhamely

g= m'p,
p=—-DV(q) —1Dg(q), (2.4)
0= g,

where Dg(q) is the derivative of the constraint functignatq, andA(r) € R is
interpreted as a multiplier that is determined by the condition §2¥his formula-
tion is referred to asonstrained since there is no explicit evolution equation for
Alternatively, due to the presence of the algebraic relation in42stich formula-
tions are often described dbferential-algebraic. Notice that smooth solutions of
(2.4) are restricted to lie in the set

Ao=1{(g,p) eR" xR" | f(g,p) =0 and g(q) =0}, (2.5)

wheref : R" x R" — R is defined byf(q, p) = Dg(q) - m~1p.

For details on the theory of differential-algebraic systems such as (2.4) see [36],
and for details on the special difficulties associated with the numerical treatment of
these systems see [6]. Motivated by the difficulties in treating systems of the form
(2.4), we pursue alternate formulations.
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2.2. Ambient-Space Formulations: Definition
Consider a system of ordinary differential equation®fhx R” of the form

o -1
t{—m p(q.8), 2.6)
§= W(q,§),

wherep, w : R” x R" — R"” are smooth in an open saf. We say that (2.6)
is an ambient-space formulation for the constrained system (2.4) if the following
conditions hold:

1. The system possesses an invarianf\dgtc N
2. The mapy : Mo — R" x R" defined by

x(q.8) =(q.p(q.8§)

is onto the sef4q defined in (2.5).
3. If (g, &)(¢) is a solution inMy, then(q, p)(t) = x(q, &)(2) is a solution of
(2.4) for somer(z).

The invariant setMg will be called the physical solution set of the ambient-space
formulation.

2.3. Ambient-Space Formulations. Examples

In preparation for the infinite-dimensional system to be considered later in
this article, we next construct three ambient-space formulations for the finite-
dimensional system (2.4). For a general constraigt the formulations can be
guite complicated; however, they simplify considerably wiéy) is linear, which
is a case of interest in infinite dimensions.

2.3.1. Standard Example.  Our first ambient-space formulation follows directly
from (2.4) by eliminating the multipliex. To begin, we differentiate the constraint
equation (2.4 twice with respect to time, substitute from (2.4 and solve foin

as a function of the phase variables to et (g, p), where

Ag. p) =[Dg(q) - m™*Dg()1 [m ™ p - D?g(q)(m™p)

(2.7)
— Dg(q) -m~ DV (q)]

andD?%g(q) € R™*" is the Hessian of(q) atq. Given this expression for, we
consider the system of ordinary differential equations given by

g= mE,

: . (2.8)
§=-DV(q) — (g, §)Dg(q).

The relation between (2.8) and (2.4) is contained in the following result.
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Proposition 2.1. Let f : R” x R” — R be defined by f(q, &) = Dg(q) - m~1&
and for any regular value ¢ of g let

Me={(q.8) eR"xR"| f(¢,§) =0 and g(q) = c}.
Then (2.8) has the following properties:

1. Thefunction f(q, &) isan integral for (2.8).
2. Theset M, isaninvariant set for (2.8).
3. Themap x : Mo — R" x R" defined by

x(q.8) =(q,p(q.§) where p(q,§) =&

isonto Ag.
4.1f (q, &)(r) isasolutionof (2.8)in Mg, then(q, p)(t) = x (g, &)(¢r) isasolution
of (2.4)with A(¢) given by

A(t) = A(g(1), £(0)).

The above result shows that (2.8) is an ambient-space formulation for (2.4).
Notice that (2.8) is in general not Hamiltonian away from the physical solution set
M. Moreover, this invariant set is unstable in an appropriate sense as shown in
the following result.

Proposition 2.2. Let (¢, &) () beasolution of (2.8)with correspondinginitial data
(g0, £o) inaneighborhood of M. If theinitial data satisfy

g(qo) =a and f(qq.&p) =b

for some constantsa, b € R, then the solution (g, &) (¢) has the property that

gq(®) =a+bt and f(q(t),&()) =b.

Thus, solutions of (2.8) with initial data arbitrarily close to the physical solution
setMo may move arbitrarily far away depending on the constraint fungtign.

2.3.2. Striction-Based Example.  Our second ambient-space formulation for
(2.4) follows from a generalization of the impetus-striction method developed in
[31,11]. First, rather than consider the given constrai{g) = 0, we consider the
related constrairfi(q, ¢) = 0 whereh : R” x R" — R is defined by

h(g,v) = Dg(q) - v+ ag(q) (2.9)

anda € Risaparameter. Next, we consider Hamilton’s principle for the Lagrangian
(2.1) and enforce the constraihtg, §) = 0 with a multiplier .. This approach
leads to the Euler-Lagrange equations

d . .
— DyL(q,q, ) = D1L(q, q, ),
7 D2 9.9, 1) 1L(q.q. 1) 2.10)

0= D3L(q. ¢, 1),
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whereL : R" x R" x R — R is the augmented Lagrangian function
L(g,q,m) = L(q,§) — nh(g, ). (2.11)

Introducing the conjugate variabfe= D,L(q, ¢, 1) € R”, the system in (2.10)
may be written as a first-order systemRi x R"” x R, namely

g =m &+ uDg(q)l,
£ =—DV(q) —auDg(q) — uD?g(q)im ™1 + uDg(g))], (2.12)
0= Dg(q) - m [ + uDg(q)] + ag(q).

Following [31, 11], we refer t§ as the impetus and as the striction. Using (2.12
we can solve fop as a function of the phase variablpandé to get

(g, %) = —[Dg(q) -m *Dg(@)1 " [Dg(g) - m™ & + ag(g)]. (2.13)

Given this expression fqu, we consider the system of ordinary differential equa-
tions given by

g =m &+ (g, £)Dg(q)],
£= —DV(g) —au(q, &)Dg(q) (2.14)
— (g, §)D?g(g)[m 1 (& + 1(q, §) Dg(g))].

Properties of the formulation (2.14) and its relation to the constrained formulation
(2.4) are summarized in the following result.

Proposition 2.3. Let H : R" x R" — R be the Hamiltonian function for the free
particle, that is,

H(g.p)=3p-m'p+V(@),
and for any regular value c of g let
M =1{(q,§) e R" xR" | g(g) = c}.
Then (2.14)has the following properties:
1. The system is Hamiltonian with Hamiltonian function #(q, &) defined by

H(g.8) = rTLin[ H(q,§&+ nDg(q)) +oangq) ]
2. Thefunction g(g) isanintegral for (2.14)if« = 0.

3. Theset Mg isaninvariant set for (2.14)for any o € R.
4. Themap x : Mo — R" x R" defined by

isonto Ag.
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5.1f (g, &)(¢) is a solution of (2.14)in My, then (¢, p)(®) = x(q,&)() isa
solution of (2.4)with A(¢) given by

d
M0=aMﬁm§my—EMWM£0»

The above result shows that (2.14) is an ambient-space formulation for (2.4).
Notice that the Hamiltoniafi(q, &) is in general not decoupled or separable even
though the original Lagrangiah(yq, ¢) is, and that the physical solution s&{g
for (2.14) is different from the one for (2.8). The next result shows that the invariant
set Mg for (2.14) is exponentially attractive in an appropriate senaesif0.

Proposition 2.4. Let (g, &)(¢) be a solution of (2.14)with corresponding initial
data (gq, &) in a neighborhood of Mo. If the initial data satisfy g(gg) = a for
somea € R, then the solution (g, &)(¢) has the property that g(g (1)) = ae™".

2.3.3. Multi-Multiplier Example.  Our third formulation combines aspects of
both the previous two approaches. This generalization is perhaps excessive in the
finite-dimensional case, but in extending the previous striction-based formulation
to infinite-dimensional problems such as linearized incompressible elasticity some
peculiarities arise in the boundary conditions. The ambient-space formulation de-
veloped in this section, based on using two multipliers in Hamilton’s principle, will
allow us to avoid these peculiarities.

The ambient-space formulation of this section may be motivated as follows.
First, notice that if the motion of a Lagrangian system satisfies the consttaint
0, then it also satisfies the related constrai@t, ) = 0 whereh : R” x R" — R
is defined by

h(g,v) = Dg(q) - v.

With this in mind, we introduce into the variational principle of Hamilton a mul-
tiplier A for the constraing(g) = 0, and a second multipligr for the constraint
h(q, q) = 0. This approach leads to the Euler-Lagrange equations

% DaL(q,q,* ) = D1L(q, ¢, %, 1),
0= D3L(q.4. %, ),
0= D4L(q.q4. 7. 1),
whereL : R" x R” x R x R — R is the augmented Lagrangian function
L(g.4,» ) = L(q,§) — rg(q) — 1th(g. ¢). (2.16)

Introducing the conjugate variatfe= D>L(q, 4, 1, ) € R”, the systemin (2.15)
may be written as a first-order system, namely

(2.15)

g =m & + uDg(q)),

£ =-DV(q) — ADg(q) — uD*g(q)im~ (& + uDg(q))],
0=12g(q),

0= Dg(g) - m & + uDg(q)].

(2.17)
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Using (2.174 we can solve fop as a function of the phase variablgandé to get
(g, §) = —[Dg(q) - m *Dg(q)1 *Dg(q) - m™*¢. (2.18)

Given this expression fgr, and letting. = (g, &) for an arbitrary smooth function
A, we consider the system of ordinary differential equations given by

g =m Y&+ u(g. &) Dg(@)],
£ =—-DV(q) — (g, £)Dg(q) (2.19)
— (g, §)D?g(g)[m Y& + (g, §) Dg(g))).

Properties of the formulation (2.19) and its relation to the constrained formulation
(2.4) are summarized in the following result.

Proposition 2.5. Let 4 : R” x R” — R be an arbitrary, smooth function and for
any regular value c of g let

M =1{(q, 8 eR" xR" | g(q) = c}.
Then (2.19)has the following properties:

1. Thefunction g(g) isan integral for (2.19)
2. The set Mg isan invariant set for (2.19)
3. Themap x : Mo — R"” x R" defined by

isonto Ag.
4.1f (¢, &)(?) is a solution of (2.19)in Mo, then (g, p)(t) = x(q.&)() isa
solution of (2.4)with A(¢) given by

A d
A1) = A(g@),§@1) — E,U«(Q(t), £(1).

The above result shows that, for any smooth funciian &), the system (2.19)
is an ambient-space formulation for (2.4). The physical solutiom\dgtfor this
formulationis anintegral level setand hence is neutrally stable; however, its stability
can be controlled by introducing a stability parametesis was done in the last
section and an analog of Proposition 2.4 can be obtained.

The functioni.(q, &) can be used to control some aspects of the “non-physical”
dynamics in (2.19). For example, the dynamics of the velocity-like variabfkt
can be controlled in the direction dbg(q), a direction normal to the physical
configuration manifold. In particular, the choice

5a.8) = [Dg(@) - m*Dg@1 | - De(@) - m~ DV (@)
+mHE — u(g. D@ D2g(@m ™ E + (g, §)Dg(@)]]
gives rise to the extra integrdl(q, £) = Dg(q) - m~1&. In infinite dimensions the

analog of (2.18) is a boundary value problem, and an extra multiplier field such as
A will provide some flexibility in the consideration of boundary conditionsifor
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3. Infinite-Dimensional Systems

Inthis section we extend the finite-dimensional results of Section 2 to an infinite-
dimensional example. We first establish some notation and then introduce our main
model problem: a displacement-traction initial-boundary value problem for a lin-
earized incompressible elastic bodyli. For more details on the physical and
mathematical structure of the field equations of elasticity presented in this section
see, for example, [43,21].

3.1. Preliminaries

Let C"(Q2, F) denote the set of al:-times continuously differentiablé -
valued functions on an open setin R”. Forw € C" (2, F) we define

2 1/2 9oLt t+on
wll = (Y / 107wl d) " where D= .
Q AXt...aXT
lo|<m 1
oc=(01,...,0p), |0l =01+ --+0,4, (X1, ..., X,) are the coordinates R and

|| - || denotes the norm of. If we let C" (2, F) be the subset consisting of those
functionsw for which ||w||,, < oo, then the Hilbert spacél,, (2, F) is defined
to be the completion of ” (2, F) in the norm|| - ||, (See, e.g., [1]). The standard
inner-product ord,, (2, F) is defined as

(va)mz Z /QDJU'DULUdQ,

lo|=m

where the dot on the right-hand side denotes the standard inner-prodeicFon
brevity, we shall often omit the subscriptfor the casen = 0. If we letC™ (22, F)
denote the subset consisting of those functionsith compact support, then the
completion oto”’ (2, F)inthe norm|-||,, is aclosed subspace#8f, (2, F), which

we denote by, (2, F). Throughout our developments, Hilbert spaces of the type
H (2, F) with s non-integer will arise, and these are defined via interpolation, see,
e.g., [30]. When there is no danger of confusion, we will sometimes abbreviate
H,, (2, F) t0 H,y,.

3.2. Modédl Problem

In the remainder of our development we will study the linearized equations of
motion for an incompressible elastic body. We assume that the body, in its reference
or undeformed state, occupies a closed sufaseftR” whereS2 is a bounded path-
connected open set with piecewise smooth boundgry

We denote the displacement field for the body relative to its reference con-
figuration byu : Q x [0, 7] — R”, and we denote the pressure field py:

Q x [0, T] — R. The pressure field is that part of the total stress field that enforces
the linearized incompressibility condition- # = 0, whereV denotes the gradient
operator relative to the Cartesian coordinatgs, ... , X,) in Q.
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The constitutive or active stress field within the body is denote@ by x
[0, T] — M". HereM" is the vector space of all real x n matrices equipped
with the standard (Euclidean) inner product B = A;; B;; where summation on
repeated indices is implied. In the linearized theory, the active sEdsgelated
to the displacement field via a local constitutive relation of the form

X(X,1) = C(X, Vu(X, 1)), (3.1)

whereC : Q x M" — M" is a given field that characterizes the elastic response
of the material. For eaclk € Q the mappingC(X,-) : M" — M" is a linear
transformation whose kernel contains the set of all skew-symmetric matrices and
whose range is contained in the set of all symmetric matric®§"inFurthermore,

C(X, -) enjoys the symmetry property

A:C(X,B)=B:C(X,A) VA,BeM. (3.2)

3.2.1. ClassicFormulation. LetIy, Iy andl}, be disjoint, relatively open subsets
of 3Q2 defined such that2 = I, U Iy U I,. Theinitialand boundary value problem
that we will study is the following:

Findu : Q@ x[0,T] — R" andp : Q x [0, T] — R such that

pi=V-X—Vp+b in Qx(0,T],

V-u=0 in Q x [0, T1,
YN—-pN=0 in T, x [0, T],
EXN =0 in T, x [0, T],
) (3.3)
u-N=0 in Ty x [0, T,
u=20 in T, x [0, T,
u(-,0) =ug in Q,
u(-,0) = g in Q,

where superposed dots denote differentiation with respect to ¥me; : Q x
[0, T] — R" is defined in components by the relation

[V«):(X,t)],»zajE,-j(X,t), i=1,...,n), (34)

andd; denotes the partial derivative with respect to the coordiXate

In the above systerh is a prescribed body force density per unit reference
volume, p is the mass density of the body in its reference configurafiorig the
unit outward normal field 042, E is a tangential projection field defined at each
point of 32 by the expressiol® = I — N ® N, ug is a prescribed displacement
field, andvg is a prescribed material velocity field.

The partial differential equation (3.8 expresses the local balance of linear
momentum (whereas the local balance of angular momentum is implied by the
symmetry of the total stress fiel — pI), (3.3 is the local incompressibility
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condition, (3.33 is a pure traction boundary condition, (%3 are sliding-type
boundary conditions, (3)3is a pure displacement boundary condition, and)¢3%3
are initial conditions.

Remarks 3.1. 1. There is no real loss of generality in assuming homogeneous
boundary data. If the boundary conditions are not homogeneous, then in or-
der to proceed we assume that there exists some fungtighich satisfies all
the boundary conditions. Givan, we then solve a homogeneous problem for
u — u with b appropriately redefined.

2. The governing equations in (3;3 for # and p may be interpreted as a system
of differential-algebraic equations in a function space since no time derivatives
of the field p appear; that is, the time evolution of the pressure field is not given
explicitly.

3.2.2. Lagrangian Structure. The systemin (3.3) has an underlying Lagrangian
structure that we will exploit throughout our developments. To bring this structure
into evidence, we first introduce the ambient Hilbert space

Hi={ueHy|lu-N=0 on I, u=0 on I,}, (3.5)

and a Lagrangian functional : H; x Ho — R for the unconstrained elastic body,
namely

L(u,it):/ 1pla|? — W(, Vu) dS2. (3.6)
Q

HereW : Q x M" — R is an energy density function of the form
W(X,A)=3A:C(X, A) (3.7)

whereC is the elasticity field of (3.1). The notatid# (-, Vu) is used to denote the
function onQ defined byX — W (X, Vu(X)).

We next consider Hamilton’s principle for the Lagrangian (3.6) and enforce
the pointwise constrair¥ - u = 0 with a multiplier fieldp € Hp. The associated
Euler-Lagrange equations then take the form

d
—DoL(u,u,p) -n=D1L(u,u,p)-n VYneH, YVt €(0,T],

dt (3.8)
D3L(u,u,p)-¢=0 V¢ € Hy, Vr €[0,T],
wherel : Hi x Hg x Hp — R is the augmented Lagrangian functional
E(u,it,p):L(u,it)—i—/ pV-udQ. (3.9
Q

HereD1L(u, &, p) - n denotes the (partial) directional derivative defined by

Lu+any,u,p)), (3.10)
a=0

. d
D1L(u,u, p) -5 = Ta

with similar expressions for the other derivatives.
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Integrating by parts in (3.8) and introducing the momentum variable pi
leads to the pointwise equations

u=p1n in 2 x (0, T1,
#=V.-X—-Vp+b in Qx(0,T],

XN -pN=0 in I, x [0, T,
EXN=0 in Ty x [0, T],

where the displacement boundary conditionsuosre contained in the definition
of Hf. We interpret (3.11) as a set of evolution equationg#ote, p) in the space
HJ x Hp x Hy, and we typically seek solutions with the following differentiability

u € Mi_oC ([0, T1, His0),
T € Ni_oCY 5[0, T1, Hy), (3.12)
p € C(0,T], Hy).

Notice that solutions of (3.11), if they exist, are restricted to lie in the set

Ag={(u,m) e H{ x Hy | V-u =0, V-lpln]=0

3.13
and ,07171,' - Nlr,ur, = 0}. ( )

While an arbitrary element 1z € Hp does not generally have a well defined
trace ond<2, we recall that the conditio¥ - [p~1z] = 0 impliesp~lx - N €
H_1/2(0R2, R) = [H1/2(3%2, R)Y’, thusAg is well defined.

3.3. Ambient-Space Formulation: Definition

For a given Hilbert spac#, and a given set of boundary conditions, consider
a system of evolution equations in the spaiex # of the form

i=p tmf),
E=w,§),

wherer (u, §) andw(u, &) are given vector fields that may depend non-locally on
u andé. In exact parallel with the finite-dimensional case, we say that (3.14) is
an ambient-space formulation for the constrained system (3.11) if the following
conditions hold:

(3.14)

1. The system possesses an invarianf\dgtC H; x H.
2. The mapy : Mo — Hj x Hg defined by

X, &) = (u,m@u,é)
is onto the se#lp defined in (3.13).
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3. If (u, &)(¢) is a solution inMo, then(u, ©)(t) = x(u, &)(¢) is a solution of
(3.112) for somep(z).

The invariant seM o will be called the physical solution set of the ambient-space
formulation. Just as in the finite-dimensional case, ambient-space formulations
can be constructed for whichg is unstable, a level set for a first integral, or
exponentially attractive in an appropriate sense.

3.4. Ambient-Space Formulations. Examples

In this section we construct three ambient-space formulations for the con-
strained system (3.11). We do not pause to justify well-posedness of the formu-
lations, although some remarks along these lines are made throughout. Questions
regarding well-posedness are addressed in Section 4 within the context of a specific
initial-boundary value problem.

3.4.1. Pressure-Based Formulation.  Our first ambient-space formulation fol-
lows directly from (3.11) by eliminating the multipligr. To begin, we formally
differentiate the constraint equation (3)3 fwice with respect to time and substitute
from (3.11)1 » to obtain

V-l tVpl=V-[pXV-Z+b)] in Q. (3.15)

We next supplement this equation with two boundary conditions. From)g3.11
we have

p=N-XN only, (3.16)

and from (3.1]; > and the fact thak € H7 we arrive at a condition o, U T;
namely,

Vp-N=N-[V-X+b] on[,UIs. (3.17)

Given the above equations for the pressure field we next consider the following
problem: Findu : [0, T] — Hf andé : [0, T] — Hop such that

u=pl in Qx (0, T],
E=V.-T—Vpm)+b in Qx0TI

YN — pu)N =0 in T, x [0, T,
EXN=0 in Ty x [0, T, (3.18)
wherep = p(u) is determined by
Vel VA=V [p (V- Z+b)] inQ,
p=N-XIN in Ty,
Vp-N=N-[V-X+b] in I, UT.

The relation between (3.18) and (3.11) is summarized in the following proposition.
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Proposition 3.1. Let g : Hf — Ho(2,R) be defined by g(u) = V - u, let f :
H{ x Ho — H_1(Q, R) bedefinedby f(u, &) = V-[p~1&],andforanyc € g(HY)
let

M ={(u,&) € H{ x Ho | gw) = ¢, f(u,£)=0
and p~' - Nir,ur, = 0}.

Then (3.18)has the following properties:

1. Thefunction f(u, &) isan integral for (3.18)
2. Theset M, isaninvariant set for (3.18)
3.Themap x : Mo — H{ x Ho defined by

X(w. &) = nu,§) where m(u,§) =%

isonto Ag.
4.1f (u, &)(t) is a solution of (3.18)in My, then (u, m)(t) = x(u,&)() isa
solution of (3.11)with p(¢) given by

p@) = pu(®)).

The above results show that (3.18) is an ambient-space formulation for (3.11)
and follow by direct verification. For example, to see tli&t, &) is an integral, let
(u, &)(1) be any solution of (3.18) i’y x Ho. Then, using (3.18 and the defining
equations fop (u), we have

d
Ef(u,ﬁ)(t) =0,

which establishes the first result. The invariancé\df follows from the fact that

d
Eg(u)(t) = f(u7 g)(l)s (319)

and the surjectivity of¢ follows from the fact thatM o = A andy is the identity
on Moy.

Remarks 3.2. 1. The traction boundary condition (3)k8an be replaced by its
tangential projectioEXN = 0in I,. The reason for this is that the normal
component of (3.18 appears in (3.13.

2. A system analogous to (3.18) is studiedEgIN & SiMaNca [15] for the free-
boundary problent, = 92, and in the special case of constant density, homo-
geneous isotropic elastic material law and zero body force. They claim to show
that the initial value problem for a system of the form (3.18) is well posed on the
physical solution set, that is, when restricted to the invariank$gic Hy x Ho.

Their study does not address the problem of well-posedness in the ambient space
Hf x Hp.

The nextresult, which follows from (3.19) and the fact tfiat, &) is anintegral,
shows that the physical solution sety of (3.18) is unstable in an appropriate sense.
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Proposition 3.2. Let (u, &)(¢) be a solution of (3.18)with corresponding initial
data (uo, £g) in a neighborhood of M. If theinitial data satisfy

gmo) =a and f(uo, &) =b
for some functionsa, b : 2 — R, then the solution (u, &)(¢) hasthe property that
gu(t) =a+bt and f(u(t),&(t)) =b.

3.4.2. Striction-Based Formulation.  As in the finite-dimensional case, our sec-
ond ambient-space formulation for (3.11) follows from a generalization of the
impetus-striction method developed in [31, 11]. First, rather than consider the given
constraintV - u = 0, we consider the related constraint

V-i+aV-u=0, (3.20)

wherea € R is a parameter.
Introducing a multiplienw € Hp for the constraint (3.20) we consider an aug-
mented Lagrangian functiondl : HY x H{ x Ho — R defined by

E(u,it,,u):/ %plmz—W(-,Vu)+b-u—u[V-ll+aV-u] d2, (3.21)
Q

and following [31, 11] we refer to the multiplier as the striction field. Substituting
the above Lagrangian into the variational principle of Hamilton leads to the Euler-
Lagrange equations

d
ZDzL'(u,it,,u) 9 =D1L(u,a,pu)-n  VyneH], Vte(0,T],

DaL(u,it, i) - ¢ =0 V¢ € Ho, Yt € [0, T].

(3.22)

Integrating by parts in (3.22) and introducing the variapefined by
C=pu+Vu (3.23)
leads to the equations

i =p [ — Vul in @ x (0, 7],
E=V-X+aVu+b in Q x (0, T,

0=V -[p ¢ -Vwl+aV-u inQxI[0,T], (3.24)
EN—(L—an)N=0 in T, x [0, T,
EXN =0 in Ty x [0, T].

To develop an ambient-space formulation we next solve for the strigtasna
function of the state variablesand¢. Using (3.243 we get the equation

Vo tVul=V-[p it +au] inQ, (3.25)
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to which we must append appropriate boundary conditions in order to uniquely
determingu. From (3.24; and the fact thak € H we arrive at a Neumann-type
condition onl,, U I[i; namely,

Vu-N=¢-N onTl,UTs. (3.26)

For the portio, we note that a Dirichlet-type boundary condition is provided by
the evolution equation

u=N-XN+au only, (3.27)
which is derived from (3.2%. Introducing a boundary densityvia the equation
V=1 on I, (3.28)

we consider the following problem: Find : [0, T] — Hf and§ = (¢,v) :
[0, T]1 — Ho x Hy/2(T, R) such that

i=p'¢—Vu@, ¢, v)] in Qx (0,71,
E=V-X+aVu@,s,v)+b in Qx(0,T],
V=N-XN+av in I, x [0, T],

EXN =0 in T, x [0, T],

EXN =0 in I, x [0, T, (3.29)

whereu = u(u, ¢, v) is determined by
V-lp 'Vul=V-[p~ ¢ +au]  inQ,
w=v in T,
Vu-N=¢-N in T, UT}.

The relation between (3.29) and (3.11) is summarized in the following proposition.

Proposition 3.3. Let g : HY — Ho(2, R) be asabove and for any ¢ € g(Hjy) let
M. ={,¢,v) € HH x Ho x Hy2 | g(u) = c}. Then (3.29) has the following
properties:

1. Thefunction g(u) isan integral for (3.29)if o« = 0.
2. The set Mg isan invariant set for (3.29)for any « € R.
3.Themap x : Mo — H{ x Ho defined by

X(uv c7 U) = (u,.n'(u, ;7 V)) where n(uv ;7 V) = ; - v,bL(u, ;7 U)

isonto Ap.
4. 1f (u, ¢, v)(t)isasolutionof (3.29)in Mo, then (u, &) = x (u, ¢, v) isasolution
of (3.11)with p(¢) given by

d
p(t) = d_tu(uv ;’ V)(t) - (xu(u, ;7 U)(Z).
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To establish the first result Ik, ¢, v)(¢) be an arbitrary solution of (3.29) in
Hf x Ho x Hyj. Then

d
Eg(u)(t) =V-.u(@)=—aV- -u(t)=—agu)). (3.30)

If « = 0, we deduce thai(u) is constant along arbitrary solutions, and the result
follows. Integrating (3.30) yields

g)(1) = e ' gw)(0), (3.31)

and the second result follows upon noting that any solution with initial date in
satisfiesg(u)(0) = 0. To establish the third result, consider an arbitrary element
(,m) € Ao, SOV - = 0, V-[p~t7] = 0 andz - N|r,ur, = 0. Taking
u=u¢ =mxandv = 0we findu(, ¢, v) = 0, and the result follows since
(u,¢,v) € Mg and x(u,¢,v) = (u, ). The fourth result follows by direct
verification.

The above results show that (3.29) is an ambient-space formulation for (3.11).
The next proposition summarizes the stability properties of the physical solution set
Mo of (3.29); in particular, the se¥1g is exponentially attractive in an appropriate
sense iftx > 0.

Proposition 3.4. Let (u, ¢, v)(¢) beasolution of (3.29)with corresponding initial
data (uo, ¢g, vo) in a neighborhood of Mo. If the data satisfy g(ug) = a for
some function a : @ — R, then the solution (u, ¢, v)(¢) has the property that
gu(t)) = ae ™.

Remark 3.3. Fora = 0, the formulation in (3.29) possesses a Hamiltonian struc-
ture that can be developed by employing a slight generalization of the impetus-
striction formalism in [11,31]. As compared to those in [11,31], the above formu-
lation is more complicated in the sense that the impetus vaakl€s, v) has two
components: a bulk componentdefined in the interior of the spatial domain and

a singular component defined on a portion of the boundary. In accordance with
the original formalism, the striction is defined at any instant in time through a
minimization, but here one of the boundary conditions for the striction is governed
by an explicit evolution equation defined on the boundary. These complications do
not arise in the example of [11] because only one space dimension is considered,
and do not arise in the example of [31] because of the specific boundary conditions
appropriate for inviscid fluid flow.

3.4.3. Pressure-Striction Formulation.  Inthis section we use a multi-multiplier
approach to construct an ambient space formulation without boundary evolution
equations. As shown earlier, a formulation based on a single pressure-type multi-
plier does not involve boundary evolution equations; however, its physical solution
setis unstable. By employing different types of multipliers we will be able to avoid
evolution equations on the boundary without sacrificing the stability of the physical
solution set.

Motivated as in Section 2 within the finite-dimensional case, we introduce a
multiplier A € Hp for the displacement-level constraivit- # = 0 and a multiplier
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u € Hg for the velocity-level constrair¥ - &« = 0, and we consider an augmented
Lagrangian’ : Hy x Hy x Ho x Ho — R defined by

Lu,u, r, 1) =/ %p|i¢|2— WG, Vu)+b-u+AV-u—uV-u dQ. (3.32)

Q
Notice that the multiplien. is a pressure-like variable while the multipligris
striction-like. Substituting the above Lagrangian into the variational principle of

Hamilton leads to the Euler-Lagrange equations

d
EDzﬁ(u, w, A, @) -n=D1L(u,u, A, nu)-n VYyne H{¥Yte(T],

DsL(u, it, % ) - ¢ =0 Vo e HovVteo, 1], 333
Dal(u, i, ) - ¢ =0 V¢ € Hp, V1 € [0, T).
Integrating by parts in (3.33) and introducing the varigptiefined by
E=pu+Vpu (3.34)
leads to the equations
i =p g -Vl in Qx (0,71,
E=V-Z—Vi+b in Q x (0, T],
0=V-.u in Q x [0, T],
0=V [p~ ¢~ Vi)l in Qx[0.T], (3.35)

SN-(A+)N=0 inT,x]I0,T],
EXN =0 in T, x][0,T].

To develop an ambient-space formulation, we proceed as in the finite-dimen-
sional case and solve for the strictipras a function of the state variablesandé
while leavinga arbitrary. Using (3.3% we get the equation

V-lptvul=v-[plE] inQ, (3.36)

to which we must append appropriate boundary conditions in order to uniquely
determingu. From (3.35, and the fact thak € H; we arrive at a Neumann-type
condition onl;, U I[y; namely,

Vu-N=&-N onTl,UT. (3.37)

For the portionl, we note that we can avoid the evolution term in (3s3by
imposing the condition

uw=0 onTlj. (3.38)

This choice foru implies that the arbitrary multiplier field must now satisfy the
boundary condition

A=N-XN onlIy. (3.39)
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As we remarked in Section 2, the multipliercan be used to control certain

aspects of the “non-physical” dynamics in an ambient-space formulation. For ex-
ample, ifA satisfies the equation

V- VA=V [p XV -Z+b)] inQ, (3.40)

then the functionf (u, &) = V - [p~1&] will be an integral in the resulting formu-
lation. This choice of. thus controls the divergence of the velocity-like variable
p~L£. To uniquely specify. it remains to specify boundary conditions on the por-

tion T, UTy, and to this end we specify natural boundary conditions associated with
a weak formulation of (3.40), namely

VA-N=(V-X+b)-N onT,UT. (3.41)

Given the above expressions ferandi we consider the following problem:
Findu : [0, T] — Hj andé§ : [0, T] — Hp such that

i =p & — V@) in 2 x (0, T1,
E=V.-T—Viu) +b in Qx (0, T],
EN —A(u)N =0 in T, x [0, T,

EXN=0 in Ty x [0, T1,

whereu = n(€) andix = A(u) are determined by

. . _ (3.42)
V.-[p7"Vul=V-[p§] in Q,
u=0 in Ty,
Vu-N=§&-N in I, UTy,

V-lp VA=V [pYV-Z+b) inQ,
A=N-XN in T,
VA-N=(V-X+b)-N in T, UT;.

The relation between (3.42) and (3.11) is summarized in the following proposition.

Proposition 3.5. Let g : HY — Ho(S2, R) be as before and for any ¢ € g(Hy) let
M. ={(u, &) € H{ x Ho | g(u) = c}. Then (3.42)has the following properties:

1. Thefunction g(u) isan integral for (3.42) thus Mg isinvariant.
2. Themap x : Mg — H{ x Hy defined by

X, &) = (u mwu,§) where mw(u, &) =§—-Vu®)

isonto Ag.
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3. If (u, &)(¢) isasolution of (3.42)in Mo, then (u, ) () = x (u, £)(¢) isasolution
of (3.11)with the pressure p(¢) given by

d
p(t) = 1)) + Eu(’;‘)(f).

The above results show that (3.42) is an ambient-space formulation for (3.11)
and follow by direct verification. For example, to see that) is an integral, let
(u, &)(1) be any solution of (3.42) i#/y x Ho. Then, using (3.43 and the defining
equations fop. (&), we have

d
Eg(u)(t) =0,

which establishes the first result. To establish the surjectivity @onsider an
arbitrary elementu, ) € Ag,soV-i =0,V -[p~1x] = 0andr - Nir,ur, =0.
Takingu = u andé = & we findw(§) = 0, and the result follows sinag, &) €
Mopandy(u, &) = (u, ).

In contrast with the pure pressure formulation, the physical solutiohvgeof
(3.42) is neutrally stable since it may be interpreted as the level set of the integral
g(u). However, the stability properties @f(g in the present case can be enhanced
by appropriately changing the boundary value problem for the strigticro this
end, consider (3.42) with the following modified boundary value problem for the
striction

V-lptVul=V-[p ] +aV-u inQ,
w=0 in T, (3.43)
Vu-N=&-N in I, UTy,

wherea € R is a parameter. The relation between (3.42) subject to (3.43) and
(3.11) is summarized in the following proposition which may be readily verified.

Proposition 3.6. Consider (3.42)subject to (3.43)and let g(u) and M, beasin
Proposition 3.5. Then (3.42) has the following properties:

1. The set Mg isinvariant for any fixed o € R.
2.Themap x : Mo — H{ x Ho defined by

X, &) =w,nw, &) where w(u,§) =§&— V@)
isonto Ag.

3.If (u, &)(¢) isa solution in Mo, then (u, ©)(t) = x(u, &)(¢) is a solution of
(3.11)with p(z) given by

d
p() = ru)(®) + EM('L £)().
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4. The set My is exponentially attractive for « > 0 in the following sense: any
solution of (3.42)subject to (3.43)has the property

g@) (1) = e " g(u)(0).

4. Existence and Uniqueness Results

Inthis section we state a well-posedness result for the pressure-striction ambient-
space formulation outlined in Section 3.4.3. We consider the inhomogeneous Neu-
mann problem defined by the conditians= @, Iy = ¢ andl’, = I', and consider
a homogeneous, isotropic material.

In proving the well-posedness of our ambient-space formulation we prove ex-
istence and uniqueness for an inhomogeneous Neumann problem in linearized in-
compressible elastodynamics. For compressible elastodynamics we note that much
work has been done within both the linear and nonlinear settings. Various results for
the linear case are reviewed in [32], and results for the nonlinear case have appeared
more recently. For example, the initial value problem posed on all of space is con-
sidered in [22], the Dirichlet initial-boundary value problem is considered in [25,
7,10] and the Neumann initial-boundary value problem in two space dimensions
is considered in [38].

For incompressible elastodynamics, the initial value problem for nonlinear ma-
terials posed on all of space is treated in [14,17] and the Dirichlet initial-boundary
value problem is treated in [23]. The Neumann initial-boundary value problem for
the linearized case is treated in [15] and was subsequently extended to the nonlinear
case in [16]. Here we note that the aforementioned results for the incompressible
case have been restricted to constrained formulations of the problem. A different
approach to the initial value problem posed in all of space was taken in [39], where
results for the incompressible case were established by passing to a limit from the
compressible case.

Our well-posedness result for linearized incompressible elastodynamics, con-
tained in Theorem 4.1 below, generalizes a result claimefgy & SiMANCA
[15] who studied a different formulation of the same physical problem. (The weak
formulation given in [15] is not correct, actually. Proposition 3.17 in [15] is false,
for example.) In [15] the system of interest is formulated only for solutions that
satisfy the configuration constraints. In contrast, the system considered here is for-
mulated in an ambient space, which yields information regarding the stability of
the formulation to perturbations that fail to respect the physical constraints.

4.1. The Inhomogeneous Neumann Problem

The problem we will study is that of finding a displacement field Q x
[0, T] — R™ and an impetus field : Q x [0, T] — R” such that
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i=p g — V()] in Q x (0, 71,

E=V.-Z—Viu) +b in Qx (0, T],

N —A@)N=h in T x [0, T1,

u(-,0) =up in &,

§(,0 =& in , (4.1)

V. [p 'Vul=V-[p £l in Q,

V. p VA=V -[p V.- Z +p7 1] inQ,
A=N-XN—-N-h onT.

For the case of a homogeneous, isotropic material we suppose that the mass
density fieldo > 0 is constant and that the constitutive stress f#&id of the form

¥ = C(Vu) = 20 symVu] (4.2)

wheret > 0 is the constant shear modulus and §y1is the symmetric projection
onM",

Remark 4.1. The traction boundary condition (4zlcan be replaced by its tangen-
tial projectionEX N = Eh in I". The reason for this is that the normal component
of (4.1)3 appears in (4.)b.

4.2. Abstract Formulation and Main Result

In this subsection we set up a Hilbert space formulation of the system in (4.1)
and state the well-posedness result. To begin, we introduce the Hilbert spaces

Y = H1(2,R"),
W = Ho(2,R"),
equipped with the inner-products
(), =al, po+(V(), CV())o,
Cody = (0™

wherea = 0 is a suitable constant. F&r > 0 the elasticity fieldC satisfies

a strong ellipticity condition and thus there is arfor which the inner-product
(-,-),, is equivalent to(-, -); (see, e.g., [32,18]). Recall that equivalence of the
inner products implies there is a constdnt 0 such that

1
ST S (0, 0), = Il S d|lvllf VoeV.
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Similarly, the inner-product, -),,, is equivalent ta, -)o.
To develop an abstract formulation of (4.1) we introduce the following opera-
tors:

B:DB)CV—W,
DB):={uecV|uecHy)QR") EX@)N =EhonT},
Bu) =V - -X(u) — Vi(u),

C:DC)CW—=YV,
D(C):={§ e W | & e H(R2,R"}, 4.3)
C(&) :=p & — Vu(®)],

A: DA CVXW-—>VxW,
D(A) := D(B) x D(C),
A(u,§) :=(C&), B(u)).

Remarks4.2. 1. For the operatoB to be well defined it is required tha{u) be
in H1(€2, R) given thatu is in H»(2, R™). To see that this is indeed the case,
assume is in Hp(2, R") and that is in H% (T, R™). Then the equation

<vi, ,0_1V¢>O - <v - S(u) + b, p_1V¢>O Vo e HI(Q,R)  (4.4)

has a unique solutioh(x) € boll(Q, R), and the equations

V.[p vi]=0 in Q,
} (4.5)
A=N-Xw)N-N-h onT

have a unique solutioh(z) € H1($2, R) (see, e.g., [34,30]). Setting= A + A
we see thak osatisfies (4.38.0 andxr € H1(2, R).
2. Foranyp € H1(2, R) we have

(B(u) +b, p—1v¢>0 —o. (4.6)

This follows from (4.4), (4.5) and the decompositioga= A + A.

3. For the operato€ to be well defined it is required that(§) be in H>(22, R)
given thatt is in H1(€2, R"). This follows from (4.3 7 and the standard theory
for such equations (see, e.g., [34, 30]).

4. Note thatv - C (&) = 0 for anyé € D(C).
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An abstract formulation of (4.1) can be stated as follows:
Givenb € Hp(2, R") andh € H%(F, R™), and initial data(ug, £g) € D(A), find
acurve(u, &) :[0,T] - D(A) C V x W such that(u, £)(0) = (ug, &p) and

{2‘}=A{Z}+{2} Vie (0Tl 4.7)

Ourmainresult on the existence and uniqueness of solutions to (4.7) is contained
in the following statement.

Theorem 4.1. Assumethe domain €2 isopen, bounded and of class C2. Then, given
be Hy(Q,RY), h e H% (I', R") andinitial data (ug, &) € D(A),thereisaunique
continuoudly differentiable curve (u, &) : [0, T] — D(A) C V x W satisfying
(4.7)and (u, £)(0) = (uo, §0).

5. Proof of Well-Posedness

In this section we prove Theorem 4.1. We first introduce an auxiliary problem
and show that, for appropriate inhomogeneous data, solutions of this problem satisfy
(4.7). We then use the theory of semigroups to establish existence and uniqueness
of solutions to the auxiliary problem with homogeneous data. This result is then
extended to inhomogeneous data by use of a variation of constants formula, and
the result for (4.7) will follow.

5.1. An Auxiliary Problem

In this subsection we introduce an auxiliary problem that will prove useful in
the analysis of (4.7). To begin, we define closed subspageandWgiy as

Vagiv:={veV|V.v=0}

. . (5.1)
Waiv = (w e W1 (w, p w)o =0 V¢ e Hy(Q R,

and introduce operato®gjy, Cgiv andAgjy as follows:
Biv : D(Bdiv) C Vdiv = Wiy,
D(Bgy) :={u € Vgiy | u € Ho(2,R"), EX(@)N =0o0onT},
Biv(u) ==V -X(u) — Vqu),

Cdiv : D(Cdiv) C Wdiv — Vdivs

D(Cyqiv) :={§ € Wav | § € H1(R2, R")}, (5.2)
Cav(§) = p &,

Adiv : D(Adiv) C Vdiv X Waiv = Vdiv X Wi,

D(Adiv) := D(Bdv) X D(Cdiv),

Adiv(u, §) := (Caiv(§), Bav(n)),
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whereqg = ¢ (u) is determined from

V. [p'Vgl=V- [p'V-Z@)] inQ,

g=N-X@N onT. (-3)

Remarks5.1. 1. The boundary condition appearing in the definitiodB gy ) is
a homogeneous version of thatin B), and the system fay(u) is a “homoge-
neous” versign of the system fa(u).

2. Foranyp € H1(22, R) we have

(Baww). o71ve) =o. (5.4)

This follows from (5.3).
3. For anyé € D(Cygiy) hote thatV - Cgiy(§) = 0.

A problem closely associated with (4.7) is the following:

Given(f, g) € V4ivx Waiv and(vg, wo) € D(Agiv), findacurvgv, w) : [0, T] —
D(Adiv) C Vdiv X Waiv such thatw, w)(0) = (vo, wo) and

{?}:Adiv{”}Jr{g} Vie Tl (5.5)

w w

The relation between (5.5) and (4.7) is established in the following proposition.

Proposition 5.1. Let b € Hp(R2,R"), h € H%(F, R"™) and (uo, £&g) € D(A) be

given. Then (u, &) : [0, T] — D(A) C V x W isacurve satisfying (4.7) if and
only if the curve (v, w) : [0, T] — D(Agiv) C Vdiv X Wiiv, defined by

(@), w(t)) = (u(t) —uo, (t) — &g), (5.6)

satisfies (5.5) with data

f=p"tEo— V],
g =V -XY(uog) — VA(up) + b, (5.7)
(vo, wo) = (0, 0).

Proof. Assume(u, §)(¢) is a curve satisfying (4.7) with the given data. Then, for
any¢ € H1(22, R) we have

d
77 W Vélo = (it Voo = (C().Vg)g=0

v (0, 7]
(8.p72ve) = (8. p71V9) =(B@W) +b,p7've) =0 '

d
dt
(5.8)
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which implies that(v, w)(z) is in Vgiy x Wyiy for all # € [0, T]. Next, note that
by construction we have(t) € H2(2,R") andw () € Hi1(2,R"). Because
u(t) € D(B), it follows that

EXWE)N =EXZ(u())N — EX(ug)N

5.9
—Eh—Eh=0, (5-.9)

which implies thatv, w)(¢) is in D(Agiy) for all ¢ € [0, T].
Since (u, &)(¢) satisfies (4.7), andu, &) = (v + ug, w + &), we find that
(v, w)(¢) satisfies

V=0 l[w Vu(w)]+ p~ EO_VM(EO)]

(5.10)
w=V-X()—VAw+ug)+V-X(ugy) +b>b.
Noting thatu (w) = 0, and that
A(v +uo) = q(v) + A(uo), (5.11)

it follows that (v, w)(¢) satisfies (5.5) with

f=r"tE0— Vi) € Va,
g =V - X(ug) — VA(uo) + b € Wy, (5.12)

(vo, wo) = (0, 0).
The converse follows similarly.

To establish existence and uniqueness results for problem (A7 oM, it thus
suffices to consider the auxiliary problem (5.5) on the closed sub3fgce Whaiv-
Moreover, to establish results for (5.5) we need only consider the homogeneous
version of it, i.e.,(f, g) = (0, 0). If we can show that the homogeneous prob-
lem generates a semigroup, then the existence of solutions for the inhomogeneous
problem will follow from a variation of constants formula.

5.2. The Semigroup Approach
Consider the Hilbert space = Vgiv x Wyiv With inner-product defined by

(u,8), (v, w)), + (&, w) (5.13)

The goal of this section is to show that the operatgf, : D(Agy) C X — X
defined in (5.5) is the infinitesimal generator of &) semigroug S(¢) | ¢+ = 0} on
X.Recallthat, ifS(¢) is the semigroup generated Ay;,, then for anyg € D(Agiv)
the curvex (1) = S(¢)xg lies in D(Agiy) and satisfies

x = Agvx and x(0) = xo.

To establish the existence and uniqueness of a semigroufyfpwe will employ
the following fundamental result.



312 O. GONZALEZ, J. H. MaDDOCKS & R.L. PEGO

Theorem 5.2 (Lumer-Phillipg. Let Agy be a linear operator on a Hilbert
space X. Then Agjy is the generator of a (quasi-contractive) semigroup S(z) if
and only if

(i) D(Agy) isdensein x,
(i) 3B = Osuchthat (x, Agyx), < Blx][2. Vx € D(Agi),
(i) (yI — Agiv) : D(Aqv) — X issurjectivefor y sufficiently large.

The next proposition establishes the existence of a semigroufgfar

Proposition 5.3. Assumethe domain 2 is open, bounded and of class C2. Then the
operator Agjy in (5.5)isthe generator of a semigroup S(¢) on x'.

Proof. The result follows by direct verification of the conditions in the Lumer-
Phillips Theorem.

1. To establish the inequality in (ii) I€b, w) € D(Agiy) be arbitrary. Then

<(v7 w)v AdiV(va w))X
= ((v, w), (Cdiv(w), Bdiv(v)))
= (v, Cdiv(w)),, + (w, Baiv(v)),,
= (v, pCaiv(w))o + (VCa(w), E®))o + (p~ 0, Baw(v)) .
Integrating the second term by parts, using the boundary conditidi(enand
using the definition of; (v) gives
(v, w), Adiv(v, w)) ,, = (v, pCoiv(w))g + (g (V)Cdiv(w), N)g
(V- 2@, Cav())o + (o 7w, Bay(®)) .
Applying the divergence theorem to the second term and using the fac? that
Cgiv(w) = 0yields
(v, w), Adiv(v, w)) , = (v, pCaiv(w))g + (Vg (v), Cdiv(w))g
— (V- Z@), Cav(@))o + (o~ w, Baw (),

= (v, w)o,

where the last line follows from the definitions 8fy, and Cgjy. Applying the
Cauchy-Schwartz inequality we find that

(v, w), Ady(v, W), < = (lp"?l[§+ llp~2wl§) < BlI(v. W[5

o
2
whereg = max(1, «)/2.

2. To establish condition (iii), for angf, g) € X we consider the equation

(yI — Adv)(v, w) = (f, 8). (5.14)
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For y sufficiently large, our goal is to show that givéyf, g) there is a unique
(v, w) € D(Aqy) satisfying (5.14). Writing the above system in components and
rearranging terms yields the system
w=p(yv—f),
, rv—f (5.15)
y“pv — Bav(v) =ypf + 8.

Hence, giveru = yp f + g € Wyiy We seekw € D(Bgiy) C Vgiv Such that
L,2(v) = yz,ov — Bgiy(v) = a. (5.16)

To solve (5.16) we consider an associated weak formulation obtained by multiplying
by an arbitrary elemeny of Vgiy and integrating by parts. The resulting weak
equation is

y2(pv, 0o + (CVv, Vg = (@, n)g ¥ 1 € Va- (5.17)

For y2 > « we note that the left-hand side is equivalent to the inner-product on
Vaiv C H1(2, R™). Hence, by the Lax-Milgram Theorem [27], there exists a unique
v € Vg satisfying (5.17). Using regularity results for Neumann boundary value
problems for Stokes-type systems givenGraQuUINTA & Mobica [19, Theorem
1.2, p. 198; Remark 2.6, p. 206] (slightly generalized to include the ¢€tmw, 1),
above), we have € Vgiy N H2(2, RY).

It thus remains to show that € D(Bygj), that is, to showv satisfies the
appropriate boundary conditions. To this end, consider the linear functional
H1 — R defined for anyy € H1 by

) = y*{pv, Mo+ (CVv, Vi)o — (@, n)o. (5.18)
It is straightforward to show that there is a const@nindependent of, such that
el = Clinlla.
Thust € H_1 = (1-011)’. From (5.17) we have
t) =0 VyeHiN Vv

and by Propositions 1.1 and 1.2Tamam [42, p. 14] there exists & € Hp such
that(g, 1)0 =0and

e =1{3.V-n), ¥ueH,
or
y2(ov, o+ (B, Vido — (@, o =(3. V- n)y VneHi  (5.19)

Using (5.19) together with the fact thais in H> it is straightforward to show that
g € Hi. Moreover, integrating by parts in (5.19) we find that

V.2 —V§=y%pv—a in Q. (5.20)
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Now, consider a mapping : H; — I-Oll defined by
P =6() — O(1),
wheref = 60(y) is defined by the Laplace equation

AO =0 in Q,

0 |:frn-NdF
:)7— —_—
i ar

and® = O(y) is defined by the Stokes equations

]N in T,

A®—VE=0 in Q,
V.-0=0 inQ,
®=0 inT.
That@ (n) is well defined follows from the standard theory for elliptic equations,
see, e.g., [30], and th&(») is well defined follows from the standard theory for

the Stokes equations, see, e.g., [42]. Using the definitidhtofjether with (5.19)
we thus have

y2(pv, P())o + (Z(v), VP())o — (@, P(n))g
=(G.V-Pm), VneH,
(5.21)

and using the fact th® () € Vgiv together with (5.17) the above equation reduces
to

y2(pv, 0(0))o + (Z(), VO))o — (a, 0(n)o
=(3.V-0(n),. VneH.

Integrating the above equation by parts and using (5.20) we obtain

(5.22)

0=(0(m), Z®N —gN),
={n,T@N -GN} .

Jrn-Ndl

ST

To establish thai satisfies the appropriate boundary condition considepany{,
such thaty = EX(v) N onT" whereE (X) is the projection onto the tangent plane
toI" at X. For any suchy we havey - N = 0 onT" and (5.23) yields

(5.23)
](N, E@N —§N)y. V1€ H.

(EX()N, EX()N)or = 0. (5.24)

The above equation impli&X (v) N = 0onT which is the appropriate boundary
condition forv. We thus have € D(Bgjy) and (5.15; yieldsw € D(Cgy). The
surjectivity condition is thus proved.
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3. Since D(Cyjy) is dense inWyiy, condition (i) will follow from the dense-
ness of D(Bgjy) in Vgiy. TO establish the denseness Bf Bgi,) consider any
v € [D(Bgiv)]*. Then, for anyu € D(Bgjy), we have

0= (v,u),, = v, pu)g+ (Vv, Z(u))g
= (apu — V- X(u) + Vq(u), v)g
= (Lq(u), v)o = (Lo(u), pv),,,.

Since the operatak, mapsD(Bgiy) onto Wgiy and pv € Wiy, we deduce that
v = 0, thus proving the denseness{Bgi).

5.3. Proof of Theorem4.1

By Proposition 5.3 the operataty, generates a semigroufy (1) on Vgiy x
Wiaiv- Given any(vg, wg) € D(Agiy) and any(f, g) € Vgiv x Waiv, We can solve
(5.5) via the variation of constants formula

t

(v, W) (1) = Saiv(1) (vo, wo) + /0 Sav(t — (f.g) dr.  (5.25)

In particular,(v, w)(?) is a continuously differentiable curve M(Agyy) C Vdgiv X
Wiiv satisfying (5.5) andv, w)(0) = (vg, wo), See, e.g., [24, Chapter IX, Section
1.5]. Theorem 4.1 now follows from Proposition 5.1 by taking

f=p"E — Vi)l € Vi,
g =V -X(uo) — Va(ug) + b € Wi, (5.26)
(vo, wo) = (0, 0).

6. Discussion

We have shown that when considering finite- and infinite-dimensional La-
grangian dynamical systems subject to holonomic constraints, there can be some
advantage in enforcing velocity-level constraints either instead of, or in addition to,
configuration-level constraints. All the formulations we considenenta ent-space
formulations: they are defined (at least formally) on the whole of an ambient space
and they possess a physical solution set, that is, an invariant set on which physical
balance laws and constraints are satisfied. Depending on how constraints are intro-
duced into the underlying action principle, using multipliers of striction or pressure
type, different ambient-space formulations can be constructed for which the phys-
ical solution set is either unstable, the level set of a first integral, or exponentially
attractive in an appropriate sense.
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6.1. Ambient-Space Formulations

As mentioned in the Introduction, our motivations for studying ambient-space
formulations are twofold. First, we believe that these types of formulations may be
useful within the context of numerical simulation and analysis. In particular, the
ability to control the stability properties of the physical solution set while maintain-
ing a Hamiltonian structure is a potentially important freedom that does not appear
to have been fully exploited in the literature on constrained systems, especially in
the infinite-dimensional case. Second, ambient-space formulations can sometimes
allow standard analysis techniques, such as stability calculations via Lyapunov ar-
guments [11] or existence and regularity theory as considered here, to be brought
to bear more simply and concretely than for analogous formulations restricted to
constraint manifolds.

We believe ambient-space formulations to be of practical interest for both finite-
and infinite-dimensional systems. Many constrained Lagrangian systems of con-
temporary interest are intrinsically finite-dimensional, and ambient-space formu-
lations could provide a practical means for their numerical treatment. Indeed, var-
ious studies have been made along these lines [4,28]. However, the Hamiltonian
ambient-space formulation introduced here does not seem to have appeared before,
and perhaps deserves further study in such contexts.

In this article we have considered ambient-space formulations for both finite-
and infinite-dimensional constrained Lagrangian systems. However, we did not
probe into the connections between a given infinite-dimensional system and associ-
ated finite-dimensional approximations, such as would arise from spatial discretiza-
tion. If, for example, one considers spatial discretizations that preserve Lagrangian
structure, then one can immediately consider two finite-dimensional ambient-space
approximations depending on whether one first passes to an ambient-space formu-
lation and then discretizes, or vice-versa. In such cases the numerical treatment of
constrained infinite-dimensional systems via an ambient-space formulation would
seem to necessitate a firm understanding of how the discretization process interacts
with the passage to an ambient space.

6.2. Multiple Multipliers

When a linear combination of the original configuration-level constraint and
its associated velocity-level constraint, as in (2.9) or (3.20), are introduced into the
action principle, we refer to the associated multiplier as being of striction type.
This type of multiplier can be eliminated via an appropriate minimization, and the
resulting ambient-space formulation is Hamiltonian. Moreover, the formulation
possesses an exponentially attractive physical solution set when the parameter
appearing in (2.9) or (3.20) is positive. This observation, which appears to be new
in both the finite- and infinite-dimensional cases, is one extension of the impetus-
striction approach as described in [31,11], which constructed only the neutrally
stable case.

For infinite-dimensional problems, we showed that use of a single multiplier
field of striction type can lead to boundary evolution equations that may be un-
usual to use or analyze. However, in our second extension of the impetus-striction
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method, we showed that boundary evolution equations can be avoided by introduc-
ing multiplier fields of both striction and pressure type. The physical solution setin
the resulting multi-multiplier formulation, which no longer need be Hamiltonian,
enjoyed all the stability properties of the pure striction approach. For the specific
initial-boundary value problemin linearized incompressible elastodynamics corre-
sponding to a body with a specified traction on its boundary, the multi-multiplier
formulation was proven to be well posed in the sense stated in Theorem 4.1.

6.3. Impetus and Impulse

When constraints of the form (2.9) or (3.20) are introduced into the action
principle the natural conjugate variable is not the classic momentum, but a related
guantity that we call thempetus[31, 11]. In each case, impetus determines the stric-
tion and velocity fields according to a rule of decomposition guaranteeing that the
constraints remain satisfied. The impetus and striction variables have an interesting
physical meaning that can be explained as follows. Consider first an unconstrained
finite-dimensional system, analogous to those considered in Section 2, subject to
an additional external forcg(z) so that

g= mp, p=-DV(Q+f. (6.1)

Suppose the system attime- O is in a prescribed configuratigr with prescribed
momentunp,. Assuming the forcg (¢) to be of short duration > 0, we integrate
(6.1) to obtain

gy = OCe), [pllp = fo f@) dr+OC), (6.2)

where[lq]lg = g. — g0, and so on.
If f(¢)is aclassiédmpulsiveforce, that is, a force of such large magnitude and
short duration that it can be well approximated by the Dirac distributién with

&
/ f@)dt=i Ve>0, (6.3)
0
then we calf theimpulseassociated witlf (7), and (6.2) yields the jump conditions

gy =0, [ply=1i, (6.4)

where[lq]ly = lim. o [[¢]l5, etc. Thus, if impulse is defined as the time integral of
an impulsive force, then the impulse is the jump in momentum. In particular, if the
system is at rest at time= 0, the impulse is the momentum at time= 0™,

Now consider the (holonomically) constrained finite-dimensional system de-
scribed by equations (2.4) in Section 2. When the system is subject to an additional
external forcef (¢) the equations become

g=m"1p,
p=—-DV(q) —rDg(q) + f, (6.5)
0=g(q).
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Suppose the system at time= 0 has a prescribed configuratigr satisfying
g(gg) = 0, and has a prescribed momentpgconsistent with (6.1 in the sense
that Dg(qo) - m1po = 0. Integrating as before we find

g1y = O(e),

& & (6.6)
lpllo = — [/O A(t) dt] Dg(q0) +/0 f(@) dt + O(e).
If f(¢) is an impulsive force as before with impuléez 0, then in order that the
momentump, satisfyDg(q,) 'm_lpg = O foralle > 0, the multiplierr(z) must
admit the limit

& D =L
/ A(t) dt — 8o) ’1" !
0 Dg(qq) - m~=Dg(q0)
Thus the pressure-like multiplier is an impulsive variable.

On the other hand, in view of Proposition 2.3, the striction variale for
(6.5) satisfies the equation

as ¢/ 0. (6.7)

n—ap=—Xx, (6.8)
wherex € R is a parameter. Integrating, we obtain
&
il =~ [ 40) di + 0. 6.9)
0

sothatinthe limite | O the striction multiplier has a simple discontinuity according
to the relation

Dg(qg) -m™ti

= — . 6.10
il Dg(qo) - m~1Dg(qo) (6.10)

Moreover, from (6.8, we find the jump in momentum to be

: Dg(qo) -m~ti ]
=i— D . 6.11
1Plo =1 [Dg(q()) - Dg(ge) | 74117 (641
Finally, the impetus variablé for (6.5) by definition satisfies
&) =mq(t) — n(r)Dg(q (1)), (6.12)
so that

[£106 = [Lpllp — [ullgDg(go) + O(e). (6.13)

Combining (6.13), (6.9) and (6.6), and passing to the limjt0, leads to the jump
conditions

[gllo =0, [Ellp =i. (6.14)

Thus, for a constrained systemhe impulse is equal to the jump in impetus. In
particular, if the system has zero impetus at time 0, the impulse is the impetus at
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timet = 0. Furthermore, from (6.10) and (6.11) we see that, for a given impulse,
the jump in momentum and the jump in striction are determined according to a
decomposition rule exactly analogous to (6.12), namely

i =[ply— [nllyDg(go)- (6.15)

We now consider the case of linearized incompressible elasticity discussed in
Section 3. Consider the system described by (3.3) and suppose this system is subject
to a body force field in 2 and a boundary pressure fiéln I, so the equations
under consideration are

pii=V-X—Vp+b in Qx(0,T],

V-u=0 in Q x [0, T],

YN — pN =—hN in T, x [0, T],
(6.16)

EXN =0 in Iy x [0, T1,

u-N=0 in Iy x [0, T],

u=20 in T, x [0, T].

Suppose the system at time= 0 has a prescribed configuratiep satisfying
the boundary conditions and the constra&inug = 0, and has a prescribed velocity
g consistent with (6.1% in the sense tha&t - #g = 0. Assuming that the external
loadsb andh are of short duration > 0, and that (6.16) admits sufficiently regular
solutions for these loads, we formally integrate (6,116 obtain

[pully = —V [/ pdti| —i—/ bdt+O(e) in Q, (6.17)
0 0
and integrate (6.1g to obtain
& &€
/ pdt = / hdt+O(e) onTy. (6.18)
0 0

If the body forceb and boundary pressukbeare impulsive loads with impulses
iq andir, respectively, so that

& &
/bdt=iQ and /hdlZi[‘U Ve >0,
0 0

thenin order that the velocity satis§§-it, = Oforalle > 0, the pressure multiplier
p must admit the formal limit
&
/ pdt — ¢
0

for an appropriate fielgp depending orig andir, . The pressure multiplier is thus
an impulsive field. In view of (6.17), the fielpl satisfies the equation

V(o lVg)=V-(ptig) inQ
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and, in view of (6.18), the boundary condition
¢=ir, onT,.

Assuming the normal component of the veloadity has a well defined trace on
I, U Ty, we have also the boundary condition

Vo -N=ig-N onl,UTy

obtained from (6.17) together with (6.16.
On the other hand, in view of Proposition 3.3, the striction variatfer (6.16)
satisfies the equation

f—oap=p, (6.19)

wherea € R is a parameter. Integrating we obtain

[Tl = /O p(t) di + O(e), (6.20)

and we find that, in the limit | 0, the striction multiplier has a discontinuity in
time according to

[nllo = ¢,

whereg is as defined above. Moreover, from (6.17) we find the jump in physical
momentum to be

[ptllo = —VIully +iq. (6.21)
Finally, the impetus variablg = (¢, v) for (6.16) by definition satisfies

$(1) =pu@)+ V() in Q,

(6.22)
v(t) = u(t) on Iy,

and thus
[¢T§ = Mpally + VIuly in 2,
[[v1g = Mg on I.

Combining (6.23), (6.20), (6.18) and (6.17), and passing to the $injit0, leads
to the jump conditions

(6.23)

[tllg=ie in ,

6.24
[vllp=ir, onT,. (6.24)

Thus, for a constrained infinite-dimensional system such as linearized incompress-
ible elasticity, the body impulse equals the jump in body impetus, and the boundary
impulse equals the jump in boundary impetus.
The above arguments are in concordance with the classic notions of impul-

sive force and impulse dating backKeLviN & LamB [26]. They show that, just

as momentum and impulse are related but different quantities for unconstrained
systems, impetus and impulse are related but different quantities for constrained
systems. In the particular context of fluid dynamics, variables analogous to what we
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call impetus have been called “impulse variables” [41,37,9], and in one instance
a “magnetization variable” [8]. We prefer to call our conjugate variable impetus,
rather than impulse, for the above reasons and the fact that the name impetus signals
unequivocally that a constrained system is at hand. Moreover, use of the term im-
pulse can lead to a second confusion because, while the classic definition is as the
time integral of an applied impulsive force, some authors reserve the term for the
conserved quantity associated with the symmetry of homogeneous media (see, e.g.,
[5] for a general discussion, or [11] for an analysis in which impetus, momentum
and impulse in the sense of [5] all play important and distinct roles).
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