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Abstract

The numerical integration in time of the equations of motion for mechanical systems subject to holonomic constraints is
considered. Schemes are introduced for the direct treatment of a differential–algebraic form of the equations that preserve
the constraints, the total energy, and other integrals such as linear and angular momentum arising from affine symmetries.
Moreover, the schemes can be shown to preserve the property of time-reversibility in an appropriate sense. An example is
given to illustrate various aspects of the proposed methods. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The equations of motion for a conservative mechanical system subject to holonomic constraints can often be
written in the differential–algebraic [1] form

q̇ = D2H(q, p), ṗ = −D1H(q, p)−Dg(q)Tλ, 0 = g(q), (1)

whereq ∈ Rn are the configuration variables,p ∈ Rn are variables conjugate to the velocitiesq̇ in an appropriate
sense,g : Rn → R

m (m < n) is a smooth constraint function,λ ∈ Rm is a vector of (Lagrange) multipliers, and
H : Rn × Rn → R is a smooth function that represents the Hamiltonian function for the system in the absence of
constraints.

Associated with the system (1) are the sets

Q = {q ∈ Rn|g(q) = 0}, M = {(q, p) ∈ Rn × Rn|Dg(q)D2H(q, p) = 0 and g(q) = 0}. (2)
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The setQ is called the configuration space for the system and, assumingDg(q) ∈ Rm×n has rankm for eachq ∈ Q,
it is an(n−m)-dimensional manifold. The setMmay be referred to as the intrinsic phase space for the system, and it
has the property that if(q, p, λ)(t) is a smooth solution of (1), then(q, p)(t) ∈M. AssumingD2

2H(q, p) ∈ Rn×n is
invertible for any(q, p) ∈M, we find thatM is actually a(2n−2m)-dimensional manifold, and that (1) implicitly
defines a vector field onM. Moreover, this vector field is Hamiltonian with a Hamiltonian function defined by the
restrictionH |M and a symplectic structure defined by the restriction of the canonical structure ofR

n × Rn toM
[2]. More details on the general theory of differential–algebraic systems may be found in [1,3], and details about
Hamiltonian systems on manifolds may be found in [4,5].

There has been much interest in the development of numerical schemes for the differential–algebraic system (1)
that preserve some of its structure. The case in whichH(q, p) is separable,

H(q, p) = p ·M−1p + V (q), M ∈ Rn×n, (3)

was studied in [6], where variants [7] of the time-reversible Verlet scheme that preserveQ, and variants that pre-
serveM together with its symplectic structure, were considered. Of these methods, it was reported that those which
preserveM produced nearly identical results as those which preserve onlyQ. The case of a general Hamiltonian
was studied in [8,9], where it was shown that there exist partitioned Runge–Kutta methods that preserveM along
with its symplectic structure for arbitraryH(q, p) (see also [10]). Rather than treat (1) directly, one may alterna-
tively consider stabilized differential–algebraic formulations [1,11,12], or unconstrained formulations in which the
constraints appear as invariants [13,14,2].

In this article we consider variants of the time-reversible, integral-preserving schemes of [15,16] for the direct
treatment of (1). It will be shown that schemes can be constructed for (1) which preserveQ, the restricted Hamiltonian
H |Q and other integrals such as linear and angular momentum arising from affine symmetries in the problem. The
appeal of preserving an energy-like quantity such asH |Q can be traced back to [17] and the concept of energy
stability. For unconstrained problems, an analysis of the symmetry and stability properties of integral-preserving
schemes may be found in [15,16], and various applications of such methods may be found in [18,19].

The presentation is structured as follows. Integrals and symmetry properties of (1) are discussed in Section 2, and
a general integral-preserving scheme is outlined in Section 3. In Section 4 the general scheme is specialized to the
case of a constrained four-particle model problem and a numerical example is given. A detailed numerical analysis
of the schemes developed here will be given elsewhere.

2. Integrals and symmetry

The differential–algebraic system (1) may possess various physically meaningful integrals that one would like to
preserve under discretization. To bring these integrals into evidence, we rewrite (1) in the form

q̇ = D2H(q, p, λ), ṗ = −D1H(q, p, λ), 0 = D3H(q, p, λ), (4)

whereH : P → R is an augmented Hamiltonian function defined as

H(q, p, λ) = H(q, p)+ λ · g(q) (5)

andP = Rn × Rn × Rm. Since we will be interested in integrals defined on the ambient spaceP = Rn × Rn, we
note that the rate of change of any smooth functionφ : P → R along a solution of (4) is given by the expression

d

dt
φ(q, p) = {φ,Hλ}(q, p), (6)
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whereHλ = H(·, λ) : P → R and{·, ·} is the canonical Poisson bracket associated withP , namely

{φ,ψ}(q, p) = D1φ(q, p) ·D2ψ(q, p)−D2φ(q, p) ·D1ψ(q, p). (7)

2.1. Fundamental integral

The differential–algebraic system (4) always possesses an integral due to the skew-symmetry of the bracket{·, ·}.
In particular, the augmented Hamiltonian functionH is conserved along any solution(q, p, λ)(t) ∈ P in the sense
that

d

dt
H(q, p, λ) = 0, which implies

d

dt
H(q, p) = 0 (8)

because(q, p)(t) ∈M.

2.2. Symmetry-related integrals

The system (4) may possess various integrals associated with symmetry properties ofH under the action of a Lie
group onP . To see this, letG ⊂ Rk be a Lie group, with tangent space at the identity denoted byTeG ⊂ Rk, and
let8 : G× P → P denote a regular Poisson action ofG onP [20]. Recall that the action ofG is Poisson if, for
any two smooth functionsφ,ψ : P → R, we have

{φ,ψ} ◦8γ = {φ ◦8γ ,ψ ◦8γ }, ∀γ ∈ G, (9)

where8γ = 8(γ, ·) : P → P . To anyξ ∈ TeG we associate a vector fieldξP : P → P defined by

ξP (q, p) = d

ds

∣∣∣∣
s=0

8(exp(sξ), q, p) = (vξ (q, p),wξ (q, p)), (10)

where exp :TeG → G is the exponential map onG, and we recall that a momentum map for the system
(P, {·, ·},G,8) is a mapJ : P → T ∗

eG satisfying

D1Jξ (q, p) = −wξ(q, p), D2Jξ (q, p) = vξ (q, p), ∀ξ ∈ TeG, (11)

whereJξ : P → R is defined asJξ (q, p) = J (q, p) · ξ .

Proposition 2.1. Suppose the system(P, {·, ·},G,8) possesses a momentum mapJ : P → T ∗
eG. If the uncon-

strained HamiltonianH : P → R and the constraint functiong : P → R
m are G-invariant, that is

H ◦8γ = H and g ◦8γ = g, ∀γ ∈ G, (12)

then J is conserved along any solution(q, p, λ)(t) ∈ P of (4) in the sense that

d

dt
J (q, p) = 0. (13)

Proof. Let ξ ∈ TeG be arbitrary. Then the rate of change ofJξ along a solution is

d

dt
Jξ (q, p) = {Jξ ,Hλ}(q, p) = −{Hλ, Jξ }(q, p) = − d

ds

∣∣∣∣
s=0
Hλ(8exp(sξ)(q, p)) = 0, (14)

where the last line follows from theG-invariance ofHλ, which is implied by that ofH andg. SinceJξ = J · ξ , the
result follows by the arbitrariness ofξ . �
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3. Conserving integration schemes

We next generalize the schemes developed in [15] to differential–algebraic systems of the form (1). We suppose
thatH(q, p) andg(q) are invariant under the action8 of a Lie groupG onP , and that this action has a momentum
mapJ (q, p). For eachγ ∈ G, we assume that8γ is an affine map onP and thatJ (q, p) is at most quadratic in
(q, p). Under these assumptions, schemes can be developed for (1) which preserveQ,H andJ .

The schemes developed in [15] are based on the notion of adiscrete derivativeof a smooth functionf : P → R,
which is defined to be a mappingDf : P × P → P satisfying thedirectionalityproperty

Df (x, y) · (y − x) = f (y)− f (x) (15)

for all x = (xq, xp) ∈ P andy = (yq, yp) ∈ P , and theconsistencyproperty

Df (x, y) = Df

(
x + y

2

)
+O(|y − x|r ) (16)

for somer ≥ 1 and allx, y ∈ P with |y−x| sufficiently small. Moreover, for the case whenf : P → R is invariant
under the action ofG on P , the discrete derivative off is said to beG-equivariant if it satisfies the additional
orthogonalityproperty

Df (x, y) · (vξ (z), wξ (z)) = 0 (17)

for all x, y ∈ P andξ ∈ TeG wherez = (x + y)/2. In [15] various formulae are given for constructing equivariant
discrete derivatives withr = 2.

To a discrete derivativeDf (x, y) ∈ P one associates partial discrete derivativesD1f (x, y) ∈ Rn andD2f (x, y) ∈
R
n according to the relation

Df (x, y) · (uq, up) = D1f (x, y) · uq + D2f (x, y) · up (18)

for all u = (uq, up) ∈ P . From (18) we see that a discrete derivative operatorD onP induces a discrete derivative
operatord onRn. To see this, leth(xq) be a given function ofxq ∈ Rn and leth̄(x) be that function onP defined as

h̄(x) = h(xq), ∀x = (xq, xp) ∈ P. (19)

Thend is defined as

dh(xq, yq) = D1h̄(x, y). (20)

Finally, discrete derivatives are defined for vector-valued functions, such as the constraint functiong : Rn → R
m,

in the obvious way at the component level.
An integral-preserving scheme for the differential–algebraic system (1) can now be stated. LetD denote an

equivariant discrete derivative operator for functions of(q, p) ∈ Rn ×Rn, and letd denote the induced equivariant
discrete derivative operator for functions ofq ∈ Rn. Then an integral-preserving scheme for (1) is

qn+1 − qn = 1t D2H(xn, xn+1), (21a)

pn+1 − pn = −1t D1H(xn, xn+1)−1t dg(qn, qn+1)
Tλn+1, (21b)

0 = g(qn+1), (21c)

wherex = (q, p) ∈ P and1t > 0 is the time step.
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Proposition 3.1. The constraint g, Hamiltonian H and momentum map J (at most quadratic) are preserved along
any solution sequence(qn, pn, λn) ∈ P of (21a) – (21c)in the sense that

g(qn) = 0, H(qn, pn) = H(q0, p0), J (qn, pn) = J (q0, p0), n = 0,1,2, . . . . (22)

Proof. Preservation of the constraint is obvious in view of (21c). To establish that the integralH(q, p) is preserved,
we take the inner product of (21a) with(pn+1 −pn), the inner product of (21b) with(qn+1 −qn) and subtract to get

D1H(xn, xn+1) · (qn+1 − qn)+ D2H(xn, xn+1) · (pn+1 − pn)+ λn+1 · [dg(qn, qn+1)](qn+1 − qn) = 0 (23)

which, in view of the directionality property of the discrete derivative, yields

H(xn+1)−H(xn)+ λn+1 · [g(qn+1)− g(qn)] = 0. (24)

The result forH then follows from the fact thatg(qn+1) = g(qn) = 0. To establish the result forJ , let ξ ∈ TeG be
arbitrary. Then, since the functionJξ : P → R is at most quadratic, we have

Jξ (xn+1)− Jξ (xn) = D1Jξ (qn+1/2, pn+1/2) · (qn+1 − qn)+D2Jξ (qn+1/2, pn+1/2) · (pn+1 − pn) (25)

where(·)n+1/2 = (1/2)[(·)n + (·)n+1] andDi are the exact partial derivatives. Using (11) we obtain

Jξ (xn+1)− Jξ (xn) = vξ (xn+1/2) · (pn+1 − pn)− wξ(xn+1/2) · (qn+1 − qn). (26)

Combining the above equation with (21a) and (21b) gives

Jξ (xn+1)− Jξ (xn) = −1t D2H(xn, xn+1) · wξ(xn+1/2)−1t D1H(xn, xn+1) · vξ (xn+1/2)

−1t λn+1 · [dg(qn, qn+1)]vξ (xn+1/2) = −1t DHλn+1(xn, xn+1) · (vξ (xn+1/2), wξ (xn+1/2)) (27)

which vanishes in view of the orthogonality condition of the equivariant discrete derivativeD applied to the function
Hλ : P → R. SinceJξ = J · ξ , the result follows from the arbitrariness ofξ . �

It is important to note that whileqn ∈ Q, one may have(qn, pn) /∈ M, and so the scheme does not generally
preserve the intrinsic phase spaceM. Thus, along a solution sequence of (21a)–(21c), the conserved Hamiltonian
H(qn, pn) is generally only an approximation to the physical energy of the system. The problem lies in the fact that
the velocity vector corresponding topn may not be tangent to the configuration spaceQ. However, schemes that
preserve onlyQ may have some merit. For example, in [6] it was reported that variants of the Verlet scheme that
preserve onlyQ produced nearly identical results as variants that preserveM.

4. Example

Consider four particles inR3 as shown in Fig. 1 with massesmi > 0 and positionsqi ∈ R3, and letq =
(q1, . . . , q4). Assume the particles are under the influence of a potential

V (q) = Ṽ1(π1(q))+ Ṽ2(π2(q)), (28)

whereπ1(q) = |q1 − q3|2 andπ2(q) = |q2 − q4|2. Furthermore, assume the system is subject to configuration
constraints of the form

g1(q) =
√
ζ1(q)− L1 = 0, g2(q) =

√
ζ2(q)− L2 = 0, (29)
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Fig. 1. Constrained four particle system.

whereζ1(q) = |q1−q2|2, ζ2(q) = |q3−q4|2, andL1, L2 > 0 are given constants. Introducing momentum variables
p = (p1, . . . , p4), we find that the equations of motion for the current system can be written in the form (1) with
n = 12,m = 2 and Hamiltonian

H(q, p) =
4∑
i=1

1

2mi
|pi |2 + V (q). (30)

The constraintg = (g1, g2) and the HamiltonianH are invariant under the groupG1 = R3 acting by translations
onq, and the groupG2 = SO(3) acting by rotations on(q, p). The momentum map associated with the action of
G1 is the total linear momentum

L(q, p) =
4∑
i=1

pi, (31)

and that associated withG2 is the total angular momentum (about the origin)

J (q, p) =
4∑
i=1

qi × pi. (32)

The system defined byH andg thus preserves the fundamental integralH , and the momentum mapsL andJ .
A conserving scheme of the form (21a)–(21c) for the present system requires a discrete derivative operatorD for

H(q, p) andg(q) satisfying the orthogonality conditions associated withG1 andG2. Using the results in [15] we
obtain the implicit, one-step scheme

qn+1
i − qni = 1tm−1

i p
n+1/2
i ,

pn+1
i − pni = −1tDiV (qn, qn+1)−1t λn+1

1 Dig1(q
n, qn+1)−1t λn+1

2 Dig2(q
n, qn+1),

0 = g1(q
n+1), 0 = g2(q

n+1), (33)

where(·)n+1/2 = (1/2)[(·)n + (·)n+1] and

DiV (qn, qn+1) =
[
Ṽ1(π

n+1
1 )− Ṽ1(π

n
1 )

πn+1
1 − πn1

]
∂π1

∂qi
(qn+1/2)+

[
Ṽ2(π

n+1
2 )− Ṽ2(π

n
2 )

πn+1
2 − πn2

]
∂π2

∂qi
(qn+1/2),

Dig1(q
n, qn+1) =

[
g̃1(ζ

n+1
1 )− g̃1(ζ

n
1 )

ζ n+1
1 − ζ n1

]
∂ζ1

∂qi
(qn+1/2),

Dig2(q
n, qn+1) =

[
g̃2(ζ

n+1
2 )− g̃2(ζ

n
2 )

ζ n+1
2 − ζ n2

]
∂ζ2

∂qi
(qn+1/2). (34)
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Fig. 2. Motion of constrained four particle system.

The above scheme conserves the configuration spaceQ, the total energyH(q, p), and the linear and angular
momentum mapsL(q, p) andJ (q, p). Moreover, it is straightforward to show that the scheme is time-reversible
in the sense of [9].

Remarks 4.1.
1. For unconstrained systems, the idea of approximating the derivative of a potential with a finite-difference

quotient in order to achieve energy and momentum conservation can be traced back to [21–24]. In the present
example, these difference quotients are a special case of the equivariant discrete derivative formulae presented
in [15].

2. The integral-preserving properties of the above scheme are automatic; in particular, the integrals are not en-
forced through the introduction of extra multipliers and projection steps [25,26]. In contrast with the scheme
presented here, methods based on the use of extra multipliers to preserve integrals are generally not time-
reversible.

To illustrate the performance of the scheme a simulation was done using the following parameters and initial
data:

m1 = 1.0, m2 = 3.0, m3 = 2.3, m4 = 1.7, L1 = 1.0, L2 = 1.0,

V1(q) = 1
4K1(|q1 − q3|2 − 1)2, K1 = 100,

V2(q) = 1
4K2(|q2 − q4|2 − 1)2, K2 = 1000,

q0
1 = (0,0,0), q0

2 = (1,0,0), q0
3 = (0,1,0), q0

4 = (1,1,0),

p0
1 = (0,0,0), p0

2 = (0,0,0), p0
3 = (0,0,0), p0

4 = (0,0,2).

Fig. 2 shows the motion computed over the time interval [0,10 s] with a time step of1t = 0.01 s. The dotted lines
in the figure show the initial positions of the “rigid bars” to which the points masses are attached.

By design, the constraintsg1 = 0,g2 = 0, the total energyH , the three components of total linear momentumL
and the three components of the total angular momentumJ are conserved at each time step to the tolerance of the
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Fig. 3. Time history of velocity constraints.

numerical computations. Ideally, one would also like the quantities

ġ1 =
4∑
i=1

∂g1

∂qi
(q) ·m−1

i pi and ġ2 =
4∑
i=1

∂g2

∂qi
(q) ·m−1

i pi

to vanish along the computed solution. However, as shown in Fig. 3, these quantities exhibit bounded oscillations
about zero. Thus, while the scheme preserves the configuration spaceQ, it does not generally preserve the intrinsic
phase spaceM.

Some of the convergence properties of the scheme are illustrated in Fig. 4, which contains a plot of the relative
error in the positionq4 at timeT = 0.1s versus the time step1t . Denoting byq4,1t (T ) the value ofq4 at timeT
computed with time step1t , the relative error is defined as

relative error= |q4,1t (T )− q4,e(T )|
|q4,e(T )| ,

whereq4,e(T ) represents the “exact” solution at timeT computed with a time step1t = 10−5s. Fig. 4 implies
the scheme is second-order accurate in the positions. However, this level of accuracy is not necessarily achieved
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Fig. 4. Relative error inq4 versus time step.

in the momenta and Lagrange multipliers since schemes may exhibit the phenomena of order reduction when
applied to systems of differential–algebraic equations [1]. For the present scheme such issues will be discussed
elsewhere.
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