
On the Qualitative Properties of Modi�ed EquationsO. Gonzalez 1 2 and A.M. Stuart 3 4Division of Applied Mechanics, Department of Mechanical Engineering, Stanford University,Stanford, CA 94305-4040, USAAn arbitrary consistent one-step approximation of an ordinary di�erential equation is studied.If the scheme is assumed to be accurate of O(�tr), then it may be shown to be O(�tr+m) accurateas an approximation to a modi�ed equation for any integer m � 1. A technique is introduced forproving that the modi�ed equations inherit qualitative properties from the numerical method. ForHamiltonian problems the modi�ed equation is shown to be Hamiltonian if the numerical methodis symplectic, and for general problems the modi�ed equation is shown to possess integrals sharedbetween the numerical method and the underlying system. The technique for proving these resultsdoes not use the well-known theory for power series expansions of particular methods such asRunge-Kutta schemes, but instead uses a simple contradiction argument based on the approximationproperties of the numerical method. Although the results presented are known, the method andgenerality of the proofs are new and may be of independent interest.
1. Introduction.In this note we consider the relationship between solutions to a given systemof ordinary di�erential equations, numerical approximations to them, and solutionsto associated modi�ed equations. Our goal is to show that if an underlying systemand an approximation scheme possess solutions sharing certain qualitative properties,then there is a family of associated modi�ed equations possessing solutions that alsoshare these properties.The theoretical developments of this paper begin in Section 2 where we establishthe notation for the semigroups generated by the underlying di�erential equationand the numerical method. We work within a general class of one-step methodswhich satisfy a certain local approximation property: the expansions of the true andapproximate semigroups in powers of the time-step �t agree up to order r. Standarderror estimates for such methods show that the error over a �nite time interval is1 Graduate fellow supported by the National Science Foundation2 Current Address: University of Maryland, Institute for Physical Science and Technology, CSSBldg, College Park, MD 207423 Work supported by the National Science Foundation under grant DMS-9201727 and by theO�ce of Naval Research under grant N00014-92-J-18764 Program in Scienti�c Computing and Computational Mathematics



of O(�tr). Runge-Kutta methods are included in our framework, together with avariety of non-standard one-step methods used in practice, such as those used toensure conservation of invariants for Hamiltonian problems.In Section 3 we discuss modi�ed equations; in particular, for any integer m � 1,the idea is to �nd an O(�tr) modi�cation of the original ordinary di�erential equationwith the property that the numerical method is O(�tr+m) accurate as an approxi-mation of this modi�ed equation. We prove a general result concerning the existenceand approximation properties of modi�ed equations for the general class of one-stepmethods introduced in Section 2. Note that the idea of modi�ed equations is well-known and was �rst studied in detail in the paper Warming & Hyett [1974] within thecontext of partial di�erential equations. Therein the modi�ed equation approach wasfound to be useful in interpreting the qualitative properties of errors introduced bynumerical approximation; for example, numerical dissipation or dispersion for wavepropagation problems can often be clearly understood by studying associated modi-�ed equations. For further results on the usefulness and applicability of the modi�edequation approach see Gri�ths & Sanz-Serna [1986].The main contribution of this paper is contained in Section 4 where the qual-itative properties of modi�ed equations are studied. By use of a straightforwardcontradiction argument we show that if the numerical method inherits a certainstructural property from the underlying ordinary di�erential equation, then the fam-ily of associated modi�ed equations also inherits this property. The speci�c structuralproperties that we consider are conservation of a scalar function for general problems,and conservation of the canonical symplectic two-form for Hamiltonian problems.Results similar to those in Section 4 are already contained in the literature.However, the technique of proof that we employ is new and, since it is very straight-forward to apply, may have some merit when compared to existing proofs which,although somewhat shorter and more elegant, require more sophisticated mathemat-ical machinery.A result, similar to our Theorem 4.1 concerning conservation of a scalar func-tion, is proved in Reich [1996]. The result of Theorem 4.2, showing that a symplecticnumerical method has a family of modi�ed equations which are Hamiltonian, is knownin a wide variety of cases { see Auerbach & Friedman [1991] and Yoshida [1993] forspeci�c examples, and see Mackay [1992], Sanz-Serna [1992] and Sanz-Serna & Calvo[1994] for general discussions concerning the backward error interpretation of sym-plectic schemes. The �rst general result concerning symplectic numerical methodsand their associated modi�ed equations is due to Hairer [1994] (see also Hairer & Lu-bich [1995]), who proves that all symplectic partitioned Runge-Kutta methods haveHamiltonian modi�ed equations. Despite the great generality of this result, the proofis tied in a fundamental way to the speci�c form of Runge-Kutta methods. In Benet-tin & Giorgilli [1994], it is proved that the modi�ed equations of symplectic methodsare Hamiltonian; their analysis is not restricted to Runge-Kutta methods either and,in addition, is considerably more elegant than the one we present here. However, it istied in a very speci�c way to the use of Poisson brackets to elucidate the symplectic



O. Gonzalez and A.M. Stuart 3structure. In contrast, our proof is a simple example of a more general contradictionapproach which will apply to a wide variety of other structure-preserving numericalmethods, including the integral-conserving methods studied here.In summary, although the results proved here are for the most part not new, thetechniques used, and the generality of the framework used, may be of independentinterest. We present full proofs only for selected results. Complete details may befound in Gonzalez & Stuart [1995].2. Background.Consider a system of ordinary di�erential equations in IRp of the formdudt = f(u); (2.1)where the vector �eld f : IRp ! IRp is assumed to be of class C1. For any u0 2 IRpwe denote by S : B � [0; T ] ! IRp the local evolution semigroup generated by (2.1)where B is a closed ball at u0 and T > 0. In particular, for any U 2 B the curveu(t) = St(U) = S(U; t) (2.2)is a solution to (2.1) with initial condition u(0) = U and is de�ned for all t 2 [0; T ].Furthermore, for each t 2 [0; T ] the mapping St : B ! IRp is a C1 di�eomorphismonto its image, and we denote its derivative at a point U 2 B by dSt(U) 2 IRp�p. Wewill use the fact that the mapping B� [0; T ] 3 (U; t) 7! dSt(U) 2 IRp�p is continuousin U and continuously di�erentiable in t, and we note that dSt(U) is invertible foreach U 2 B and t 2 [0; T ]. Hence, by compactness, there exists real numbers Ci > 0(i = 1; : : : ; 4) such thatC1 � jjjdSt(U)jjj � C2 and C3 � jjjdSt(U)�1jjj � C4; (2.3)for all U 2 B and t 2 [0; T ]; where jjj � jjj denotes the Frobenius norm on IRp�p.We will consider one-step numerical methods for (2.1) of the formG�t(Un; Un+1) = 0; (2.4)where G�t : IRp � IRp ! IRp is a given C1 map which depends smoothly on theparameter �t. For any u0 2 IRp we assume the numerical scheme generates anevolution semigroup in the sense that there is a closed ball B at u0, real numbersh; T > 0, and a mapping �S : B� [0; h]! IRp such that for any U 2 B and �t 2 [0; h]the sequence (Un) generated byUn = �Sn�t(U) = �Sn(U;�t) (2.5)



Qualitative Properties of Modi�ed Equations 4satis�es (2.4) for all n�t 2 [0; T ]. Here �Sn(U;�t) denotes the n-fold composition ofthe map �S�t : B ! IRp.Given any u0 2 IRp we assume without loss of generality that B = B andT = T . Furthermore, we assume the numerical scheme is consistent of order r as anapproximation to (2.1); that is, for any U 2 B we have@i@� i ����=0 �S(U; �) = @i@� i ����=0S(U; �); i = 1; : : : ; r (2.6)where r � 1 by consistency.For any n�t 2 [0; T ] with �t 2 [0; h] let d �Sn�t(U) 2 IRp�p denote the derivativeof �Sn�t : B ! IRp at a point U 2 B, and let jj � jj denote the standard Euclideannorm on IRp. Then, by standard results from the numerical analysis of ordinarydi�erential equations (see e.g. Stuart & Humphries [1996, Theorem 6.2.1]) thereexist real numbers C5 > 0 and C6 > 0 depending on U 2 B and T such thatjjSt(U)� �Sn�t(U)jj � C5�tr (2.7)and jjjdSt(U)� d �Sn�t(U)jjj � C6�tr (2.8)for any t = n�t 2 [0; T ] with �t 2 [0; h]. Additionally, in view of (2.3) and (2.8),there is a real number C7 > 0 depending on U 2 B and T such that, for anyt = n�t 2 [0; T ] with �t 2 [0; h], the derivative of the mapping �Sn�t : B ! IRpsatis�es jjjd �Sn�t(U)jjj � C7: (2.9)3. Associated Modi�ed Equations.To any ordinary di�erential equation of the form (2.1), and numerical approx-imation scheme (2.4) of order r, we can associate a modi�ed equation of index N ofthe form dvdt = ~f (N)�t (v); (3.1)where N � 1 is an integer and the modi�ed vector �eld ~f (N)�t : IRp ! IRp is de�ned as~f (N)�t (v) = f(v) + NXi=1�tr+i�1qi(v) (3.2)for some functions qi : IRp ! IRp (i = 1; : : : ; N). With the appropriate choice of thefunctions qi (i = 1; : : : ; N) the numerical scheme (2.4) is an order r+N approximationto (3.1) as we now show.



O. Gonzalez and A.M. Stuart 5For any v0 2 IRp denote by ~S (N) : ~B � [0; ~T ]� [0; ~h] ! IRp the local evolutionsemigroup generated by (3.1) where ~B is a closed ball at v0 and ~h; ~T > 0. Inparticular, for any V 2 ~B and �t 2 [0; ~h] the curve de�ned byv�t(t) = ~S (N)(V; t;�t) = ~S (N)�t (V; t) = ~S (N)t;�t(V ) (3.3)is a solution to (3.1) with initial condition v�t(0) = V and de�ned for all t 2 [0; ~T ].For any t 2 [0; ~T ] and �t 2 [0; ~h] we denote by d ~S (N)t;�t(V ) 2 IRp�p the derivative of themapping ~S (N)t;�t : ~B ! IRp at a point V 2 ~B. As for the underlying system, we will usethe fact that, for any �t 2 [0; ~h], the mapping ~B�[0; ~T ] 3 (V; t) 7! d ~S (N)t;�t(V ) 2 IRp�pis continuous in V and continuously di�erentiable in t, and we note that d ~S (N)t;�t(V )is invertible for each V 2 ~B and t 2 [0; ~T ].Consider the local evolution semigroups at v0 generated by (2.1) and (2.4), andwithout loss of generality assume ~B = B, ~T = T , and ~h = h. For any U 2 B, andfor t 2 [0; T ] and �t 2 [0; h] su�ciently small, we may expand S(U; t), �S(U;�t) and~S (N)(U; t;�t) in Taylor series about t = 0 and �t = 0 asS(U; t) = kXj=0 tjj!�j(U) +O �tk+1� (3.4)�S(U;�t) = kXj=0 �tjj! �j(U) +O��tk+1� (3.5)~S (N)(U; t;�t) = kXj=0 jX̀=0 �j̀� tj�`�t`j! ~�j`(U) +O �(t+�t)k+1� (3.6)where k � (r +N) is an integer and the coe�cients are de�ned as�j(U) = @j@� j ����=0S(U; �) (3.7)�j(U) = @j@� j ����=0 �S(U; �) (3.8)~�j`(U) = @j@� j�`@s` ����=0;s=0 ~S (N)(U; �; s): (3.9)By de�nition of the semigroups we have�0(U) = �0(U) = ~�00(U) = U (3.10)and, since ~S (N)(U; 0;�t) = U for all �t 2 [0; h], we have~�jj(U) = 0; 1 � j � k: (3.11)



Qualitative Properties of Modi�ed Equations 6Now, since (2.4) is an order r approximation to (2.1), we have�j(U) = �j(U); 1 � j � r (3.12)for all U 2 B. Furthermore, from (3.1), (3.2) and its relation with (2.1) we deducethat ~�j0(U) = �j(U); 1 � j � k (3.13)and that ~�j`(U) = 0; 1 � j � k; 1 � ` < minfr; j + 1g: (3.14)Hence the coe�cients ~�j`(U) for 0 � j � r and 0 � ` � j are fully determined byproperties of the underlying evolution semigroups. Our task now is to examine theremaining coe�cients ~�j`(U) for r < j � k and r � ` � j, and choose the functionsqi such that (2.4) is an order r + N approximation to (3.1). From (3.1) and thede�nition of its local evolution semigroup we deduce that the functions qi appear inthe coe�cients ~�j` for r + 1 � j � r +N and ` = j � 1; in particular,qi(U) = ~�(i+r) (i+r�1)(U)=(i+ r � 1)!; i = 1; : : : ; N: (3.15)This follows from (3.9) using the fact thatqi(U) = 1(i+ r � 1)! @i+r�1@si+r�1 ���s=0 ~f (N)s (U) (3.16)and ~f (N)s (U) = @@� ����=0 ~S (N)(U; �; s): (3.17)We now determine the functions qi such that (2.4) approximates (3.1) to orderr +N . Note that this order is achieved if over one time step, i.e. t = �t, the Taylorexpansions of ~S (N)(U;�t;�t) and �S(U;�t) agree through order r +N ; that is, ifjX̀=0�j̀�~�j`(U) = �j(U); 0 � j � r +N: (3.18)In view of (3.10) through (3.14) we have this equality for 0 � j � r, and we nowchoose the functions qi (i = 1; : : : ; N) so that this equality holds for r+1 � j � r+N .Replacing j in (3.18) by i+ r we geti+rX̀=0 �i+ r` �~�i+r `(U) = �i+r(U); 1 � i � N (3.19)



O. Gonzalez and A.M. Stuart 7and, since i+ r � 2 for 1 � i � N , we may writei+r�2X̀=0 �i+ r` �~�i+r `(U) + � i+ ri+ r � 1�~�(i+r) (i+r�1)(U)+ �i+ ri+ r�~�(i+r) (i+r)(U) = �i+r(U); 1 � i � N: (3.20)In view of (3.11) and (3.15) we obtainqi(U) = 1(i+ r)!  �i+r(U)� i+r�2X̀=0 �i+ r` �~�i+r `(U)!and hence, by (3.13) and (3.14), we �nd thatqi(U) = 1(i+ r)!  �i+r(U)� �i+r(U)� i+r�2X̀=r �i+ r` �~�i+r `(U)! : (3.21)Here we use the convention that a sum from ` = a to ` = b with b < a is zero.By direct calculation one can show that the coe�cients f~�(i+r) `gi+r�2`=r onlydepend upon the functions fqjgi�1j=1, and thus (3.21) provides a recursive de�nition forthe functions qi (see Gonzalez & Stuart [1995] for details). Also, since the evolutionsemigroups are by assumption C1 smooth, we note that the functions qi are C1smooth.Remarks1) The foregoing developments provide only local de�nitions of the functions qiin a ball B about an arbitrary point v0 2 IRp. However, since the aboveconstructions can be performed at any point, we can use these local de�nitionsto construct mappings on all of IRp. Note that these global mappings are well-de�ned since the local ones are equal on the intersection of their domains; inparticular, this follows from the fact that the underlying evolution semigroupsare equal on the intersection of their domains, i.e. uniqueness of solutions tothe systems in (2.1), (2.4) and (3.1).2) Arguments similar to those just given may also be found in Section 3 of Benettinand Giorgilli [1994].Since the semigroup for the modi�ed equation (3.1) over a time interval oflength �t agrees with that of the numerical method over one time step to orderO��tr+N�, it follows by standard techniques (see e.g. Stuart & Humphries [1996,Theorem 6.2.1]) that the solution operator and its derivative with respect to initialdata converge with order r + N . Furthermore, because the modi�ed vector �eld is



Qualitative Properties of Modi�ed Equations 8O��tr� close to the original vector �eld in the C1 sense, it follows that any localevolution semigroup of the modi�ed equation is O��tr� close to the correspondinglocal evolution semigroup of the original equation in the C1 sense. These observationsare combined with the foregoing developments in the followingTheorem 3.1. Given any u0 2 IRp and any integer N � 1 there exists a ball B atu0, real numbers h; T > 0, and smooth functions qi (i = 1; : : : ; N) such that the localevolution semigroups St; �S�t; ~S (N)t;�t : B ! IRp for (2.1), (2.4) and (3.1), respectively,are de�ned for all t = n�t 2 [0; T ] with �t 2 [0; h]. Furthermore, for each U 2 B,there is a constant C8 = C8(T;N; U) > 0 such thatjjjd ~S (N)t;�t(U)� d �Sn�t(U)jjj+ jj ~S (N)t;�t(U)� �Sn�t(U)jj � C8�tr+N (3.22)and jjjd ~S (N)t;�t(U)� dSt(U)jjj+ jj ~S (N)t;�t(U)� St(U)jj � C8�tr (3.23)for all t = n�t 2 [0; T ] with �t 2 [0; h].4. Qualitative Properties of the Modi�ed Equations.In this section we will employ an induction on N to prove various properties ofthe modi�ed equation (3.1). In view of Theorem 3.1 we see that, given any u0 2 IRp,the ball B at u0 and the numbers h; T > 0 will in general depend upon N . In thefollowing induction arguments we will choose a ball B and numbers h; T > 0 suchthat all the local evolution semigroups St; �S�t; ~S (m)t;�t : B ! IRp (m = 1; : : : ; N + 1)are de�ned for any t = n�t 2 [0; T ] with �t 2 [0; h]. Note that h may shrink to zeroas N !1, but will be �nite for every �xed integer N � 1.By virtue of Theorem 3.1 we may assume, without loss of generality, that thesame constants C1; C2; C3 and C4 which appear in (2.3) may be used to bound thederivatives of the semigroups for the modi�ed equations up to order N + 1. Thus,for 1 � m � N + 1,C1 � jjjd ~S (m)t;�t(U)jjj � C2 and C3 � jjjd ~S (m)t;�t(U)�1jjj � C4: (4.1)For simplicity we de�ne the modi�ed equation of order N = 0 to be the originalunperturbed equation (2.1) itself. Thus~S (0)�t (u; t) = S(u; t) and ~f (0)�t (u) = f(u); 8u 2 IRp: (4.2)



O. Gonzalez and A.M. Stuart 94.1. Integrals for the Modi�ed Semigroup.Suppose that the underlying system (2.1) and the approximation scheme (2.4)share an integral F 2 C1(IRp; IR). That is, for any u0 2 IRp the function F is invariantunder the local semigroups S and �S in the sense that, for any U 2 B and �t 2 [0; h],we have F(St(U)) = F(U) and F( �Sn�t(U)) = F(U) for all t 2 [0; T ] and n�t 2 [0; T ].Given a modi�ed equation for (2.1) and (2.4) the question arises as to whether or notF is an integral for the modi�ed system. In this section we show that F is indeedan integral for the associated modi�ed equation of index N for any integer N � 1.Precisely, we have the followingTheorem 4.1. Suppose the underlying system (2.1) and the approximation scheme(2.4) share an integral F 2 C1(IRp; IR). Then F is an integral for the associatedmodi�ed equation (3.1) of index N for any integer N � 1. In particular, the modi�edequation (3.1) has the formdvdt = f(v) + �tr NXi=1�ti�1qi(v)where rF(v) � qi(v) = 0; 8v 2 IRp; i = 1; : : : ; N:Proof. For induction assume the modi�ed equation of index N , with local semigroupdenoted by ~S (N), has F : IRp ! IR as an integral. Note that this is true for N = 0since the modi�ed equation of order 0 is the original equation (2.1) itself.Consider any u0 2 IRp. Then, for any U 2 B and �t 2 [0; h] we haveF( ~S (N)�t (U; t)) = F(U); (4.3)for all t 2 [0; T ]. Equivalently, for any �t 2 [0; h], we haverF(u) � ~f (N)�t (u) = 0; 8u 2 Im� ~S (N)�t � (4.4)where Im� ~S (N)�t � = fu 2 IRp j u = ~S (N)�t (U; t); U 2 B; t 2 [0; T ]g: (4.5)Now assume, for contradiction, that F is not an integral for the modi�ed equa-tion of index N + 1, which is of the formdvdt = ~f (N+1)�t (v) = ~f (N)�t (v) + �tr+NqN+1(v): (4.6)Then there exists u0 2 IRp such thatrF(u0) � qN+1(u0) 6= 0: (4.7)



Qualitative Properties of Modi�ed Equations 10Otherwise, rF(u) � ~f (N+1)�t (u) = 0 for all u 2 IRp and F would be an integral.Let C9(u0) = rF(u0) � qN+1(u0)=2 6= 0 and assume, without loss of generality,that C9(u0) > 0; otherwise, if C9 < 0, then one can rede�ne F by changing sign. Bycontinuity there is a closed ball D at u0 such thatrF(U) � qN+1(U) � C9 > 0; 8U 2 D: (4.8)Consider a point U 2 D \ B and let h; T > 0 be such that, for any �t 2 [0; h], theevolution semigroups satisfy ~S (N+1)�t (U; t) 2 D for all t 2 [0; T ] and Un = �Sn�t(U) 2 Dfor all n�t 2 [0; T ]. Then, for any �t 2 [0; h] and t 2 [0; T ], we have by (4.4) and(4.6) @@� ����=tF( ~S (N+1)�t (U; �)) = rF( ~S (N+1)�t (U; t)) � ~f (N+1)�t ( ~S (N+1)�t (U; t))= �tr+NrF( ~S (N+1)�t (U; t)) � qN+1( ~S (N+1)�t (U; t))� C9�tr+N ; (4.9)which implies jF( ~S (N+1)�t (U; T ))�F(U)j � C9T�tr+N ; (4.10)for all �t 2 [0; h].By compactness of the closed ball D, since F 2 C1(IRp; IR); there is a realnumber C10 > 0 such thatjF(U)� F(V )j � C10jjU � V jj; 8U; V 2 D: (4.11)Furthermore, in view of (3.22), the modi�ed equation of indexN+1 and the numericalscheme (2.4) have solutions satisfyingjj ~S (N+1)�t (U; T )� �Sn�t(U)jj � C8�tr+N+1; (4.12)for all �t = T=n and n � n�, where n� is any positive integer such that T=n� 2 [0; h].Since by hypothesis F is an integral for the local numerical semigroup �S we use (4.11)and (4.12) to writejF( ~S (N+1)�t (U; T ))� F(U)j = jF( ~S (N+1)�t (U; T ))� F( �Sn�t(U))j� C10jj ~S (N+1)�t (U; T )� �Sn�t(U)jj� C8C10�tr+N+1; (4.13)for all �t = T=n and n � n�. This yields a contradiction, since for �t < TC9=C8C10both (4.10) and (4.13) cannot hold. Hence F must be an integral for the modi�edequation of index N + 1. Since N = 0 gives the original equation (2.1), the resultfollows by induction.Remark A more general result which includes the above as a special case has re-cently appeared in Reich [1996].



O. Gonzalez and A.M. Stuart 114.2. Symplecticity of the Modi�ed Semigroup.Suppose now that the underlying system (2.1) is Hamiltonian on IRp with thecanonical symplectic structure (assuming p is even, say p = 2m) and local semigroupdenoted by S. Furthermore, assume the numerical approximation scheme (2.4) gen-erates a semigroup �S which is symplectic. Given an associated modi�ed equation for(2.1) and (2.4) the question now arises as to whether or not the semigroup for themodi�ed system de�nes a symplectic map. In this section we show that the semi-group for the associated modi�ed equation of index N is indeed symplectic for anyinteger N � 1. Before doing this we introduce some notation.For simplicity, we assume that the vector �eld f : IRp ! IRp is Hamiltonianwith respect to the canonical symplectic structure, that isf(u) = JrH(u) (4.14)for some smooth function H : IRp ! IR where J 2 IRp�p is of the formJ = � Om Im�Im Om� : (4.15)Here Om and Im denote the zero and identity matrices in IRm�m, respectively.Theorem 4.2. Suppose the underlying system (2.1) and the approximation scheme(2.4) both generate symplectic semigroups. Then the associated modi�ed equation(3.1) of index N generates a symplectic semigroup for any integer N � 1. Thus themodi�ed equation (3.1); (3.2) has the formdvdt = Jr[H(v) + �trQ(N)(v; �t) ]: (4.16)
Proof. The result follows by a contradiction argument similar to that used in theproof of Theorem 4.1. The main idea is to show that ~f (N+1)�t is in�nitesimally sym-plectic given that ~f (N)�t is. One then uses induction and the results of Dragt & Finn[1976] to establish the result. See Gonzalez & Stuart [1995] for details.5. References.S.P Auerbach & A. Friedman (1991) \ Long-time Behaviour of Numerically ComputedOrbits: Small and Intermediate Time-Step Analysis of One-Dimensional Systems," J.Computational Physics, 93, 189{223.
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