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A method is described to extract a complete set of sequence-dependent material parameters for

rigid base and basepair models of DNA in solution from atomistic molecular dynamics

simulations. The method is properly consistent with equilibrium statistical mechanics, leads to

effective shape, stiffness and mass parameters, and employs special procedures for treating

spontaneous torsion angle flips and H-bond breaks, both of which can have a significant effect on

the results. The method is accompanied by various analytical consistency checks that can be used

to assess the equilibration of statistical averages, and different modeling assumptions pertaining to

the rigidity of the bases and basepairs and the locality of the quadratic internal energy. The

practicability of the approach is verified by estimating complete parameter sets for the 16-basepair

palindromic oligomer G(TA)7C simulated in explicit water and counterions. Our results indicate

that the method is capable of resolving sequence-dependent variations in each of the material

parameters. Moreover, they show that the assumptions of rigidity and locality hold rather well

for the base model, but not for the basepair model. For the latter, it is shown that the non-local

nature of the internal energy can be understood in terms of a certain compatibility relation

involving Schur complements.

1. Introduction

The sequence-dependent mechanical properties of DNA in

solution, for example its effective shape, stiffness and mass, are

critical for its packaging into the cell, recognition by other

molecules, and conformational changes during biochemical

processes. However, few methods are available which can

probe all these properties at the base or basepair level. Various

classic experimental methods can probe the structure of

macromolecules in solution, for example electric dichroism

and birefringence,11 light scattering,1 fluorescence polarization,37

centrifugation36 and various types of electrophoresis.15 These

methods in general yield only low-resolution information

about shape and mass, and provide little if any information

about stiffness. Other methods, such as X-ray diffraction,29

probe the structure of macromolecules in crystalline states.

These methods yield high-resolution information about shape,

and given enough data, even stiffness,31 but such data is static

and may not be representative of molecules in solution.

The nuclear magnetic resonance (NMR) of nucleic acids38

has recently made a dramatic progress, related in part to

advances in residual dipolar coupling techniques.26 NMR

methods can be applied to DNA in solution to obtain

structural information among other things. However, the

structures obtained may still depend on the force field used

to refine the NMR data, and the information about structural

fluctuations may be difficult to relate to a convenient set of

internal molecular coordinates.

A different approach is to exploit the direct, detailed

structural information available from a molecular dynamics

(MD) simulation.12 MD simulation probes the structure of a

macromolecule through the numerical integration of the

Newtonian laws of motion based on molecular forces

computed from empirical potential functions. MD can

generate an all-atom description of the dynamics of a macro-

molecule in solution, with solvent water and counterions

included explicitly, and various structural characteristics of

the macromolecule can be obtained from an analysis of the

results. Although computationally intensive, MD has become

widely used for the modeling of macromolecules in solution

due in large part to the growing availability of increased

computer power. Indeed, high-performance computing is

emerging as an attractive complement to classic experimental

methods. The field of MD applied to DNA has been under

development for at least 20 years,28 and the subject of force

fields and simulation protocols has received considerable

recent attention.3–6,13,33,35 While any parameters found by

MD can only be as good as the assumed atomistic potentials,
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and are restricted by the time scale and system size that can be

simulated, recent evidence suggests that MD simulation can

capture many sequence-dependent effects on the structure,

dynamics and mechanical properties of DNA.4,5,13,33,32

The sequence-dependent mechanical properties of DNA are

determined by its internal and kinetic energy functions. The

parameterization of the internal energy, which in general is

assumed to be elastic and quadratic in specified internal

coordinates, has been considered in various recent works.

For example, the parameters for various different internal

energy models have been inferred from crystal structure data31

and from MD simulations.20,21 In these works, as well as in

related theoretical studies,7,14 an assumption of locality is

made. That is, the internal energy is assumed to be a sum of

energies associated with either individual basepair steps

(junction between consecutive base pairs)31,20 or with the

two bases in a pair.21 The parameterization of the kinetic

energy is more complicated and has been less well-studied.

Indeed, the determination of kinetic energy parameters

requires dynamic data, which is difficult to produce in physical

experiments, but is naturally available in an MD simulation,

and also requires a statistical mechanical description of the

DNA model on its full phase space, not just the configuration

space as is commonly considered.

In this article, we study two coarse-grained models of DNA,

without any a priori assumptions of locality, and introduce an

MD method for estimating the complete set of sequence-

dependent internal and kinetic energy parameters for each.

The models differ according to whether individual bases or

basepairs are considered as independent, interacting rigid

bodies. We consider models in which the internal elastic

energy is a quadratic function of a set of internal coordinates

describing the relative, three-dimensional rotation and

displacement between bodies, and in which the kinetic energy

is a quadratic function of the linear and angular velocities of

each body as dictated by classical mechanical theory. We make

no a priori assumptions on the internal energy other than its

quadratic dependence on the internal coordinates; such an

energy is often referred to as harmonic and is the only type

considered here. We introduce the sequence-dependent shape,

stiffness and mass parameters necessary to define each model,

establish various results about their properties and derive

statistical mechanical relations that connect the complete set

of material parameters to the expected values of certain state

functions.

For special sequences, we exploit the complementary nature

of the two DNA strands and the objectivity of the internal and

kinetic energies to derive various symmetry relations for the

complete set of material parameters. Specifically, for

palindromic sequences, we show that material parameters

must be either symmetric or antisymmetric functions of

position about the middle of the sequence. For general

sequences, we exploit a certain factorability property of the

canonical measure and show that the rigid base and basepair

parameters must be compatible in an appropriate sense. For

example, we show, under appropriate assumptions, that the

elastic stiffness matrix of the basepair model is related to

the stiffness matrix of the base model through a Schur

complement. Such relations are of both theoretical and

practical interest and can be exploited to obtain consistency

checks on general parameter estimation methods. The

statistical mechanical relations we derive are properly

consistent with the canonical measure on the full phase space

of the system and differ from the usual Gaussian-type relations

by a Jacobian factor associated with the three-dimensional

rotation group. While such factors are typically ignored, or

equivalently assumed to be constant, we include them here.

We develop a method for estimating the complete set of

material parameters for both the rigid base and basepair

models from atomic-resolution MD simulation of a DNA

oligomer. To obtain parameters consistent with the B-form

DNA structural family, we propose special procedures for

treating spontaneous torsion angle flips and H-bond breaks,

both of which can have a significant effect on the results.

We demonstrate the practicability of our proposed method

by estimating material parameters for the 16-basepair

palindromic oligomer G(TA)7C. In particular, we use two

different MD trajectories simulated with the inclusion of

explicit water and counterions to estimate shape, stiffness

and mass parameters for both the rigid base and basepair

models. Various consistency checks indicate that the trajectories

are sufficiently long so that the required statistical mechanical

averages are estimated well. Our results indicate that the

method is capable of resolving sequence-dependent variations

in each of the material parameters.

We further use the estimated parameters to assess various

modeling assumptions. Specifically, we study the assumption

of rigidity of the bases and basepairs, and the property of

locality of the internal elastic energy. Through an analysis of

the predicted sparsity pattern for the generalized mass matrix

of each model, we find that the simulated data is closely

consistent with the assumption of rigid bases, but not rigid

basepairs. Indeed, the estimated mass parameters for the bases

are shown to compare favorably with various estimates based

on canonical geometries. Through an analysis of the sparsity

patterns of the generalized stiffness matrix, which a priori is

not assumed to have any specific structure, we find that the

simulated data is nearly consistent with a local internal energy

for the rigid base model, but not for the rigid basepair model.

Indeed, the estimated stiffness matrix for the basepair model is

remarkably non-local. We show that this non-locality can be

understood in terms of a certain compatibility relation.

It is well accepted that the mechanical properties of a DNA

molecule depend on the sequence of bases that constitute it,

and that this dependence is particularly pronounced at length

scales ranging from tens to a few hundreds of basepairs. Such

scales are prohibitively expensive for detailed atomistic-type

models, and often involve important local features that are

below the resolution of homogeneous chain- or rod-type

models. In this respect, coarse-grained models in which bases

or basepairs are modeled as rigid offer a promising approach

to understand various structural features at these scales, such

as sequence-dependent curvature and flexibility. Our results

suggest that, at the scale of a few tens of basepairs, a model in

which the bases are modeled as rigid, together with a local

quadratic internal energy based on nearest neighbors

as introduced here, is significantly more consistent with an

atomic-resolution MD simulation than an analogous model in
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which basepairs are modeled as rigid. Indeed, an analogous

local rigid basepair model is visibly inconsistent with the

simulated data. Moreover, the sequence-dependent variability

in our results suggest that MD simulation could be used to

estimate complete parameter sets for a local rigid base model

of B-form DNA. Such parameter sets may be helpful in

clarifying the relation between the base and basepair models,

interpreting various experiments where sequence-dependent

curvature and flexibility are believed to be important, and

could potentially lead to useful predictions about biochemical

processes such as transcription factor binding and nucleosome

formation. On the other hand, our method is intrinsically

limited to the assumption of quadratic, or harmonic energies,

so that large-strain deformations of DNA, such as kinking

that can arise in high-load regimes,19 are beyond its scope.

The presentation is structured as follows. In sections 2 and 3

we outline our rigid base and basepair models of DNA, define

the internal coordinates and velocities for each and establish

various results about their material parameters. In section 4 we

describe the MD protocol and special procedures used to

simulate B-form DNA in explicit solvent and the methods used

to compute the internal coordinates and velocities for each

model. In section 5 we present results on the shape, stiffness and

mass parameters for the oligomer G(TA)7C and examine

various modeling assumptions pertaining to rigidity and locality.

In section 6, we summarize our results and conclusions.

2. Rigid base model

Here we outline a rigid base model for the three-dimensional,

sequence-dependent structure of DNA. We introduce the

kinematic quantities necessary to define the configuration

and velocity of each base, and the material parameters

necessary to define the internal elastic energy and the kinetic

energy of a given oligomer. We outline the statistical mecha-

nical properties of the model and derive various symmetry

relations that the material parameters must satisfy for special

types of sequences.

2.1 Bases, configurations

We consider right-handed, double-helical DNA in which bases

T, A, C and G are attached to two, oriented, anti-parallel

backbone strands and form only the standard Watson–Crick

pairs (A, T) and (C, G). Choosing one backbone strand as a

reference, a DNA molecule consisting of n basepairs is

identified with a sequence of bases X1X2� � �Xn, listed in the

50 to 30 direction along the strand, where Xa A {T, A, C, G}.

The basepairs associated with this sequence are denoted by

(X, �X)1,(X, �X)2,. . .,(X, �X)n, where �X is defined as the Watson–

Crick complement of X in the sense that Ā = T, �T = A, �C = G

and �G = C. The notation (X, �X)a for a basepair indicates that

base X is attached to the reference strand while �X is attached

to the opposite strand.

We adopt a model of DNA9,10,30 in which each base is

modeled as a rigid object. The configuration of an arbitrary

base Xa is specified by giving the location of a reference point

ra fixed in the base, and the orientation of a right-handed,

orthonormal frame {dai } (i = 1,2,3) attached to the base. The

reference point and frame vectors are defined according to the

Tsukuba convention.30 The vector da1 points in the direction of

the major groove along what would be the perpendicular

bisector of the C10–C10 axis of an ideal basepair formed from

Xa, whereas d
a
2 points in the direction of the reference strand

and is parallel to the C10–C10 axis. As a result, da3 = da1 � da2 is

perpendicular to the plane of Xa and normally points in the

direction of Xa+1. The reference point ra is located at the

intersection of the perpendicular bisector of the C10–C10 axis

with the axis defined by the pyrimidine C6 and the purine C8

atoms. Just as for Xa, the configuration of base �Xa is specified

by a reference point �ra and frame { �dai }. The reference point and

frame for �Xa are defined in a manner exactly analogous to that

for Xa using the same reference strand. As a result, when

(X, �X)a form an ideal basepair, the reference points and frames

associated with each base coincide.

There are four possible basepairs (X, �X)a corresponding to

the choice Xa A {T, A, C, G}. In a rigid base model, the

positions of the non-hydrogen atoms in each base of each

basepair with respect to the associated reference point and

frame are considered to be constant. As a result, once the

reference point and frame of each base are specified, so too are

the positions of all the non-hydrogen atoms. Estimated values

for these positions for each base in their ideal forms are

tabulated in ref. 30. Thus the configuration of a DNA

molecule consisting of n basepairs is completely defined by

the reference points ra and �ra and the frames {dai } and { �dai }

(a = 1,. . .,n). These points and frames are in turn uniquely

defined by component vectors ra,�ra A R3 and rotation matrices

Da, �Da A R3�3, where rai = ei�ra, �rai = ei��ra, Da
ij = ei�daj and

�Da
ij = ei� �daj . Here {ei} denotes an arbitrary, lab-fixed frame. In

terms of these components, we have

da
j ¼

X3
i¼1

Da
ijei; r

a ¼
X3
i¼1

rai ei;

d
a

j ¼
X3
i¼1

�D
a
ijei; r

a ¼
X3
i¼1

rai ei:

ð1Þ

2.2 Rotation, displacement coordinates

In a rigid base model, the three-dimensional shape of a

DNA molecule is determined by the relative rotation and

displacement between neighboring bases both across and

along the two backbone strands. The relative rotation and

displacement between Xa and �Xa across the strands can be

described in the general form

da
j ¼

X3
i¼1

La
ijd

a

i ; r
a ¼ ra þ

X3
i¼1

xai g
a
i ; ð2Þ

where La A R3�3 is a rotation matrix which describes the

orientation of frame {dai } with respect to { �dai }, x
a A R3 is a

coordinate vector which describes the position of ra with

respect to �ra, and {gai } is a right-handed, orthonormal frame

in between the base frames {dai } and { �dai }. The frame {gai } will

be referred to as the basepair frame associated with (X, �X)a
and will be defined in detail below. From (2) we deduce that

the entries in La and xa are given by

La
ij = �dai �daj , xai = gai �(ra � �ra). (3)
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To describe the relative rotation and displacement between

neighboring bases along the strands it is sufficient to consider a

basepair frame {gai } and reference point qa associated with

(X, �X)a, and a similar frame {ga+1
i } and point qa+1 associated

with (X, �X)a+1, as defined below. The relative rotation and

displacement between (X, �X)a and (X, �X)a+1 along the strands

can then be described in the general form

gaþ1j ¼
X3
i¼1

La
ijg

a
i ; q

aþ1 ¼ qa þ
X3
i¼1

zai h
a
i ; ð4Þ

where La A R3�3 is a rotation matrix which describes the

orientation of frame {ga+1
i } with respect to {gai }, z

a A R3 is a

coordinate vector which describes the position of qa+1 with

respect to qa, and {hai } is a right-handed, orthonormal frame in

between the basepair frames {gai } and {ga+1
i }. The frame {hai }

will be referred to as the junction frame associated with

(X, �X)a and (X, �X)a+1 and will be defined below. From (4)

we deduce that the entries in La and za are given by

La
ij = gai �ga+1

j , zai = hai �(qa+1 � qa). (5)

The rotation matrix La appearing in eqn (2) can be

parameterized by a coordinate vector Wa A R3 in a variety of

ways. In this work, we parameterize rotation matrices using the

Cayley (also referred to as Euler–Rodrigues or Gibbs) formula18

La ¼ cay½Wa� :¼ I þ 4

4þ jWaj2
ð½Wa�� þ 1

2½W
a��2Þ; ð6Þ

where I is the identity matrix and [Wa�] denotes the skew-

symmetric matrix

½Wa�� ¼
0 �Wa3 Wa2
Wa3 0 �Wa1
�Wa2 Wa1 0

0@ 1A: ð7Þ

The Cayley formula can be explicitly inverted as

Wa ¼ cay�1½La� :¼ 2

tr½La� þ 1
vec½La � ðLaÞT �; ð8Þ

where tr[La] and (La)T denote the trace and transpose of La,

and, for an arbitrary skew-symmetric matrix A, we define

vec[A] = (A32, A13, A21). Eqn (6) and (8) provide a one-to-one

correspondence between rotation matrices La and coordinates

Wa provided that tr[La] a �1. Matrices for which tr[La] = �1
can be shown to correspond to a rotation through p-radians
(1801), which are unlikely to occur between neighboring bases

in our application to B-form DNA.

The Cayley parameterization of a rotation matrix has a

straightforward geometrical interpretation. The matrix La in

eqn (6) corresponds to a right-handed rotation about a unit

vector na through an angle fa A [0, p) where

na ¼ 1

jWaj
X3
i¼1

Wai d
a

i ; f
a ¼ 2 arctan

jWaj
2

� �
: ð9Þ

From eqn (9)1 we deduce that a simple rotation about the

frame vector �da1 is obtained when Wa = (Wa1,0,0), where the

angle of rotation is determined by (9)2. Similar conclusions can

be drawn for simple rotations about the other frame vectors.

Further inspection of eqn (9)1 and (9)2 reveals that a rotation

about an arbitrary unit vector na =
P3

i=1m
a
i
�dai through an

arbitrary angle sa A [0, p) is obtained when

Wai ¼ 2 tan
sa

2

� �
mai : ð10Þ

The basepair frame {gai } and reference point qa associated

with a pair (X, �X)a can now be defined. The reference point is

defined by qa = 1
2
(ra + �ra). To define the frame, let La be the

relative rotation matrix for frame {dai } with respect to { �dai }.

Then the coordinates Wa, axis na and angle fa associated with

this rotation are as given in eqn (8) and (9). The basepair frame

is here defined by a relative rotation about the same axis na,

but through an angle of fa/2. Using eqn (10) we obtain

gaj ¼
X3
i¼1

cayij ½eWa�da

i ;
eWai ¼ 2 tan

fa

4

� �
Wai
jWaj : ð11Þ

Notice that, by construction, the basepair frame is midway

between the base frames in the sense that the associated

relative rotation matrix is the square root of the overall

rotation matrix between the two bases.

Just as with La, the rotation matrix La in (4) can also be

parameterized by a coordinate vector ya A R3. In particular,

we use the Cayley parameterization La = cay[ya], with explicit

inverse ya = cay�1[La]. Moreover, the junction frame {hai }

associated with adjacent pairs (X, �X)a and (X, �X)a+1 can be

defined in a manner exactly analogous to the basepair frame {gai }.

That is, if La has coordinates ya, then the axis ma and angle ca

associated with La are

ma ¼ 1

jyaj
X3
i¼1

yai g
a
i ; c

a ¼ 2 arctan
jyaj
2

� �
: ð12Þ

The junction frame is defined by a relative rotation about the

same axis ma, but through an angle of ca/2, which gives

haj ¼
X3
i¼1

cayij ½eya�gai ; eyai ¼ 2 tan
ca

4

� �
yai
jyaj : ð13Þ

By construction, the junction frame is midway between the

basepair frames in the sense that the associated relative

rotation matrix is the square root of the overall rotation

matrix between the two basepairs.

Thus the relative rotation and displacement between bases

Xa and �Xa across the strands is described by the coordinates

(W, x)a, whereas the relative rotation and displacement between

the pairs (X, �X)a and (X, �X)a+1 along the strands is described

by the coordinates (y, z)a. The definitions of these coordinates
can be shown to satisfy all the qualitative guidelines set

forth in the Cambridge convention,9 including the symmetry

conditions associated with a change of reference strand.

Accordingly, we refer to Wa as buckle–propeller–opening,

xa as shear–stretch–stagger, ya as tilt–roll–twist and za as

shift–slide–rise coordinates. Notice that Wa and ya are not

conventional angular coordinates as employed by many

authors. Rather, they are abstract coordinates defined via

the parameterization in eqn (6). These abstract coordinates

can be put into correspondence with conventional angular

ones, and are nearly identical in the case of small rotations

when the angular ones are measured in radians.
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The complete configuration of a DNA molecule can be

specified by introducing coordinates y0 and z0 for the first

basepair frame {g1i } and reference point q1 with respect to the

lab-fixed frame {ei}, that is,

g1j ¼
X3
i¼1

cayij ½y0�ei; q1 ¼
X3
i¼1

z0i ei: ð14Þ

It can be shown that the coordinates ya = (W, x)aA R6

(a= 1,. . .,n) and za = (y, z)aA R6 (a= 0,. . .,n � 1) completely

define the configuration of a molecule with n basepairs as

defined in section 2.1. Notice that z0 are external coordinates

that specify the spatial location of the molecule, whereas all

others are internal coordinates which describe its shape.

2.3 Mass properties, kinematics

To each base Xa on the reference strand we ascribe a total mass

ma, a symmetric rotational inertia tensor Ca with respect to the

mass center, and a vector ca that locates the mass center

relative to the base reference point ra, so that qa = ra + ca

is the position vector of the mass center. The kinematics of Xa

are encapsulated in the relations

_ra = va, _dai = xa � dai , (15)

where va is the velocity of the reference point, xa is the angular

velocity of the frame of base Xa, an over-dot denotes a

derivative with respect to time and � denotes the standard

vector product. Because ca is fixed in the base, we have ċa =

xa � ca, and we find that the velocity of the center of mass

of Xa is given by

_qa = va + xa � ca. (16)

Let ra A R3 denote components in the lab-fixed frame, and

let ca A R3, va A R3, oa A R3 and Ga A R3�3 denote

components in the associated base frame, so that rai = ei�qa,

cai = dai �ca, Ga
ij = dai �Cadaj and so on. Then from eqn (1), (15)

and (16) we deduce the component relations

_ra = Dava, _Da= Da[oa�], _ra = Da[va + oa � ca], (17)

where [oa�] A R3�3 denotes the skew-symmetric matrix

defined in eqn (7). As the notation suggests, this matrix has

the property that [oa�]ga = oa � ga for all component vectors

ga. Using the notation introduced in section 2.2, we have

vec[oa�] = oa. Thus from eqn (17) we deduce the relations

va = (Da)T _ra, oa = vec[(Da)T _Da]. (18)

Just as for the reference strand, to each base �Xa on the

opposite strand we ascribe a total mass �ma, a symmetric

rotational inertia tensor �Ca with respect to the mass center,

and a vector �ca that locates the mass center relative to the base

reference point �ra, so that �qa = �ra + �ca is the position vector of

the mass center. The kinematics of �Xa are encapsulated in the

relations

_�ra ¼ �va; _�d
a

i ¼ �xa � �d
a

i ; ð19Þ

where �va is the velocity of the reference point and �xa is the

angular velocity of the frame of base �Xa. As before, because �ca

is fixed in the base, we have _�ca ¼ �xa � �ca, and we find that the

velocity of the center of mass of �Xa is given by

_�qa ¼ �va þ �xa � �ca: ð20Þ

Let �ra A R3 denote components in the lab-fixed frame, and

let �ca A R3, �va A R3, �oa A R3 and �Ga A R3�3 denote

components in the associated base frame, so that �rai = ei��qa,
�cai = �dai ��ca, �Ga

ij = �dai � �Ca �daj and so on. Then from eqn (1), (19)

and (20) we deduce as before

_�ra ¼ �D
a
�va; _�D

a ¼ �D
a½�oa��; _�ra ¼ �D

a½�va þ �oa � �ca�; ð21Þ

from which we obtain

�va ¼ ð �D
aÞT _�ra; �oa ¼ vec½ð �D

aÞT _�D
a�: ð22Þ

2.4 Change of reference strand

The sequence and configuration of a DNA molecule can be

described in two different ways due to the freedom in choice of

reference strand. Choosing one strand as a reference, the

sequence and configuration is described by

{Xa, r
a, �ra, {dai }, { �dai }, y

a, za�1}, (23)

where the index a = 1,. . .,n increases in the 50 to 30 direction

along this strand. Alternatively, by choosing the opposite

strand as reference, the sequence and configuration is

described by

fX�a� ; r
a�
� ; �r

a�
� ; fd

a�
�i g; f �d

a�
�i g; ya�� ; za��1� g; ð24Þ

where the index a* = 1,. . .,n increases in the 50 to 30 direction

along this strand.

The above two descriptions are necessarily related. From

the anti-parallel nature of the two strands we find that a and

a* denote the same basepair when a* = n � a+ 1. As a result,

from the Watson–Crick pairing rules we find that X�n�aþ1 ¼ �Xa

and �X
�
n�aþ1 ¼ Xa, and from the convention for assigning

reference points and frames to a base we deduce for all

a = 1,. . .,n that

rn�aþ1� ¼ �ra; �rn�aþ1� ¼ ra;

dn�aþ1
�1 ¼ �d

a

1;
�d
n�aþ1
�1 ¼ da

1;

dn�aþ1
�2 ¼ � �d

a

2;
�d
n�aþ1
�2 ¼ � da

2;

dn�aþ1
�3 ¼ � �d

a

3;
�d
n�aþ1
�3 ¼ � da

3 :

ð25Þ

Moreover, from the definitions of the relative rotation and

displacement coordinates, together with the relation between

the Cayley coordinates, axis and angle of a rotation matrix,

we obtain

yn�aþ1� ¼ Pya; ða ¼ 1; . . . ; nÞ;

zn�a� ¼ Pza; ða ¼ 1; . . . ; n� 1Þ;
ð26Þ

where P = diag(�1,1,1,�1,1,1) A R6�6 is a constant, diagonal

matrix with the property that P = PT = P�1. This property

will be exploited throughout our developments. The trans-

formation rule relating the external coordinates z0� and z0 is

more complicated because it involves the relative rotation
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and displacement coordinates along the entire length of a

molecule. We omit this transformation since we will make

no use of it.

Just as with the sequence and configuration variables, the

mass properties and velocity variables can also be described in

two different ways due to the freedom in choice of reference

strand. Choosing one strand as a reference, these quantities are

described by

{ma, �ma, ca, �ca, Ca, �Ca, va, �va, xa, �xa}, (27)

where the index a = 1,. . .,n increases in the 50 to 30 direction

along this strand. Alternatively, by choosing the opposite

strand as reference, the mass properties and velocity variables

are described by

fma�
� ; �ma�

� ; c
a�
� ; �c

a�
� ;C

a�
� ;

�C
a�
� ; v

a�
� ; �v

a�
� ;x

a�
� ; �xa�

� g; ð28Þ

where the index a* = 1,. . .,n increases in the 50 to 30 direction

along this strand.

As before, the above two descriptions are necessarily related

due to the fact that a and a* denote the same basepair when

a* = n � a+ 1. From the transformation rules in eqn (25) for

the configuration variables, and the fact that X�n�aþ1 ¼ �Xa and
�X
�
n�aþ1 ¼ Xa, we deduce for all a = 1,. . .,n that

mn�aþ1
� ¼ �ma; �mn�aþ1

� ¼ ma;

cn�aþ1� ¼ �ca; �cn�aþ1� ¼ ca;

Cn�aþ1
� ¼ �C

a
; �C

n�aþ1
� ¼ Ca;

vn�aþ1� ¼ �va; �vn�aþ1� ¼ va;

xn�aþ1
� ¼ �xa; �xn�aþ1

� ¼ xa:

ð29Þ

Let ca A R3, �ca�� 2 R3, Ga A R3�3 and so on denote the

components of the above vector and tensor quantities in the

respective base frames, so that cai = dai �ca, �ca��i ¼ da�
�i � �ca�� ,

Ga
ij = dai �Cadaj and so on. Then from eqn (29) and the

transformation rules for the base frames in eqn (25) we deduce

the component relations

mn�aþ1
� ¼ �ma; �mn�aþ1

� ¼ ma;

cn�aþ1� ¼ C�ca; �cn�aþ1� ¼ Cca;

Gn�aþ1
� ¼ C�GaC; �Gn�aþ1

� ¼ CGaC;

vn�aþ1� ¼ C�va; �vn�aþ1� ¼ Cva;

on�aþ1
� ¼ C�oa; �on�aþ1

� ¼ Coa;

ð30Þ

where C = diag(1,�1,�1) A R3�3 is a constant, diagonal

matrix with the property that C = CT = C�1. This property
will be exploited throughout. For later calculations, it will be

convenient to introduce the velocity component vectors na =
(va, oa) A R6 and �na = (�va, �oa) A R6 (a = 1,. . .,n). From

eqn (30) and the definition of C we deduce that

nn�aþ1� ¼ �P�na; �nn�aþ1� ¼ �Pna; ð31Þ

where P is the transformation matrix introduced above.

2.5 Internal elastic energy

For a molecule of n basepairs we consider an internal elastic

energy function U of the general quadratic form

U(w) = 1
2
(w � ŵ)�K(w � ŵ), (32)

where w = (y1, z1, y2, z2,. . ., zn�1, yn) A R12n�6 is the vector of

internal coordinates, K A R(12n�6)�(12n�6) is a symmetric,

positive-definite matrix of stiffness parameters and ŵ A R12n�6

is a vector of shape parameters that represents the equilibrium

value of w. The expression in (32) can be written in the

equivalent form

UðwÞ ¼ 1

2

X2n�1
a;b¼1
ðwa � ŵ

aÞ �Kabðwb � ŵ
bÞ; ð33Þ

where wa A R6, ŵa A R6 and Kab A R6�6 (a, b= 1, . . .,2n � 1)

denote the block entries of w, ŵ and K. Notice that w2a�1 = ya

for a = 1,. . .,n and w2a = za for a = 1,. . .,n � 1. Thus the

odd-numbered blocks in w correspond to the coordinates

ya and the even-numbered blocks correspond to the

coordinates za.

We assume that the material parameters ŵa and Kab are

completely determined by the sequence X1� � �Xn along the

reference strand. Equivalently, we assume there exist functions

W and K such that

ŵ
a ¼WðX1; . . . ;Xn; aÞ;

Kab ¼ KðX1; . . . ;Xn; a; bÞ;
a; b ¼ 1; . . . ; 2n� 1: ð34Þ

This rather mild assumption has some immediate con-

sequences. For example, let U(w) and U*(w*) denote the

internal energies of a molecule computed using the two

different choices of reference strand. Thus U(w) is given by

the expression in (33) with the parameters in (34), and U*(w*)

is given by an exactly analogous expression with the

parameters

ŵ
a�
� ¼WðX�1 ; . . . ;X�n ; a�Þ;

Ka�b�
� ¼ KðX�1 ; . . . ;X�n ; a�; b�Þ;

a�; b� ¼ 1; . . . ; 2n� 1:

ð35Þ

From the fact that U(w) must equal U*(w*) for all possible

configurations, together with the change of strand relations

outlined in section 2.4, we deduce that the functions W and K

must satisfy the relations

WðX1; . . . ;Xn; aÞ ¼ PWð �Xn; . . . ; �X1; 2n� aÞ;

KðX1; . . . ;Xn; a; bÞ ¼ PKð �Xn; . . . ; �X1; 2n� a; 2n� bÞP;
ð36Þ

where P is the transformation matrix introduced in section 2.4.

Thus the functions W and K, and hence the internal energy

parameters ŵa and Kab, cannot be completely arbitrary.

The general quadratic internal energy in eqn (33) allows

couplings between bases along the entire length of a molecule.

This assumption can be relaxed in various ways. For example,

one may assume that couplings between distant bases along

the chain are negligible and only consider interactions between

neighboring bases. By a local or nearest-neighbor internal
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energy for a rigid base model we mean an internal energy of

the form

UðwÞ ¼
Xn�1
a¼1

Uaðya; za; yaþ1Þ: ð37Þ

In this expression, each Ua can be interpreted as a local energy

associated with the central junction between the four bases in

the basepairs (X, �X)a and (X, �X)a+1. Notice that the relative

rotations and displacements between the four bases, both

across and along the two backbone strands, are determined

by the internal coordinates (ya, za, ya+1). In view of the

ordering of the block entries of w, the quadratic energy in

eqn (33) is of the local form eqn (37) when the block entries

of K satisfy

Kab ¼ 0 when
a odd; jb� aj42;
a even; jb� aj41:

�
ð38Þ

2.6 Kinetic energy

To each base Xa on the reference strand we associate a kinetic

energy Fa defined by its linear and angular velocity

components as

Fa = 1
2
ma|va + oa � ca|2 + 1

2
oa�Gaoa. (39)

By expanding the first term, we find that this energy can be

written in the convenient form

Fa = 1
2
na�Mana, (40)

where na = (va, oa) A R6 and Ma A R6�6 with inverse (Ma)�1

A R6�6 is a generalized mass matrix given in block form by

Ma ¼ maI ma½ca��T
ma½ca�� Ga þma½ca��½ca��T

� �
;

ðMaÞ�1 ¼ m�1a I þ ½ca��G�1a ½ca��
T ½ca��G�1a

G�1a ½ca��
T G�1a

� �
: ð41Þ

Here [ca�]A R3�3 is the skew-symmetric matrix defined by the

components ca A R3 as in eqn (7), I A R3�3 is the identity

matrix, Ga A R3�3 is the matrix of rotational inertia

components and G�1a A R3�3 is its inverse.

Just as for the reference strand, to each base �Xa on the

opposite strand we associate a kinetic energy �Fa defined by its

linear and angular velocity components as

�Fa = 1
2

�ma|�va + �oa � �ca|2 + 1
2
�oa� �Ca�oa. (42)

As before, by expanding the first term, we find that this energy

can be written in the convenient form

�Fa = 1
2
�na� �Ma�na, (43)

where �na = (�va, �oa) A R6 and �Ma A R6�6 with inverse ( �Ma)�1

A R6�6 is a generalized mass matrix defined in a manner

exactly analogous to eqn (41).

By summing over each base on each of the two strands we

find that the total kinetic energy of a molecule with n basepairs

can be written in the form

F(v) = 1
2
v�Mv, (44)

where v = (n1, �n1,. . .,nn, �nn) A R12n is a vector of velocity

components and M = diag[M1, �M1,. . ., Mn, �Mn] A R12n�12n is

a block diagonal matrix of mass parameters. Notice that

v2a�1 = na and v2a = �na. Thus the odd-numbered blocks

va A R6 and Ma A R6�6 (a = 1,3,. . .,2n � 1) correspond to

velocity components and mass parameters of bases on the

reference strand, whereas the even-numbered blocks va A R6

and Ma A R6�6 (a = 2, 4,. . .,2n) correspond to velocity

components and mass parameters of bases on the opposite

strand.

We assume that the mass parameters Ma are completely

determined by the sequence X1� � �Xn along the reference

strand. Equivalently, we assume there exists a function M

such that

Ma ¼MðX1; . . . ;Xn; aÞ; a ¼ 1; . . . ; 2n: ð45Þ

As before, this assumption has some immediate consequences.

For example, let F(v) and F*(v*) denote the kinetic energies of

a molecule computed using the two different choices of

reference strand. Thus F(v) is given by the expression in (44)

with the parameters in (45), and F*(v*) is given by an exactly

analogous expression with the parameters

Ma�
� ¼MðX�1 ; . . . ;X�n ; a�Þ; a� ¼ 1; . . . ; 2n: ð46Þ

From the fact that F(v) must equal F*(v*) for all possible

values of the velocity components, together with the change of

strand relations outlined in section 2.4, we deduce that the

function M must satisfy the relation

MðX1; . . . ;Xn; aÞ ¼ PMð �Xn; . . . ; �X1; 2n� aþ 1ÞP; ð47Þ

where P is the transformation matrix introduced in section 2.4.

2.7 Canonical measure

The equilibrium statistical properties of a rigid base model of

DNA in contact with a heat bath are described by the standard

canonical measure dm. This measure is a function of the

absolute heat bath temperature T 4 0, the shape and stiffness

parameters ŵ and K, and the mass parameters M. The explicit

form of dm and the relative ease with which information can be

extracted from it depend on the choice of variables used to

describe the mechanical state of the model. Here we introduce

a choice of variables which will simplify dm and prove

convenient for estimating the parameters ŵ, K and M.

The classic form of dm is obtained when model states are

described in terms of canonical variables as defined in the

theory of Hamiltonian systems. Standard canonical variables

for a rigid base model as considered here take the form

(x, z, W, y, jx, jz, jW, jy), where (x, z, W, y) A R12n are any

independent coordinates for the base reference points and

frames, and (jx, jz, jW, jy) A R12n are their associated

canonical momenta. If the kinetic energy F is expressed

in terms of (x, z, W, y) and their time derivatives ð _x; _z; _W; _yÞ,
then the canonical momenta are defined by jx ¼ @F=@ _x,

jz ¼ @F=@ _z, jW ¼ @F=@ _W and jy = qF/q _y. In terms of

standard canonical variables, the total mechanical energy or

Hamiltonian function for the model is

H = U(x, z, W, y) + F(x, z, W, y, jx, jz, jW, jy), (48)
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and the measure dm takes the usual form17

dm = (1/Z)e�H/kBT dxdzdWdydjxdjzdjWdjy, (49)

where kB is the Boltzmann constant and Z4 0 is a normalizing

constant.

When (x, z, W, y) are the relative displacement and rotation

coordinates defined in section 2.2, the form of the potential

energy U is convenient, but the kinetic energy F expressed in

the associated canonical momenta is configuration dependent.

We find this form of the measure dm to be inadequate for our

purposes, because it provides little insight into the relation

between moments of dm and the parameters ŵ, K and M. One

could instead choose momentum coordinates in which the

form of the kinetic energy is simple, but in the associated

canonical configuration coordinates, the potential energy

would be complicated, and again the moments of the measure

dm would not be simply related to the parameters ŵ, K and M.

A more useful form for the measure dm can be obtained by

changing to the non-canonical variables (x, z, W, y, v, �v, o, �o),
where (v, �v, o, �o)A R12n denote the linear and angular velocity

components introduced in section 2.3. In these variables, the

Hamiltonian takes the simple, separable form

H = U(x, z, W, y) + F(v, �v, o, �o), (50)

and the measure dm becomes

dm = (1/Z)e�H/kBTJ dxdzdWdydvd�vdod�o, (51)

where J is the Jacobian associated with the change of variables.

A tedious application of the chain rule of multi-variable

calculus shows that

J ¼
Yn�1
a¼0

1þ 1

4
jyaj2

� ��2" # Yn
a¼1

1þ 1

4
jWaj2

� ��2" #
: ð52Þ

When expressed in the form (51) the measure dm has the

desirable feature that it is factorable into three independent

measures dmvel, dm
int
con and dmextcon, where

dmvel = (1/Zvel)e
�F(v)/kBT dv,

dmintcon = (1/Zint
con)e

�U(w)/kBTJ0 dw,

dmextcon = (1/Zext
con)J

0 dz0. (53)

Here v is the vector of all velocity components, w is the vector

of all internal configuration coordinates, z0 is the vector of

external configuration coordinates, and J0 and J0 are reduced

Jacobian factors given by

J0 ¼
Yn�1
a¼1

1þ 1

4
jyaj2

� ��2" # Yn
a¼1

1þ 1

4
jWaj2

� ��2" #
;

J0 ¼ 1þ 1

4
jy0j2

� ��2
:

ð54Þ

The measures dmintcon and dmextcon necessarily involve Jacobian

factors due to the non-Cartesian nature of the coordinates w

and z0. While such factors are typically ignored, or assumed to

be constant, we include them here.

The statistical mechanical average of any state function

f = f(v, w, z0) with respect to the measure dm is given by

hfi ¼
R
fðv;w; z0Þe�Hðv;wÞ=kBTJ dv dw dz0R

e�Hðv;wÞ=kBTJ dv dw dz0
; ð55Þ

where the integrations are performed over the domain R12n �
R12n�6 � D0. Here R12n is the domain for v, R12n�6 is the

domain for w, and D0 C R6 is a prescribed domain for z0,

which will play no role in our developments. Due to the

factorability of dm, for any function c = c(v) we find

hci ¼
R
cðvÞe�FðvÞ=kBT dvR
e�FðvÞ=kBT dv

: ð56Þ

Moreover, for any function w = w(w) we find

hw=J0i
h1=J0i ¼

R
wðwÞe�UðwÞ=kBT dwR
e�UðwÞ=kBT dw

: ð57Þ

2.8 Moment-parameter relations

Here we exploit the relations in (56) and (57) to derive explicit

characterizations of the model parameters ŵ, K and M

introduced in sections 2.5 and 2.6. In our developments below,

we use the notation w # w and v # v to denote the

usual outer or tensor product of the vectors w and v. Thus

[w # w]pq = wpwq and [v # v]pq = vpvq.

Notice that, although the potential energy U(w) is

quadratic, the measure dmintcon is non-Gaussian due to the

presence of the Jacobian factor J0. As a result, the parameters

ŵ and K are not given by the usual moment relations for

Gaussian measures. However, from (57) we see that the shape

parameters ŵ can be characterized as a ratio of expected

values. In particular, substituting the vector-valued function

w(w) = w into (57) and carrying out the indicated integrations

we obtain, by standard results for Gaussian integrals,16

hw=J0i
h1=J0i ¼ bw : ð58Þ

Thus ŵ is not equal to the expected value of w, but rather a

ratio of expected values which are weighted by the Jacobian J0.

The stiffness matrix K can also be similarly characterized.

Substituting the matrix-valued function w = Dw # Dw into

(57), where Dw = w � ŵ, we get, again by standard results for

Gaussian integrals,

hDw� Dw=J0i
h1=J0i ¼ kBTK�1: ð59Þ

Thus, just as with ŵ, the matrix kBTK
�1 is not equal to the

expected value of Dw # Dw, but rather a ratio of weighted

expected values. By expanding the left-hand side of (59) and

using (58) we deduce

hw� w=J0i
h1=J0i ¼ kBTK�1 þ ŵ� ŵ; ð60Þ

which may be more convenient than (59) since the average

hw # w/J0i is independent of the parameters ŵ.

Due to intrinsic properties of the set of three-dimensional

rotations, the Jacobian factor J0 will be non-constant and
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consequently the measure dmintcon will be non-Gaussian for

arbitrary choices of internal coordinates. However, when the

gradient of J0 is sufficiently small and dmintcon is sufficiently

concentrated, it is reasonable to expect that variations in J0

can be neglected. By the Gaussian approximation of the

internal configuration measure dmintcon we mean the measure

obtained by assuming J0 to be constant. In this approximation,

the relations in (58), (59) and (60) take the simplified forms

hwi = ŵ, hDw # Dwi = kBTK
�1,

hw # wi = kBTK
�1 + ŵ # ŵ. (61)

The characterization of the mass matrix M is simpler due

to the genuinely Gaussian form of the measure dmvel. In

particular, substituting the matrix-valued function c(v) =

v # v into eqn (56) and using standard results for Gaussian

integrals we get

hv # vi = kBTM
�1. (62)

Thus the matrix kBTM
�1 is equal to the expected value

of v # v. Moreover, since M = diag(M1,. . ., �Mn), we have

M�1 = diag([M1]�1,. . .,[ �Mn]�1), whereMa and �Ma, along with

their inverses, are explicit functions of the mass parameters of

bases Xa and �Xa as defined in eqn (41).

2.9 Material symmetries

Here we derive various implications of the internal and kinetic

energy strand invariance relations (36) and (47) for the special

case of a palindromic molecule. Thus we consider the case

when the base sequence �Xn� � � �X1 is identical to X1� � �Xn, which

requires that n necessarily be even. This case will be considered

in our numerical simulations described later. The results

derived here follow directly from the assumed existence of

the functions W, K and M. We stress that we do not assume or

impose any structure on these functions such as locality or

bandedness.

We first consider the internal energy or shape and stiffness

parameters ŵ and K. Assuming �Xn� � � �X1 is identical to

X1� � �Xn, we deduce from (36) that

ŵa = Pŵ2n�a, Kab = PK(2n�a)(2n�b)P, a, b = 1,. . .,2n�1,
(63)

where ŵ
a ¼WðX1; . . . ;Xn; aÞ and Kab ¼ KðX1; . . . ;Xn; a; bÞ.

Thus the parameters associated with different positions along

the molecule must be related in a simple way through the

matrix P.

From the first expression in eqn (63), and the definition of

the entries in ŵ, we obtain ŷ1 = Pŷn, ẑ1 = Pẑn�1, ŷ2 = Pŷn�1,

ẑ2 = Pẑn�2, and so on. From the expressions for the

ŷ-parameters and the definition of P we deduce that the

equilibrium values of propeller, opening, stretch and stagger

must be symmetric about the middle of the molecule, whereas

the equilibrium values of buckle and shear must be anti-

symmetric. Similarly, from the expressions for the ẑ-

parameters we deduce that the equilibrium values of roll, twist,

slide and rise must be symmetric about the middle of the

molecule, whereas the equilibrium values of tilt and shift must

be antisymmetric. Thus for a palindromic molecule the shape

parameters must either be symmetric or antisymmetric

functions of position about the middle of the molecule.

Further conclusions about the ẑ-parameters can be drawn

based on the fact that n is even. In particular, setting n = 2m,

and using the relations ẑ1 = Pẑn�1, ẑ2 = Pẑn�2, and so on, we

get ẑm = Pẑm, which can be written in the equivalent form

(I � P)ẑm = 0. From this result and the definition of P we

deduce that the equilibrium values of tilt and shift at the

middle junction m must vanish. Thus for a palindromic

molecule there is a restriction on some of the equilibrium

shape parameters at the precise middle of the molecule, which

corresponds to a junction between basepairs.

From the second expression in (63), and for brevity

considering only the diagonal blocks of K, we obtain K11 =

PK(2n�1)(2n�1)P, K22=PK(2n�2)(2n�2)P, and so on. Equi-

valently, when labeled according to the interactions they

represent, we have Ky1y1=PKynynP, Kz1z1=PKzn�1zn�1P, and

so on. Various conclusions similar to those outlined above can

be drawn from these relations. For example, the diagonal

stiffness associated with each of the twelve types of deformation

variable must be symmetric about the middle of the molecule.

Off-diagonal stiffnesses associated with different types of

couplings can either be symmetric or antisymmetric. If we

categorize the twelve types of deformation variables into two

groups, odd (buckle, shear, tilt, shift) and even (all others),

then the stiffness associated with an odd–odd or even–even

coupling must be symmetric, whereas the stiffness associated

with an odd–even coupling must be antisymmetric. Thus for a

palindromic molecule the entries in the diagonal blocks of the

stiffness matrix must either be symmetric or antisymmetric

functions of position about the middle of the molecule.

Just as before, further conclusions about the K-parameters

can be drawn based on the fact that n is even. In particular,

setting n = 2m, we find that the diagonal block of K

associated with junction m must satisfy Kmm = PKmmP, or

equivalently Kmm � PKmmP = 0. From this result and the

definition of P we deduce that the stiffness parameters corres-

ponding to odd-even couplings, for example tilt–roll, tilt–twist,

shift–roll, shift–twist and so on, must vanish. Thus for a

palindromic molecule there is a restriction on the stiffness

parameters in the diagonal block associated with the junction

at the middle of the molecule.

We next consider the kinetic energy or mass parameters

contained in the matrix M. Assuming �Xn� � � �X1 is identical to

X1� � �Xn, we deduce from eqn (47) that

Ma = PM2n�a+1P, a = 1,. . .,2n, (64)

where Ma ¼MðX1; . . . ;Xn; aÞ. Thus the mass parameters

associated with different positions along the molecule must

be related in a simple way through the matrix P.

From the expression in (64), and the definition of the entries

in M, we obtain M1 = P �MnP, �M1 = PMnP, M2 =P �Mn�1P,

and so on. These relations can be written in the general form

Ma = P �Mn�a+1P, �Ma = PMn�a+1P, a = 1,. . .,n. (65)

By substituting n � a + 1 in place of a, and using the fact that

P�1 = P, we find that the second relation is identical to

the first. Thus the above relations are not independent.
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Considering only the first relation, and using eqn (41) and the

block representation P = �diag(C, C), where C is the matrix

introduced in section 2.4, we find

ma = �mn�a+1, ca = C�cn�a+1,

Ga = C �Gn�a+1C, a = 1,. . .,n. (66)

Thus for a palindromic molecule the mass parameters must

have certain symmetry properties about the middle of the

molecule as encapsulated in the above relations.

3. Rigid basepair model

Here we outline another model for the sequence-dependent

structure of a DNA molecule. In contrast to the one

considered in the previous section, the model here is coarser

and based on basepairs rather than individual bases. We

outline the theory for this model and derive compatibility

relations that the material parameters of the two models must

satisfy under appropriate assumptions. For brevity, we omit a

discussion of material symmetries for special sequences as

considered in the previous section, but note that analogous

results can be derived exactly as before.

3.1 Basepairs, configurations

We consider a model of DNA in which each basepair is

modeled as rigid. The configuration of an arbitrary basepair

(X, �X)a is specified by giving the location of a reference point

qa fixed in the basepair, and the orientation of a right-handed,

orthonormal frame {gai } (i = 1,2,3) attached to the basepair.

The reference point and frame vectors are defined as described

in section 2. Thus in this model the configuration of a DNA

molecule consisting of n basepairs is completely defined by the

reference points qa and frames {gai } (a = 1,. . .,n). These points

and frames are in turn uniquely defined by component vectors

qa A R3 and rotation matrices Ga A R3�3, where qai = ei�qa,
Ga
ij = ei�gaj and {ei} denotes an arbitrary, lab-fixed frame. In

terms of these components, we have

gaj ¼
X3
i¼1

Ga
ij ei; q

a ¼
X3
i¼1

qai ei: ð67Þ

3.2 Rotation, displacement coordinates

The three-dimensional shape of a DNA molecule within the

rigid basepair model is determined entirely by the relative

rotation and displacement between neighboring basepairs

along the strands. The relative rotation and displacement

between (X, �X)a and (X, �X)a+1 along the strands is described

by the relations

gaþ1j ¼
X3
i¼1

La
ijg

a
i ; q

aþ1 ¼ qa þ
X3
i¼1

zai h
a
i ; ð68Þ

where La A R3�3 is the rotation matrix which describes the

orientation of frame {ga+1
i } with respect to {gai }, z

a A R3 is the

coordinate vector which describes the position of qa+1 with

respect to qa, and {hai } is the junction frame midway between

the basepair frames {gai } and {ga+1
i }. The rotation matrix La is

parameterized by a coordinate vector ya A R3 so that

La = cay[ya] and ya = cay�1[La], and from (68) we have

La
ij = gai �ga+1

j , zai = hai �(qa+1 � qa). (69)

As in the rigid base model, the complete configuration of a

DNA molecule is specified by introducing coordinates y0 and
z0 for the first basepair frame {g1i } and reference point q1 with

respect to the lab-fixed frame {ei}, that is,

g1j ¼
X3
i¼1

cayij ½y0�ei; q1 ¼
X3
i¼1

z0i ei: ð70Þ

Thus the coordinates za = (y, z)a A R6 (a = 0,. . .,n�1)
completely define the configuration of a molecule with n

basepairs. Notice that z0 are external coordinates that specify

the spatial location of the molecule, whereas za (a=1,. . .,n�1)
are internal coordinates which describe its shape. We remark

that za = (y,z)a are tilt–roll–twist and shift–slide–rise variables

defined exactly as before. Thus the internal coordinates for the

rigid basepair model are a subset of those for the rigid base

model introduced in section 2.2.

3.3 Mass properties, kinematics

To each basepair (X, �X)a we ascribe a total mass ma
bp, a

symmetric rotational inertia tensor Ca
bp with respect to the

mass center, and a vector cabp that locates the mass center

relative to the base reference point qa, so that qabp = qa + cabp is

the position vector of the mass center. The kinematics of

(X, �X)a are encapsulated in the relations

_qa = vabp, _gai = xa
bp � gai , (71)

where vabp is the velocity of the basepair reference point and

xa
bp is the angular velocity of the basepair frame. Because cabp is

fixed in the basepair, we have ċabp = xa
bp � cabp, and we find

that the velocity of the center of mass of (X, �X)a is given by

_qabp = vabp + xa
bp � cabp. (72)

Let rabp A R3 denote components in the lab-fixed frame, and

let cabp A R3, vabp A R3, oa
bp A R3, Ga

bp A R3�3 denote

components in the associated basepair frame, so that

(rbp)
a
i = ei�qabp, (cbp)

a
i = gai �cabp, (Gbp)

a
ij = gai �Ca

bpg
a
j and so

on. Then from (67), (71) and (72) we deduce the component

relations

_qa = Gavabp, Ġa = Ga[oa
bp�], _rabp = Ga[vabp + oa

bp � cabp].

(73)

Notice that, unless a physical basepair exactly satisfies the

assumption of rigidity, the relations between the mass

parameters and velocity variables introduced here and those

for a rigid base model introduced in section 2.3 are not simple.

Indeed, the rigid basepair quantities can be viewed as

non-trivial averages of the rigid base quantities where the

weighting depends on the relative placement and motion

between the bases. Thus, in contrast to the internal coordi-

nates discussed above, the rigid basepair mass parameters and

velocity variables will in general not be subsets or simple

combinations of those for the rigid base model.
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3.4 Change of reference strand

Just as for the rigid base model, the sequence and configuration

in a rigid basepair model can be described in two different

ways due to the freedom in choice of reference strand. Using

the same notation as in section 2.4, we deduce that the

basepair reference points and frames from these two descriptions

are related for all a = 1,. . .,n as

qn�aþ1� ¼ qa;

gn�aþ1�1 ¼ ga1;

gn�aþ1�2 ¼ �ga2;

gn�aþ1�3 ¼ �ga3: ð74Þ

Moreover, the internal coordinates from these two descriptions

must be related for all a = 1,. . .,n � 1 as

zn�a� ¼ Pza: ð75Þ

As before, the transformation rule relating the external

coordinates z0� and z0 is more complicated and is omitted.

The mass parameters and velocity variables can also be

described in two different ways due to the freedom in choice of

reference strand. For these we deduce for all a = 1,. . .,n that

mn�aþ1
bp� ¼ ma

bp; c
n�aþ1
bp� ¼ cabp; Cn�aþ1

bp� ¼ Ca
bp;

vn�aþ1bp� ¼ vabp; xn�aþ1
bp� ¼ xa

bp:
ð76Þ

Let cabp A R3, ca�bp� 2 R3, Ga
bp A R3�3 and so on denote the

components of the above vector and tensor quantities in the

respective basepair frames, so that (cbp)
a
i = gai �cabp,

ðcbp�Þa�i ¼ ga��i � c
a�
bp�, (Gbp)

a
ij = gai �Ca

bpg
a
j and so on. Then from

(76) and the transformation rules for the base frames in (74)

we deduce the component relations

mn�aþ1
bp� ¼ ma

bp; c
n�aþ1
bp� ¼ Ccabp; G

n�aþ1
bp� ¼ CGa

bpC;

vn�aþ1bp� ¼ Cvabp; o
n�aþ1
bp� ¼ Coa

bp:
ð77Þ

As in section 2.4, it is convenient to introduce the velocity

component vectors nabp = (vabp,o
a
bp) A R6 (a = 1,. . .,n). From

(77) and the definition of C we deduce that

nn�aþ1bp� ¼ �Pnabp: ð78Þ

3.5 Internal elastic energy

For a molecule of n basepairs we consider an internal elastic

energy function Ubp of the general quadratic form

Ubp(wbp) =
1
2
(wbp � ŵbp)�Kbp(wbp � ŵbp), (79)

where wbp = (z1,. . .,zn�1) A R6n�6 is a vector of internal

coordinates, Kbp A R(6n�6)�(6n�6) is a symmetric, positive-

definite matrix of stiffness parameters and ŵbp A R6n�6 is a

vector of shape parameters that represents the equilibrium

value of wbp. The expression in (79) can be written in the

equivalent form

UbpðwbpÞ ¼
1

2

Xn�1
a;b¼1
ðwa

bp � ŵ
a
bpÞ �K

ab
bpðw

b
bp � ŵ

b
bpÞ; ð80Þ

where wa
bp A R6, ŵa

bp A R6 and Kab
bp A R6�6 (a,b= 1,. . ., n � 1)

denote the block entries of wbp, ŵbp and Kbp.

As before, we assume that the material parameters ŵa
bp and

Kab
bp are completely determined by the sequence X1� � �Xn along

the reference strand. Equivalently, we assume there exist

functions Wbp and Kbp such that

ŵ
a
bp ¼WbpðX1; . . . ;Xn; aÞ;

Kab
bp ¼ KbpðX1; . . . ;Xn; a; bÞ;

a; b ¼ 1; . . . ; n� 1: ð81Þ

From the condition that the internal energy be invariant to the

choice of reference strand, together with the change of strand

relations outlined in section 3.4, we deduce that the functions

Wbp and Kbp must satisfy the relations

WbpðX1; . . . ;Xn; aÞ ¼ PWbpð �Xn; . . . ; �X1; n� aÞ;

KbpðX1; . . . ;Xn; a; bÞ ¼ PKbpð �Xn; . . . ; �X1; n� a; n� bÞP:
ð82Þ

The general quadratic internal energy in (80) allows

couplings between basepairs along the entire length of a

molecule. As before, this assumption can be relaxed to only

allow couplings between neighboring basepairs. By a local or

nearest-neighbor internal energy for a rigid basepair model we

mean an internal energy of the form

UbpðwbpÞ ¼
Xn�1
a¼1

Ua
bpðzaÞ: ð83Þ

Here each Ua
bp can be interpreted as a local energy associated

with the junction between the basepairs (X, �X)a and (X, �X)a+1.

Notice that the relative rotation and displacement between

these basepairs is determined entirely by the internal

coordinate za. In view of the definition of wbp, the quadratic

energy in (80) is of the local form (83) when Kbp is block

diagonal, that is

Kab
bp = 0 when b a a. (84)

3.6 Kinetic energy

To each basepair (X, �X)a we associate a kinetic energy Fa
bp

defined by its linear and angular velocity components as

Fa
bp = 1

2
ma

bp|v
a
bp + oa

bp � cabp|
2 + 1

2
oa
bp�Ga

bpo
a
bp. (85)

By expanding the first term, we find that this energy can be

written in the convenient form

Fa
bp = 1

2
nabp�Ma

bpn
a
bp, (86)

where nabp = (vabp,o
a
bp) A R6 and Ma

bp A R6�6 with inverse

(Ma
bp)
�1 A R6�6 is a generalized mass matrix given in block

form by

Ma
bp ¼

ma
bpI ma

bp½cabp��
T

ma
bp½cabp�� Ga

bp þma
bp½cabp��½cabp��

T

 !
;

ðMa
bpÞ
�1 ¼

ðma
bpÞ
�1Iþ½cabp��ðGa

bpÞ
�1½cabp��

T ½cabp��ðGa
bpÞ
�1

ðGa
bpÞ
�1½cabp��

T ðGa
bpÞ
�1

 !
:

ð87Þ
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By summing over each basepair, we find that the total kinetic

energy of a molecule with n basepairs can be written in

the form

Fbp(vbp) =
1
2
vbp�Mbpvbp, (88)

where vbp = (n1bp,. . .,nnbp) A R6n is a vector of velocity

components and Mbp = diag[M1
bp,. . .,Mn

bp] A R6n�6n is a

block diagonal matrix of mass parameters.

We again assume that the mass parameters Ma
bp are

completely determined by the sequence X1� � �Xn along the

reference strand. Equivalently, we assume there exists a

function Mbp such that

Ma
bp ¼MbpðX1; . . . ;Xn; aÞ; a ¼ 1; . . . ; n: ð89Þ

From the condition that the kinetic energy be invariant to the

choice of reference strand, together with the change of strand

relations outlined in section 3.4, we deduce that the function

Mbp must satisfy the relation

MbpðX1; . . . ;Xn; aÞ ¼ PMbpð �Xn; . . . ; �X1; n� aþ 1ÞP: ð90Þ

3.7 Canonical measure

As in the rigid base model, a useful form for the canonical

measure dmbp for the rigid basepair model can be obtained

by employing the non-canonical variables (z,y,vbp,obp),

where (vbp,obp) A R6n denote the linear and angular

elocity components introduced in section 3.3. In these

variables, the Hamiltonian for the rigid basepair model takes

the form

Hbp = Ubp(z,y) + Fbp(vbp,obp), (91)

and the measure dmbp becomes

dmbp = (1/Zbp)e
�Hbp/kBTJbp dz dy dvbp dobp, (92)

where Jbp is the Jacobian associated with the change from

canonical to non-canonical variables. An application of the

chain rule similar to before yields

Jbp ¼
Yn�1
a¼0

1þ 1

4
jyaj2

� ��2
: ð93Þ

In the form given in (92), the measure dmbp is factorable into
three independent measures dmbp,vel, dmintbp,con and dmextbp,con,

where

dmbp,vel = (1/Zbp,vel)e
�Fbp(vbp)/kBT dvbp,

dmintbp;con ¼ ð1=Zint
bp;conÞe�UbpðwbpÞ=kBTJ0bp dwbp;

dmextbp,con = (1/Zext
bp,con)J

0
bp dz0. (94)

Here vbp is the vector of all velocity components, wbp is the

vector of all internal configuration coordinates, z0 is the vector

of external configuration coordinates, and J0bp and J0bp are

Jacobian factors given by

J0bp ¼
Yn�1
a¼1

1þ 1

4
jyaj2

� ��2
; J0 ¼ 1þ 1

4
jy0j2

� ��2
: ð95Þ

The statistical mechanical average of any function

f = f(vbp,wbp,z
0) with respect to the measure dmbp is given by

hfibp ¼
R
fðvbp;wbp; z

0Þe�Hbpðvbp;wbpÞ=kBTJbp dvbp dwbp dz0R
e�Hbpðvbp ;wbpÞ=kBTJbp dvbp dwbp dz0

;

ð96Þ

where the integrations are performed over the domain

R6n � R6n�6 � D0. Here R6n is the domain for vbp, R6n�6 is

the domain for wbp, and D0 C R6 is a prescribed domain

for z0, which will play no role in our developments. Due to the

factorability of dmbp, for any function c = c(vbp) we find

hcibp ¼
R
cðvbpÞe�FbpðvbpÞ=kBT dvbpR

e�FbpðvbpÞ=kBT dvbp
; ð97Þ

and for any function w = w(wbp) we find

hw=J0bpibp
h1=J0bpibp

¼
R
wðwbpÞe�UbpðwbpÞ=kBT dwbpR

e�UbpðwbpÞ=kBT dwbp

: ð98Þ

3.8 Moment–parameter relations

As before, the relations in (97) and (98) can be exploited to

derive explicit characterizations of the rigid basepair model

parameters ŵbp, Kbp and Mbp. Proceeding as in section 2.8,

and using the notation Dwbp = wbp � ŵbp, we find

hwbp=J
0
bpibp

h1=J0bpibp
¼ ŵbp; ð99Þ

and

hDwbp � Dwbp=J
0
bpibp

h1=J0bpibp
¼ kBTK�1bp ; ð100Þ

or equivalently

hwbp � wbp=J
0
bpibp

h1=J0bpibp
¼ kBTK�1bp þ ŵbp � ŵbp; ð101Þ

and moreover

hvbp � vbpibp ¼ kBTM�1bp : ð102Þ

Just as for the rigid base model, the Jacobian factor J 0bp will

be non-constant and consequently the measure dmintbp,con will be

non-Gaussian for arbitrary choices of internal coordinates.

However, when the gradient of J 0bp is sufficiently small and

dmintbp,con is sufficiently concentrated, it is reasonable to expect

that variations in J 0bp can be neglected. By the Gaussian

approximation of the internal configuration measure dmintbp,con

we mean the measure obtained by assuming J 0bp to be constant.

In this approximation, the relations in (99), (100) and (101)

take the simplified forms

hwbpibp = ŵbp, hDwbp # Dwbpibp = kBTK
�1
bp ,

hwbp # wbpibp = kBTK
�1
bp + ŵbp # ŵbp. (103)

3.9 Compatibility relations

Here we derive various compatibility relations that relate the

rigid basepair parameters ŵbp, Kbp and Mbp to the rigid base

parameters ŵ, K and M. The results derived here depend only
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on the quadratic nature of the internal and kinetic energies

and on the assumed domain for the internal coordinates and

velocities. In particular, they are independent of the base

sequence X1� � �Xn. For brevity, we focus attention on the shape

and stiffness parameters and only briefly discuss the mass

parameters.

From the definition of the internal coordinates, we observe

that wbp is related to w. Thus, in view of the moment–

parameter relations in sections 2.8 and 3.8, it follows that

ŵbp and Kbp are related to ŵ and K. To make this relation

explicit, it will be convenient to re-order the internal coordi-

nate vector w so that w = (z,y), where z = (z1,. . .,zn�1) A
R6n�6 and y = (y1,. . .,yn) A R6n, and the stiffness matrix K

so that

K ¼ Kzz Kzy

KT
zy Kyy

� �
; ð104Þ

where Kzz A R(6n�6)�(6n�6), Kyy A R6n�6n and Kzy A
R(6n�6)�6n. Notice that, because the overall stiffness matrix

K is assumed to be symmetric and positive-definite, so too

must be the diagonal blocks Kzz and Kyy.

Several useful relations follow from the re-ordering intro-

duced above. From the definitions of wbp and w, we get wbp =

Pw = z, where P A R(6n�6)�(12n�6) is a simple projection

matrix. Moreover, from the block-structure in (104), we obtain

the identity

1
2
(w � ŵ)�K(w � ŵ) = 1

2
(z � ẑ)�Kschur

zz (z � ẑ) + 1
2
x�Kyyx,

(105)

where Kschur
zz =Kzz�KzyK

�1
yyK

T
zy, x =K�1yyK

T
zy(z� ẑ) + y� ŷ

and (ẑ,ŷ) = ŵ. The matrix Kschur
zz is known as the Schur

complement of Kyy;
25 it has the property that Kschur

zz =

(PK�1PT)�1. Also, for any fixed z, notice that x and y differ

only by a fixed translation. Thus, if the domain for y is all of

R6n, then so too is the domain for x. Furthermore, in view of

(105) and (32), we have

U(w) = U1(z) + U2(x), (106)

where U1(z) and U2(x) correspond to the two terms on the

right-hand side of (105).

Compatibility relations for the shape and stiffness para-

meters can now be derived. For an arbitrary function f(z),
compatibility between the rigid basepair and base models

requires

hfibp = hfi. (107)

From the definitions of the averages in (96) and (55), we get,

after cancelling factors independent of wbp and w,R
fðzÞe�UbpðwbpÞ=kBTJ0bpðwbpÞ dwbpR
e�UbpðwbpÞ=kBTJ0bpðwbpÞ dwbp

¼
R
fðzÞe�UðwÞ=kBTJ0ðwÞ dwR
e�UðwÞ=kBTJ0ðwÞ dw :

ð108Þ

We next assume that the two Jacobian factors are sufficiently

weak functions of the coordinates so that the Gaussian

approximations defined in sections 2.8 and 3.8 hold, or

equivalently, so that each Jacobian may be treated as constant

in each integral. Substituting for wbp and w in terms of z and y,

then using (106) and changing variable from y to x, and then

cancelling common integrals over x, we getR
fðzÞe�UbpðzÞ=kBT dzR
e�UbpðzÞ=kBT dz

¼
R
fðzÞe�U1ðzÞ=kBT dzR
e�U1ðzÞ=kBT dz

: ð109Þ

The fact that the above relation must hold for all functions f
implies that Ubp and U1 must be equal up to a constant, which

without loss of generality may be taken as zero since the

energies themselves are defined only up to a constant. Thus,

under the Gaussian approximation, compatibility between the

rigid basepair and base models implies

ŵbp = Pŵ, Kbp = (PK�1PT)�1. (110)

Similar calculations can be used to derive a relation between

the parameters Mbp and M. To begin, notice that (z,z0) and

(y,z,z0) are complete sets of configuration coordinates for the

rigid basepair and base models. From this we find that the

velocity components vbp and v can be expressed as invertible

linear functions of (ż, _z0) and ( _y,ż, _z0), respectively. If we let vint
be a representation of _y in any convenient basis, then from the

above remarks we deduce the linear relation v = A(vbp,vint),

where the coefficient matrix A A R12n�12n in general depends

on (y,z,z0). Inverting this relation, we find vbp = Bv, where

B A R6n�12n is an appropriate matrix, which also depends on

(y,z,z0). The expressions v = A(vbp,vint) and vbp = Bv are

analogous to the expressions w = (wbp,y) and wbp = Pw

employed above. Thus, proceeding as before it is possible to

derive a relation between Mbp and M, but in this case the

relation is highly implicit due to the configuration dependence

of the matrix A. This relation is omitted since no use will be

made of it.

4. Methods

Here we outline the molecular dynamics method that was used

to estimate the rigid base and basepair parameters for the

16-basepair palindromic oligomer G(TA)7C in explicit solvent.

We discuss special procedures for simulating the B-form

structure over relatively long time periods, and for extracting

the configuration and velocity data and material parameters

for both models.

4.1 Simulation protocol

The 16-basepair DNA oligomer was simulated using atomic

resolution, explicit solvent molecular dynamics. The AMBER

suite of programs together with the parm94 force field8 was

used. The DNA duplex was built using the fiber diffraction

B-DNA coordinates as implemented in the nucgen module of

AMBER, hydrogen atoms were added using the leap module.

The structure then underwent in vacuo energy minimization in

which heavy atoms were restrained to their initial positions.

The resulting structure will be referred to as canonical

B-DNA. It was used as the starting structure for the sub-

sequent simulation, and for the calculation of mass parameters

of DNA bases subsequently referred to as canonical mass

parameters. These were used for comparison with the mass

parameters obtained from the MD simulation.
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The leap module was employed to add 30 K+ neutralizing

cations, and to hydrate the system with TIP3P water molecules

in an octahedral periodic box, with a minimum distance of

10 Å between the wall of the box and the closest atom of DNA

or an ion. This results in a system of ca. 28 000 atoms in total.

The ptraj module was used to swap the positions of ions and

those of randomly chosen water molecules in such a way that

no ion came less that 3 Å away from another ion, nor less than

5 Å away from the DNA. The system was equilibrated by a

series of energy minimizations and short MD runs with DNA

atoms attached to their initial positions by restraints that were

gradually released, followed by 1 ns of unrestrained MD. The

production MD simulation was then started. It was performed

in the NpT ensemble with temperature 300 K and pressure

1 atm. Temperature and pressure were regulated using a

Berendsen thermostat and barostat with coupling constants

of 5 ps, which was more than twice the estimated value of the

relaxation time of the atomic velocities, and the integration

time step was 2 fs with SHAKE applied to hydrogens only,

which should have a minimal impact on the dynamics of

interest. The particle mesh Ewald method was used to treat

long-range electrostatic interactions beyond a cutoff of 9 Å.

Details of the simulation protocol can be found in ref. 2.

Two MD trajectories were produced, both started from the

same set of initial conditions at the end of the equilibration

run. One trajectory was 1 ns long, sampled every 2 fs

(every time step) and used to calculate velocities and mass

parameters. This trajectory will be referred to as the

fine-sampled one. The second trajectory was 180 ns long,

sampled every 1 ps and used to calculate elastic energy

parameters. This trajectory will be referred to as the coarse-

sampled one. Both trajectories were stripped of water and ions

and divided into individual snapshots saved in pdb format,

using the ptraj module. The coordinates of the 180 ns

trajectory were centered and imaged into the primary box,

and rms-fitted to the first snapshot. However, no centering,

imaging or rms fitting was performed for the 1 ns trajectory.

The snapshots were analyzed using the program Curves,23

modified to compute and report a reference point and an

orthonormal frame attached to each base as defined by the

Tsukuba convention.30 The points and frames were reported

by Curves as component vectors and rotation matrices in a

fixed coordinate frame. From these we computed the corres-

ponding component vectors and rotation matrices for each

basepair, and then the full set of internal coordinates and

velocities for both the base and basepair models. Curves was

also used to compute backbone torsional angles which were

used to monitor the simulation as described next.

It was recently discovered2 that the parm94 force field over-

stabilizes particular non-canonical ‘‘flipped’’ states of the

DNA backbone. These states get increasingly populated as

the simulation proceeds and their high occupancy is followed,

in a linear DNA fragment, by a distortion of the helical

geometry into a configuration in which helical twist is close

to zero. In order to avoid such a behavior and keep the

simulated DNA within the B-DNA family, we coupled our

simulation to an information bias procedure (which may be

called ‘‘Maxwell daemon molecular dynamics’’, or MDMD):

whenever any backbone fragment flipped into a non-canonical

state, the simulation was stopped and restarted from a time

point ca. 100 ps before the flip. The flip then never happened

again at the same time and location, and a flip-free trajectory

is produced without restraining the system in any way. The

restart had to be done every 5 ns on average. Based on

previous experience,2 we defined a flipped backbone fragment

as one in which the torsion angle g is in t instead of its

canonical g+ state (around 180 	 301 instead of 60 	 301).

In a later stage of preparation of this article, an updated force

field called parmbsc0 was published,35 which largely eliminates

the problem of the backbone flips.

We also observed that basepairs transiently broke and

re-formed during our MD simulation. Since we were interested

only in the properties of B-DNA, with bases on opposite

strands connected by hydrogen bonds (H-bonds) to form

Watson–Crick pairs, we eliminated from our analysis all

snapshots with at least one H-bond broken anywhere in the

oligomer. We consider an H-bond broken if the distance

between donor and acceptor is greater than 4 Å. This criterion

was suggested by Lu and Olson to identify basepairs in

structures of nucleic acids.27 We used the ptraj module of

AMBER to measure the donor–acceptor distances.

4.2 Parameter estimation

Let N be the total number of snapshots in a flip-free trajectory,

which we label consecutively by k = 1,. . .,N. For each k, the

Curves program was used to determine the rigid base config-

uration variables [ra](k), [�ra](k) and [Da](k), [ �Da](k), and then the

rigid basepair configuration variables [qa](k) and [Ga](k). From

these, we calculated the internal coordinates w(k) and w(k)
bp and

the velocity components v(k) and v(k)bp. To estimate parameters,

we assumed ergodicity and replaced the statistical mechanical

averages appearing in sections 2.8 and 3.8 with averages over

the snapshots, excluding those with one or more broken

H-bond as described below. Throughout the remainder of

our developments we use a subscript ‘‘E’’ to indicate the value

of a parameter that was estimated in this way. We omit this

subscript when referring to its exact or theoretical value.

The shape and stiffness parameters for the rigid base model

were estimated by replacing the statistical mechanical averages

with snapshot or time series averages. Considering only snap-

shots with no broken H-bond anywhere in the oligomer, we

defined an estimate for the shape vector ŵ by

ŵE ¼
P

k2I wðkÞ=½J0�ðkÞP
k2I 1=½J0�ðkÞ

; ð111Þ

and an estimate for the stiffness matrix K by

kBT ½KE ��1 ¼
P

k2I DEw
ðkÞ � DEw

ðkÞ=½J0�ðkÞP
k2I 1=½J0�ðkÞ

; ð112Þ

where DEw = w � ŵE, J
0 is the Jacobian factor defined in

(54)1, T is the simulated temperature andI is the set of indices

corresponding to snapshots with no broken H-bond. Para-

meters for the rigid basepair model were defined similarly.

In order to estimate the mass parameters for the rigid base

model it was necessary to first compute the linear and angular

velocity components (va,oa) and (�va,�oa). Since the available

data consisted only of configuration variables at discrete times,
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we employed a finite difference approximation for the

velocities. Consistent with (18), the linear and angular

velocities (va,oa) at snapshot k were defined as

½va�ðkÞ ¼ ð½Da�ðkÞÞT ½r
a�ðkþ1Þ � ½ra�ðk�1Þ

tðkþ1Þ � tðk�1Þ
;

½oa�ðkÞ ¼ vec skew ð½Da�ðkÞÞT ½D
a�ðkþ1Þ � ½Da�ðk�1Þ

tðkþ1Þ � tðk�1Þ

 !" #
;

ð113Þ

where t(k) is the time associated with snapshot k and for any

matrix A we define skew(A) = (A� AT)/2. Whereas the matrix

(Da)T _Da is always skew-symmetric, its finite-difference approxi-

mation is in general not. For this reason, we employed the

skew-symmetric projection in (113)2. For k= 1 and k= N the

above expressions were replaced with simple one-sided

differences, and similar definitions consistent with (22) were

used to compute the velocities (�va,�oa). From these components

and those above, we formed the global velocity vector v(k) at

each snapshot k.

Just as with the shape and stiffness parameters, the mass

parameters for the rigid base model were estimated by

replacing the statistical mechanical average with a time series

average. We included snapshot k in the average only if each of

the snapshots k � 1, k and k + 1 had no broken H-bond

anywhere in the oligomer, which ensured that the velocity

vector v(k) obtained from the finite-difference approximation

(113) was representative of DNA with only Watson–Crick

pairs. The snapshots with k = 1 and k = N were checked

analogously, consistent with the one-sided differences employed.

Thus we defined an estimate for the global mass matrix M by

kBT ½ME ��1 ¼
1

I 0

X
k2I0

vðkÞ � vðkÞ; ð114Þ

where I0 is the set of admissible snapshots as described above

and I0 is the number of snapshots in I0.

Similar to the exact mass matrix M, the estimate ME is in

general symmetric and positive-definite. However, in contrast

to M, the estimate ME is in general not block-diagonal. To

estimate the mass parameters of the individual bases, we

considered only the diagonal blocks of ME and denoted them

by Ma
E and �Ma

E in direct analogy with the diagonal blocks Ma

and �Ma ofM. Using symmetry, we partitioned each matrixMa
E as

Ma
E ¼

Ba
1 ½Ba

2�
T

Ba
2

Ba
3

 !
; ð115Þ

where Ba
1, B

a
2 and Ba

3 are 3 � 3 matrices. Each matrix �Ma
E was

partitioned similarly. Consistent with the form of the exact

mass matrix Ma in (41), we defined the mass parameter

estimates ma
E, c

a
E and Ga

E by

ma
E ¼

1

3
tr½Ba

1�; caE ¼
1

ma
E

vecðskewðBa
2ÞÞ;

Ga
E ¼ Ba

3 �ma
E ½caE��½caE��

T :

ð116Þ

The estimates �ma
E, �caE and �Ga

E were defined similarly, and the

parameters for the rigid basepair model were defined in an

exactly analogous way.

5. Results

Here we describe the parameter estimation results obtained

with the fine- and coarse-sampled molecular dynamics

trajectories described in section 4.1. We begin with results on

spontaneous H-bond breaking and its effects on internal

coordinates, and then outline various results concerning the

mass, shape and stiffness parameters. We use the estimated

parameters to assess various modeling assumptions pertaining

to the rigidity of the bases and basepairs, and the property of

locality of the internal energy. When convenient, we present

results in dimensionless or reduced form using the energy scale

kBT, length scale 5.2 Å and time scale 1 ps. These scales are

motivated by the parameters for canonical B-form DNA

(the length scale is equal to the ratio of rise to twist), and

are chosen purely for convenience.

In our analysis, we performed tests to assess the convergence

of the statistical averages outlined in section 4.2. Specifically,

we chose several non-overlapping time windows within each

trajectory, computed the averages for each window, and

compared them to those computed for the whole trajectory.

Our results showed that each of the two trajectories was

sufficiently long to estimate the relevant averages well. We

also studied the influence of the Jacobian factor in these

statistical averages and found that, for our choice of internal

coordinates, the influence was rather small. Various averages

computed with and without the Jacobian differed by less than

3%. We nevertheless included the Jacobian for completeness.

The details of these results are omitted for brevity.

5.1 Base pairing

In our simulations, we observed that no basepair stays intact

throughout the entire course of a trajectory. Rather, at least

one H-bond in each basepair is temporarily broken according

to our criteria described in section 4. Here we outline various

results pertaining to the breaking of H-bonds and its effect on

internal coordinates. For brevity, we present results only for

the coarse-sampled trajectory. Results for the fine-sampled

trajectory were similar.

Fig. 1 shows the fraction of the total snapshots for which a

given H-bond was broken. We see that the fraction of broken

states for each basepair was less than 1%, and was higher

towards the oligomer ends than in the interior. Moreover, the

H-bonds on the major groove side were more prone to

breaking than those on the minor groove side. Indeed, the

fraction of broken states for H-bonds on the minor groove

side for each of basepairs 4 to 15 was less than 0.005%, which

corresponds to less than 10 snapshots out of the entire 180 000

snapshot trajectory. The fraction of snapshots which had no

broken H-bond anywhere in the oligomer was observed to be

93.4%, which corresponds to more than 168 000 snapshots.

Fig. 2 shows the maximum lifetime of a broken state for the

individual H-bonds. We see that lifetimes were in general

longer at the ends of the oligomer than in the interior, and

longer on the major groove side than on the minor. The

lifetimes at the ends were mostly well over 50 ps, whereas

those in the interior were mostly under 10 ps. For basepairs

4 to 15, the lifetimes on the minor groove side hardly exceeded

5 ps. A notable exception occurred at basepair 2. There the
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lifetime was 753 ps on the major groove side and 743 ps on the

minor groove side. Using this data, we investigated possible

cooperativity in H-bond breaking. For each basepair, we first

identified the broken H-bond with the longest lifetime, which was

usually the major groove H-bond, and recorded the time interval

in which the break took place. We then considered the donor–

acceptor distance for all the H-bonds in the adjacent basepairs

over this interval. From this procedure we found no simulta-

neous breaking of H-bonds in adjacent basepairs, with only two

exceptions: basepairs 15 and 16 had a broken H-bond which

overlapped for about 6 ps, and basepairs 6 and 7 had a broken

H-bond which overlapped for about 2 ps. Thus H-bond breaking

in our simulation appeared to be largely uncooperative.

Fig. 3 shows the distribution of the internal coordinate

Shear for basepair 2. The distribution is shown for raw data

corresponding to all snapshots in the trajectory, and filtered

data corresponding to snapshots containing no broken

H-bonds anywhere in the oligomer. Both sets of data exhibit

a bell-shaped profile with similar means: �0.14 Å raw,

�0.11 Å filtered. However, the standard deviations differ by

roughly 50%: 0.44 Å raw, 0.29 Å filtered. This difference leads

to a dramatic difference in the Gaussian fits as can be seen in

the top panel of the figure, and can be attributed to an

extended tail in the raw data as shown in the bottom panel.

By comparison, no such tail appears in the filtered data.

Similar phenomenon at varying degrees of intensity occurred

in other internal coordinates and at other basepair locations.

Throughout the remainder of our developments we shall

consider only the filtered data since it may provide a better

representation of the properties of B-form DNA than the

raw data.

5.2 Mass parameters

Here we outline results on the estimation of mass parameters

for the rigid base and basepair models from the fine-sampled

trajectory described in section 4. We illustrate various

consistency checks based on the theory in sections 2 and 3.

These checks provide a means of assessing the quality of the

numerical simulations and the rigidity assumptions in the base

and basepair models.

Fig. 4 shows a portion of the estimated mass matrix ME for

the rigid base model. The 6 � 6 diagonal blocks in Fig. 4

correspond to the mass matrices Ma
E and �Ma

E for the eight

individual bases in basepairs a = 7,. . .,10. To assess the

Fig. 1 Fraction of snapshots in the coarse-sampled trajectory in

which individual H-bonds were broken. The H-bonds are shown for

consecutive basepairs as defined by the base sequence of the reference

strand. The three bars for each of the terminal (G,C) and (C,G)

basepairs correspond to the major, middle and minor groove H-bonds

(left-to-right). The two bars for each of the interior (A,T) or (T,A)

basepairs correspond to the major and minor groove H-bonds

(left-to-right). The fractions for H-bonds on the minor groove side

for basepairs 4 to 15 are small (o0.005%) and barely visible on this

scale.

Fig. 2 Maximum lifetimes of broken H-bonds in the coarse-sampled

trajectory. The ordering of the H-bonds follows the same convention

as in Fig. 1. The lifetimes for both the major groove (753 ps) and minor

groove (743 ps) H-bonds for basepair 2 fall outside the range of the

Figure. The lifetimes for the broken minor groove H-bonds for base-

pairs 4 to 15 are mostly small (o5 ps) and barely visible on this scale.

Fig. 3 Normalized distributions (pdf’s) of the internal coordinate

Shear for basepair 2 for the coarse-sampled trajectory. The distri-

bution is shown for two sets of snapshot data: raw data (blue), which

includes all the snapshots from the trajectory, and filtered data (red),

which includes only those snapshots containing no broken H-bond

anywhere in the oligomer. The histograms denote the actual data,

whereas the solid curves denote Gaussian fits with the same mean and

variance as the data. Top panel: illustration of mean and variance of

raw and filtered data (histogram bin size 0.15 Å). Bottom panel:

illustration of tail in raw data (histogram bin size 0.5 Å).
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simulations and the rigidity assumption on the bases, we

compared the structure of the estimated matrices with the

structure of the exact matrices defined in section 2.6. First, we

found that the estimated matrix ME was nearly block-diagonal

in accordance with the exact matrix M. Indeed, the Euclidean

norm of the off-diagonal portion of the matrix was only 1.5%

of the norm of the entire matrix. Second, we found that each

of the matricesMa
E and �Ma

E had a structure in accordance with

Ma and �Ma as encapsulated in eqn (41). Specifically, using the

notation from (115), each sub-block Ba
1 and �Ba

1 was nearly

isotropic (scalar multiple of the identity), and each sub-block

Ba
2 and �Ba

2 was nearly skew-symmetric, as can be seen in Fig. 5.

Indeed, for each sub-block Ba
1 and �Ba

1, we found that the

Euclidean norm of the anisotropic part was less than 3% of

the norm of the sub-block. Moreover, for each sub-block Ba
2

and �Ba
2, we found that the Euclidean norm of the symmetric

part was less than 3.5% of the norm of the sub-block.

Fig. 6 shows results for the estimated mass parameters ma
E

and �ma
E versus sequence for the rigid base model. As another

check on the simulation, we tested the estimated values against

the palindromic symmetry relation ma = �mn�a+1 from

section 2.9, which states that the mass of the reference-strand

base in basepair 1 should be equal to the mass of the

complementary-strand base in basepair n, and so on. The data

in the Figure show that this relation is nearly satisfied for all

basepairs. Indeed, we found that the maximum value of

the relative difference |Dma
E|/m

a
E was 1.8%, where Dma

E =

ma
E � �mn�a+1

E . We further checked the symmetry relations

ca =C�cn�a+1 and Ga =C �Gn�a+1C for the center of mass and

rotational inertia components. For the center of mass compo-

nents, we found that the maximum difference |DcaE| (Euclidean
norm) was 0.04 Å, which is small compared to inter-atomic

distances (about 1 Å), or even to the precision of atomic

Cartesian coordinates in X-ray structures (roughly 0.1 Å). For

the rotational inertia components, we compared principal

values and axes rather than the matrices themselves. Denoting

the principal values of Ga
E by la1,E r la2,E r la3,E, and similarly

for C �Gn�a+1
E C (notice that the principal values of this

matrix are identical to those for �Gn�a+1
E ), we found that the

maximum value of the relative difference |Dla3,E|/l
a
3,E was 10%,

|Dla2,E|/l
a
2,E was 14% and |Dla1,E|/l

a
1,E was 34%. We remark

that this last value occurred at an isolated basepair (a=4) and

that |Dla1,E|/l
a
1,E did not exceed 16% for the other basepairs

(a a 4). For all a, the matrices Ga
E and C �Gn�a+1

E C were found

to have three distinct principal values lai,E and �ln�a+1
i,E , and the

relative rotation angles between corresponding principal axes

triads were less than 12 degrees. Thus the palindromic

symmetry relations were all approximately satisfied. Notice

that the satisfaction of these relations does not preclude context

effects. That is, the relations can be satisfied even when a base at

one location in the oligomer exhibits parameters different from

those of an identical base at another location.

Fig. 4 A portion of the estimated mass matrix ME in reduced form

for the rigid base model computed with the fine-sampled trajectory.

The portion shown corresponds to the 6 � 6 block entries Ma,b
E for

a,b = 7,. . .,14, which are marked by the grid lines. The diagonal

blocks correspond to the mass matrices Ma
E and �Ma

E for the eight

individual bases in basepairs a = 7,. . .,10. The ordering of the matrix

entries is such that the first row and column begin at the lower-left

corner. Thus the matrix diagonal proceeds from lower-left to upper-

right. For clarity, the block entries are labeled according to the base

they represent, with numbers between 1 and n denoting bases on the

reference strand, and numbers between n + 1 and 2n denoting the

complementary bases on the opposite strand, with numbers increasing

from the 50 to 30 direction on each strand.

Fig. 5 A zoom-in of Fig. 4. The thick grid lines denote 6 � 6 blocks

whereas thin grid lines denote 3 � 3 sub-blocks. The 6 � 6 diagonal

blocks correspond to the mass matrices Ma
E and �Ma

E for the four

individual bases in basepairs a = 8, 9. The structure of the 3 � 3 sub-

blocks of these diagonal blocks is consistent with the rigid base model.

Fig. 6 Estimated mass parameters ma
E and �ma

E versus sequence for the

rigid base model computed with the fine-sampled trajectory. The

parameters ma
E are represented by the vertices of the red curve and

�ma
E by the vertices of the blue curve. Masses are expressed in atomic

mass units (u). The base sequence of the reference strand is indicated

on the horizontal axis. The visible symmetry of the data is consistent

with the palindromic symmetry relations for a rigid base model.
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Table 1 shows selected mass parameters for the bases A, G,

C and T in the rigid base model obtained by different means.

Shown are estimated values obtained from the fine-sampled

trajectory, values obtained for the bases in their canonical

geometries as defined in section 4, and values obtained for only

the purine or pyrimidine rings in their canonical geometries. In

all cases, the estimated mass mE is consistently smaller than

that of the canonical base, but larger than that of the mere

canonical ring. The estimated center of mass coordinates c1,E
and c2,E are all systematically shifted compared to the

canonical values, whereas the estimated coordinates c3,E are

all nearly identical to the canonical values. The estimated

principal values li,E of the rotational inertia matrix are nearly

all smaller than the canonical base values and larger than the

canonical ring values. The only exceptions occur for the

smallest principal values of C and T. Here the estimated values

fall below those of the canonical bases and rings. The

differences between the estimated and canonical values of

parameters may be due to the flexibility of the bases. Indeed,

the exocyclic groups are attached to the rings in a somewhat

flexible manner, leading to bases that are not entirely rigid.

Thus it is natural to expect that estimated values based on a

dynamical simulation will be different from canonical values

based on a single, fixed configuration. These differences may in

fact provide a measure of the real flexibility of a base.

Fig. 7 shows a portion of the estimated mass matrix (Mbp)E
for the rigid basepair model. The 6 � 6 diagonal blocks in

Fig. 7 correspond to the mass matrices (Mbp)
a
E for the eight

basepairs a = 5,. . .,12. To assess the simulations and rigidity

assumption on the basepairs, we compared the structure of the

estimated matrices with the structure of the exact matrices

defined in section 3.6. First, we found that the estimated

matrix (Mbp)E was nearly block-diagonal in accordance with

the exact matrix Mbp. Indeed, the Euclidean norm of the

off-diagonal portion of the matrix was only 3.6% of the norm

of the entire matrix. Second, we found that some of the

matrices (Mbp)
a
E had a structure that was inconsistent with

that of Ma
bp as encapsulated in eqn (87). Specifically, using

notation analogous to (115), some sub-blocks (Bbp)
a
1 were not

close to isotropic, and some sub-blocks (Bbp)
a
2 were not close

to skew-symmetric, as can be seen in Fig. 8. Indeed, for some

Table 1 Selected mass parameters for the bases A, G, C and T in the rigid base model. The data in normal font are estimated values obtained from
the fine-sampled trajectory. For bases A and T, the average over the oligomer is given, with standard deviation shown in parentheses. For bases G
and C, the two values from each oligomer end are given, ordered in the 50 to 30 direction of the reference strand. The data in bold font refer to bases
in their canonical geometries as defined in section 4. The data in italic font refer to purine or pyrimidine rings in their canonical geometries (bases
with exocyclic heavy atoms and hydrogens removed)

A G C T

127 (1) 129, 128 89, 89 89 (1)
m (u) 134 150 110 125

116 116 76 76
�0.93 (0.02) �0.93, �0.95 �0.60, �0.59 �0.56 (0.01)

c1 (Å) �0.46 �0.76 �0.25 0.08

�0.75 �0.75 �0.22 �0.22
3.00 (0.02) 2.99, 3.02 3.92, 3.94 3.93 (0.01)

c2 (Å) 2.52 2.25 3.36 3.50

2.74 2.74 3.70 3.70
0.00 (0.01) 0.02, 0.02 0.02, 0.01 0.00 (0.02)

c3 (Å) 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00
2.51 (0.08) 2.70, 2.51 1.04, 1.00 1.1 (0.12)

l1 (10
�45 kg m2) 3.46 4.22 2.11 2.56

1.90 1.90 1.18 1.18
5.05 (0.23) 5.15, 4.92 2.18, 2.27 2.50 (0.11)

l2 (10
�45 kg m2) 5.18 7.44 4.06 5.81

4.36 4.36 1.23 1.23
8.57 (0.29) 8.60, 8.57 4.54, 4.23 4.43 (0.21)

l3 (10
�45 kg m2) 8.64 11.66 6.17 8.31

6.26 6.26 2.41 2.41

Fig. 7 A portion of the estimated mass matrix (Mbp)E in reduced

form for the rigid basepair model computed with the fine-sampled

trajectory. The portion shown corresponds to the 6�6 block entries

(Mbp)
ab
E for a,b = 5,. . .,12, which are marked by the grid lines. The

diagonal blocks correspond to the mass matrices (Mbp)
a
E for the eight

basepairs a = 5,. . .,12. The ordering of the matrix entries is such that

the first row and column begin at the lower-left corner. Thus the

matrix diagonal proceeds from lower-left to upper-right. For clarity,

the block entries are labeled according to the base and position on the

reference strand.
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sub-blocks (Bbp)
a
1, we found that the Euclidean norm of the

anisotropic part was greater than 62% of the norm of the

sub-block. Moreover, for some sub-blocks (Bbp)
a
2, we found

that the Euclidean norm of the symmetric part was greater

than 52% of the norm of the sub-block. Thus, in contrast to

the base model, the rigidity assumption in the basepair model

is not supported by the data. This is not surprising, since a

mere glance at the visualized trajectory reveals, in some cases,

substantial fluctuations of the two bases in a pair relative to

each other, indicating that basepairs do not generally fluctuate

as rigid entities.

Although the rigidity assumption in the basepair model may

be overly idealistic, it might still provide a useful compromise

between simplicity and accuracy in applications where a low-

resolution model of DNA is acceptable. In this respect, we

remark that the mass parameters estimated here, as well as the

shape and stiffness parameters discussed below, should be

interpreted simply as best-fit parameters obtained by matching

the model to moments of the simulated data.

5.3 Shape, stiffness parameters

Here we outline results on the estimation of shape and stiffness

parameters for the rigid base and basepair models from the

coarse-sampled trajectory described in section 4. As before, we

illustrate various consistency checks to assess the quality of the

numerical simulations and various assumptions in the models.

By the intra-basepair coordinates we mean the internal

coordinates ya = (W,x)a, where Wa are buckle–propeller–

opening and xa are shear–stretch–stagger, and by the inter-

basepair coordinates we mean the internal coordinates za =

(y,z)a, where ya are tilt–roll–twist and za are shift–slide–rise

coordinates, as defined in sections 2 and 3. We recall that Wa

and ya are non-dimensional Cayley coordinates defined via the

parameterization in (6).

Fig. 9 shows the estimated shape parameters ŷaE and ẑaE
versus sequence for the rigid base model. As a check on the

simulation, we tested the estimated values against the

palindromic symmetry relation (63)1 from section 2.9, which

requires that all the shape parameters be symmetric functions

of position about the middle of the oligomer, except buckle,

shear, tilt and shift, which should be antisymmetric. The data

in the Figure show that these conditions are nearly satisfied.

Indeed, we found that these conditions were satisfied to within

Fig. 8 A zoom-in of Fig. 7. The thick grid lines denote 6 � 6 blocks

whereas thin grid lines denote 3 � 3 sub-blocks. The 6 � 6 diagonal

blocks correspond to the mass matrices (Mbp)
a
E for the four basepairs

a = 7,. . .,10. The structure of some of the 3 � 3 sub-blocks of these

diagonal blocks is inconsistent with the rigid basepair model.

Fig. 9 Estimated shape parameters ŷaE and ẑaE versus sequence for the rigid base model computed with the coarse-sampled trajectory. The base

sequence of the reference strand is indicated on the horizontal axis, and the parameter values are interpolated by piecewise-linear curves. The

visible symmetry of the data is consistent with the palindromic symmetry relations for the rigid base model.
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a maximum absolute error of 0.008 for buckle–propeller–

opening and tilt–roll–twist, and 0.04 Å for shear–stretch–stagger

and shift–slide–rise, both of which are small compared to the

scales in the figure. The values of the parameters fall within

expected ranges for the B-DNA structural family. Some of the

parameter curves, for example buckle, roll and shear, are

remarkably periodic and reflect strong differences in values

for the TA and AT dimer steps. In contrast, some of the

curves, for example tilt, stretch and shift, are rather flat and

reflect only weak differences. Other curves, for example

propeller and shear, show pronounced behavior near the two

ends of the oligomer. It is unknown whether this behavior is

due to specific sequence effects or simply the influence of the

free ends.

Fig. 10 shows a portion of the estimated covariance matrix

K�1E and stiffness matrix KE for the rigid base model. The

portion shown corresponds to the internal coordinates (ya,za)

for the individual bases in basepairs a= 6,. . .,11. To assess the

simulations, we checked the block entries of the estimated

stiffness matrix against the palindromic symmetry relation in

(63)2 and found that the relations were all satisfied to within a

maximum absolute error of approximately 50 in the Euclidean

norm, which is small compared to the dimensionless scale in

the bottom panel of the Figure. A zoom-in of both matrices is

shown in Fig. 11, where the zoomed-in version of the

covariance matrix has been normalized into a correlation

matrix. The data shows that the correlation patterns in the

12 � 12 diagonal blocks marked by red lines, and indeed each

of their 6 � 6 sub-blocks marked by black lines, are noticeably

periodic. Distinct differences in the correlation patterns of the

intra-basepair coordinates ya are visible between the (A,T) and

(T,A) base pairs, and in the inter-basepair coordinates za

between the AT and TA dimer steps. The observed patterns

are in partial agreement with those computed from crystallo-

graphic databases,31,34 but a detailed comparison is difficult

due to differences in the definitions of the internal coordinates

among other things. The data from the stiffness matrix shows

that the largest entries are concentrated in a region near the

Fig. 10 A portion of the estimated covariance matrix K�1E (top) and

stiffness matrix KE (bottom) in reduced form for the rigid base model

computed with the coarse-sampled trajectory. Horizontal and vertical

bands marked by thin red lines contain entries corresponding to (ya,za)

(a=6,. . .,11). Entries corresponding to ya and za are further separated

from each other by thin black lines. The diagonal region of the stiffness

matrix marked by the thick red lines denotes the structure associated

with a local internal energy model.

Fig. 11 A zoom-in of the two matrices in Fig. 10. Coordinate

orderings and line markings are the same as before. For clarity, the

covariance matrix has been normalized to produce a correlation

matrix with unit diagonal entries, which have been omitted. The

estimated stiffness matrix has a structure that is nearly consistent with

a local internal energy model, in which all entries outside of the

diagonal portion marked by the thick red lines are zero.
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diagonal, which implies that interactions between proximal

bases make a dominant contribution to the internal energy.

Indeed, most of the largest entries fall within the region

marked by the thick red lines, which corresponds to a

local model as described in section 2.5, and remarkably,

this portion of the matrix is itself positive-definite. Some

notable entries that fall outside this region correspond to

twist–twist, tilt–tilt and twist–rise couplings between adjacent

dimer steps.

Fig. 12 shows diagonal entries of the estimated stiffness

matrix versus sequence for the rigid base model. As before, we

tested the estimated values against the palindromic symmetry

relation (63)2, which requires that all diagonal entries be

symmetric functions of position about the middle of the

oligomer. The data in the Figure show that these conditions

are nearly satisfied. Indeed, we found that these conditions

were satisfied to within a maximum relative error of 6% for

the slide–slide entry, 5.5% for twist–twist, 3.5% for roll–roll

and 2.5% for all the other diagonal entries in the stiffness

matrix. As with the shape parameters, some of the diagonal

stiffness curves, for example, tilt–tilt, roll–roll, twist–twist and

rise–rise, are remarkably periodic and reflect strong differences

in values for the TA and AT dimer steps. In contrast,

the remaining curves are rather flat and reflect only weak

differences. Most of the curves show pronounced behavior

near the two ends of the oligomer. As before, it is unknown

whether this behavior is due to specific sequence effects or

simply the influence of the free ends.

Fig. 13 shows a portion of the estimated stiffness matrix

(Kbp)E and a certain block-diagonal or local approximation

ðK0bpÞE for the basepair model, both obtained using a

Gaussian approximation as described in section 3.8. Whereas

the matrix Kbp is defined by the covariance of the full

internal coordinate vector wbp = (z1,. . .,zn�1) as recorded in

eqn (103), each diagonal block of the matrix K0bp is defined by

the covariance of each individual coordinate vector za

(a = 1,. . .,n � 1). The matrix K0bp is referred to as local since

it is consistent with a local internal energy model as defined in

section 3.5. Matrices of the form K0bp have been investigated in

various molecular dynamics and crystal database analyses.20,31,34

Indeed, any covariance analysis in which individual dimer

steps are treated as independent yields a block diagonal matrix

K0bp as defined here. As can be seen from the Figure, the

estimated basepair stiffness matrix (Kbp)E and the block-

diagonal approximation ðK0bpÞE are significantly different;

the Euclidean norm of the difference is 66% of the norm of

(Kbp)E. Thus, while the estimated stiffness matrix for the rigid

base model is nearly local (Fig. 10 and 11, bottom), the

estimated stiffness matrix for the basepair model is noticeably

non-local (Fig. 13, top). This non-locality can be understood

as a consequence of the compatibility relations derived in

section 3.9. In the Gaussian approximation, the rigid basepair

stiffness matrix Kbp is related to the rigid base stiffness matrix

K through a Schur complement as encapsulated in eqn (110).

From this we deduce, by properties of the matrix inverse, that

a nearly local form for K does not imply the same for Kbp.

Fig. 12 Diagonal entries of the estimated stiffness matrix KE versus sequence for the rigid base model computed with the coarse-sampled

trajectory. The base sequence of the reference strand is indicated on the horizontal axis. The diagonal entries are labeled according to the

interactions they represent and are interpolated by piecewise-linear curves. The visible symmetry of the data is consistent with the palindromic

symmetry relations for the rigid base model.
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6. Summary and conclusions

A method has been developed to estimate a complete set of

sequence-dependent shape, stiffness and mass parameters for

rigid base and basepair models of DNA in solution. The

method is based on atomic-resolution trajectories obtained

by explicit-solvent MD simulations, uses a coarse-graining

procedure which is properly consistent with equilibrium

statistical mechanics on the full phase space of the models,

employs special procedures for keeping the simulated DNA

within the B-DNA family by avoiding non-canonical

backbone flips, and furthermore uses a data filter to

eliminate simulated structures with broken intra-basepair

hydrogen bonds.

The sequence-dependent models we consider are specified

by their kinetic and internal energy functions. The kinetic

energy function is parameterized by the effective mass,

center-of-mass coordinates and rotational inertia matrices of

the bases or basepairs. The internal energy function is assumed

to be elastic and quadratic in a natural set of internal

coordinates satisfying the Cambridge convention and is

parameterized by the equilibrium (minimum energy) shape

parameters and the stiffness matrix associated with base or

basepair interactions. In contrast to previous studies in the

literature, we make no assumption about the locality of the

internal elastic energy and include the appropriate Jacobian

factors associated with the non-Cartesian coordinates which

describe the relative, three-dimensional rotations between

bases or basepairs.

The method is accompanied by various analytical

consistency checks that can be used to assess the equilibration

of statistical averages, and different modeling assumptions

pertaining to the rigidity of the bases or basepairs and the

locality of the quadratic internal energy. For general

sequences, it was shown that the rigidity and locality

assumptions imply certain theoretical sparsity patterns for

the global mass and stiffness matrices for each model, and

moreover, in the Gaussian approximation, the shape and

stiffness parameters of the two models must necessarily satisfy

certain compatibility relations involving a Schur complement.

For special sequences, such as the palindromic sequence

considered here, it was furthermore shown using objectivity

arguments that the sequence dependence of the mass, shape

and stiffness parameters must necessarily satisfy various

symmetry requirements. Specifically, we showed that material

parameters must be either symmetric or antisymmetric

functions of position about the middle of the sequence.

The practicability of our method was demonstrated by

applying it to estimate a complete parameter set for the

16-basepair oligomer G(TA)7C simulated in explicit water

and counterions. Two different trajectories were considered:

a fine-sampled 1 ns trajectory for estimating mass parameters,

and a coarse-sampled 180 ns trajectory for estimating shape

and stiffness parameters. The analytical consistency checks,

together with detailed convergence tests based on the

comparison of values from non-overlapping time windows,

suggested that the trajectories were sufficiently long for the

relevant averages to equilibrate. Our results indicate that

sequence-dependent variations in the material parameters

can be resolved rather well. Moreover, they show that the

assumptions of rigidity and locality hold rather well for the

base model, but not for the basepair model. Whereas

the non-rigid nature of basepairs is intuitively and mecha-

nically clear, we showed that the non-local nature of the

internal energy in the basepair model can be understood in

terms of a compatibility relation involving a Schur comple-

ment. We stress that the locality of the rigid base internal

energy is a result implied by the simulated data; it was not

assumed a priori.

The quadratic assumption on the internal elastic energy is

not invariant under general changes of coordinates. Conse-

quently, any results on the details of such an energy, for

example the local or non-local structure of the associated

stiffness matrix, will in general be coordinate dependent. In

contrast, the quadratic form of the kinetic energy expressed in

terms of physical velocity components as done here and the

Fig. 13 A portion of the estimated stiffness matrix (Kbp)E and a

block-diagonal approximation ðK0bpÞE in reduced form for the

basepair model computed with the coarse-sampled trajectory.

Horizontal and vertical bands marked by red lines contain entries

corresponding to the internal coordinates za (a = 5,. . .,12). Each

diagonal block of ðK0bpÞE was computed from the covariance of each

individual coordinate vector za. The estimated matrix (Kbp)E is

significantly different from the block-diagonal approximation

ðK0bpÞE , which indicates that the simulated data is inconsistent with

a local internal energy model.
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associated physical mass matrix are invariant. Our choice to

use internal coordinates based on a Cayley parameterization

of three-dimensional rotations was made primarily for

mathematical convenience. Indeed, the Cayley parameterization

has a straightforward geometrical interpretation and leads to

elegant expressions for the mid-rotation frames among other

things. To what extent the material symmetry and stiffness

matrix locality results described here would also hold for other

choices of internal coordinates such as those employed in

3DNA,27 Curves,23 Curves+22 and other structural analysis

programs is an open question that will be pursued in future

work. We remark that the Cayley parameterization of

rotations adopted here, in which the rotation vector can take

any value in R3 with its norm approaching infinity as the angle

of rotation approaches p radians or 180 degrees, is closely

related to the rotation parameterization adopted in Curves+,

with the only difference being that, in the Curves+ conven-

tion, the norm of the rotation vector is used to encode the

angle of the rotation expressed in degrees, so that it lies in the

ball of radius 180.

The purpose of this article was to examine coarse-grained

models of DNA, including methods for extracting coarse-

grained parameters from fine-grained MD simulations.

Indeed, our results show that, through an appropriate analysis

of atomic-resolution simulations, various coarse-grained

modeling assumptions pertaining to rigidity and locality can

be assessed. It was not our objective to test the validity or

otherwise of any specific MD force field or protocol. This

study was initiated and completed using the atomistic force

field parm94.8 However, the same methodology and analysis

could be applied to simulations based on newer force fields

such as parmbsc0,35 where some of the filtering steps we adopt

may no longer be necessary. We believe that our conclusions

pertaining to rigidity and locality in the rigid base and

basepair models would be unaffected. Recently, simulations of

39 different DNA oligomers containing all possible sequence

tetramers using parmbsc0 have become available.24 The

analysis of those simulations using the methods developed

here will be pursued in future work.

A novel feature of our approach is the ability to estimate

effective mass parameters for both the rigid base and basepair

models. For the model system studied here, these parameters

were deduced from a fine-sampled 1 ns trajectory. Despite its

shortness as compared to the coarse-sampled 180 ns trajectory

used for the shape and stiffness parameters, we believe this

trajectory was sufficiently long to extract converged estimates

of the mass parameters. This belief is supported not only by

the convergence tests described above, but also by analytical

consistency checks based on the theoretical structure of the

mass matrices. Indeed, for the rigid base model, for which

rigidity is clearly a realistic assumption, the theoretically

predicted sparsity pattern of the mass matrix was realized

with rather high accuracy in the estimates obtained from the

1 ns trajectory.

The estimates of shape, stiffness and mass parameters

obtained from time series generated by one MD force field

and set of protocols as compared to others will of course vary.

The parameters may well also depend on the sequence context,

ions and their concentration, and temperature. The study of

these effects is of specific interest in developing a better

understanding of the coarse-grained consequences of

fine-grained details.
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