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An arbitrary consistent one-step approximation of an ordinary differential equation is studied.
If the scheme is assumed to be accurate of O(At"), then it may be shown to be O(At"t™) accurate
as an approximation to a modified equation for any integer m > 1. A technique is introduced for
proving that the modified equations inherit qualitative properties from the numerical method. For
Hamiltonian problems the modified equation is shown to be Hamiltonian if the numerical method
is symplectic, and for general problems the modified equation is shown to possess integrals shared
between the numerical method and the underlying system. The technique for proving these results
does not use the well-known theory for power series expansions of particular methods such as
Runge-Kutta schemes, but instead uses a simple contradiction argument based on the approximation
properties of the numerical method. Although the results presented are known, the method and

generality of the proofs are new and may be of independent interest.

1. Introduction.

In this note we consider the relationship between solutions to a given system
of ordinary differential equations, numerical approximations to them, and solutions
to associated modified equations. Our goal is to show that if an underlying system
and an approximation scheme possess solutions sharing certain qualitative properties,
then there is a family of associated modified equations possessing solutions that also
share these properties.

The theoretical developments of this paper begin in Section 2 where we establish
the notation for the semigroups generated by the underlying differential equation
and the numerical method. We work within a general class of one-step methods
which satisfy a certain local approximation property: the expansions of the true and
approximate semigroups in powers of the time-step At agree up to order r. Standard
error estimates for such methods show that the error over a finite time interval is
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of O(At"). Runge-Kutta methods are included in our framework, together with a
variety of non-standard one-step methods used in practice, such as those used to
ensure conservation of invariants for Hamiltonian problems.

In Section 3 we discuss modified equations; in particular, for any integer m > 1,
the idea is to find an O(At") modification of the original ordinary differential equation
with the property that the numerical method is O(At"t™) accurate as an approxi-
mation of this modified equation. We prove a general result concerning the existence
and approximation properties of modified equations for the general class of one-step
methods introduced in Section 2. Note that the idea of modified equations is well-
known and was first studied in detail in the paper Warming & Hyett [1974] within the
context of partial differential equations. Therein the modified equation approach was
found to be useful in interpreting the qualitative properties of errors introduced by
numerical approximation; for example, numerical dissipation or dispersion for wave
propagation problems can often be clearly understood by studying associated modi-
fied equations. For further results on the usefulness and applicability of the modified
equation approach see Griffiths & Sanz-Serna [1986].

The main contribution of this paper is contained in Section 4 where the qual-
itative properties of modified equations are studied. By use of a straightforward
contradiction argument we show that if the numerical method inherits a certain
structural property from the underlying ordinary differential equation, then the fam-
ily of associated modified equations also inherits this property. The specific structural
properties that we consider are conservation of a scalar function for general problems,
and conservation of the canonical symplectic two-form for Hamiltonian problems.

Results similar to those in Section 4 are already contained in the literature.
However, the technique of proof that we employ is new and, since it is very straight-
forward to apply, may have some merit when compared to existing proofs which,
although somewhat shorter and more elegant, require more sophisticated mathemat-
ical machinery.

A result, similar to our Theorem 4.1 concerning conservation of a scalar func-
tion, is proved in Reich [1996]. The result of Theorem 4.2, showing that a symplectic
numerical method has a family of modified equations which are Hamiltonian, is known
in a wide variety of cases — see Auerbach & Friedman [1991] and Yoshida [1993] for
specific examples, and see Mackay [1992], Sanz-Serna [1992] and Sanz-Serna & Calvo
[1994] for general discussions concerning the backward error interpretation of sym-
plectic schemes. The first general result concerning symplectic numerical methods
and their associated modified equations is due to Hairer [1994] (see also Hairer & Lu-
bich [1995]), who proves that all symplectic partitioned Runge-Kutta methods have
Hamiltonian modified equations. Despite the great generality of this result, the proof
is tied in a fundamental way to the specific form of Runge-Kutta methods. In Benet-
tin & Giorgilli [1994], it is proved that the modified equations of symplectic methods
are Hamiltonian; their analysis is not restricted to Runge-Kutta methods either and,
in addition, is considerably more elegant than the one we present here. However, it is
tied in a very specific way to the use of Poisson brackets to elucidate the symplectic
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structure. In contrast, our proof is a simple example of a more general contradiction
approach which will apply to a wide variety of other structure-preserving numerical
methods, including the integral-conserving methods studied here.

In summary, although the results proved here are for the most part not new, the
techniques used, and the generality of the framework used, may be of independent
interest. We present full proofs only for selected results. Complete details may be
found in Gonzalez & Stuart [1995].

2. Background.

Consider a system of ordinary differential equations in R? of the form

du

- = 2.1
" ) (2.1
where the vector field f : RP — R is assumed to be of class C*°. For any uy € R?
we denote by S : B x [0,T] — RP the local evolution semigroup generated by (2.1)
where B is a closed ball at ug and T" > 0. In particular, for any U € B the curve

u(t) = Sy(U) = S(U, 1) (2.2)

is a solution to (2.1) with initial condition u(0) = U and is defined for all ¢ € [0, T].
Furthermore, for each ¢ € [0, 7] the mapping S; : B — R? is a C*° diffeomorphism
onto its image, and we denote its derivative at a point U € B by dS;(U) € RP*P. We
will use the fact that the mapping B x [0,T] 3 (U,t) — dS;(U) € RP*? is continuous
in U and continuously differentiable in ¢, and we note that dS;(U) is invertible for
each U € B and t € [0,T]. Hence, by compactness, there exists real numbers C; > 0
(¢=1,...,4) such that

C1 < ||[dSy(U)]]| < C2 and Gy <|||dS,(U)7!|| < Cu, (2.3)

for all U € B and t € [0,T], where ||| - ||| denotes the Frobenius norm on RP*?.
We will consider one-step numerical methods for (2.1) of the form

Gat(Un,Un1) =0, (2.4)

where Go; : RP x R — R? is a given C'°° map which depends smoothly on the
parameter At. For any uy € RP we assume the numerical scheme generates an
evolution semigroup in the sense that there is a closed ball B at ug, real numbers
h,T >0, and a mapping S : B x [0, h] — R? such that for any U € B and At € [0, h]
the sequence (U,,) generated by

U, = S (U) = 8™ (U, At) (2.5)
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satisfies (2.4) for all nAt € [0, 7). Here S™(U, At) denotes the n-fold composition of
the map St : B — RP.

Given any ug € RP we assume without loss of generality that B = B and
T =T. Furthermore, we assume the numerical scheme is consistent of order r as an
approximation to (2.1); that is, for any U € B we have

"1 Sswry=2

S(U,T), i=1,...,r (2.6)

87’i 7=0 87’i 7=0

where 7 > 1 by consistency.

For any nAt € [0,T] with At € [0, h] let dST,(U) € RP*P denote the derivative
of S, : B — RP at a point U € B, and let || - || denote the standard Euclidean
norm on RP. Then, by standard results from the numerical analysis of ordinary
differential equations (see e.g. Stuart & Humphries [1996, Theorem 6.2.1]) there
exist real numbers C5 > 0 and Cg > 0 depending on U € B and T such that

15:(U) = S (U)I| < C5 At (2.7)

and B
[1dSe(U) — dSk,(U)]]] < CeAt” (2.8)

for any t = nAt € [0,T] with At € [0,h]. Additionally, in view of (2.3) and (2.8),
there is a real number C; > 0 depending on U € B and T such that, for any
t = nAt € [0,7] with At € [0,h], the derivative of the mapping S, : B — RP
satisfies

[1|dS% (W)l < Cr. (2.9)

3. Associated Modified Equations.

To any ordinary differential equation of the form (2.1), and numerical approx-
imation scheme (2.4) of order r, we can associate a modified equation of index N of

the form p
v ~
e O} (31)

where N > 1 is an integer and the modified vector field fA“;’) : R? — RP? is defined as

A (v) = f(v) + Z A" g, (v) (3-2)

for some functions ¢, : R? — R? (i =1,...,N). With the appropriate choice of the
functions ¢, (¢ =1, ..., N) the numerical scheme (2.4) is an order r+ N approximation
to (3.1) as we now show.
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For any vy € R? denote by S LB x [0,T] x [0, h] — RP the local evolution
semigroup generated by (3.1) where B is a closed ball at vo and A, T > 0. In
particular, for any V € B and At € [0, h| the curve defined by

we(t) = SN (Vi t, At) = SV (V) = S{N(V) (3.3)

is a solution to (3.1) with initial condition va¢(0) = V and defined for all ¢ € [0, 7).
For any ¢ € [0,T] and At € [0, h] we denote by dS,"),(V) € RP*? the derivative of the
mapping S’t(z)t : B — RP at a point V € B. As for the underlying system, we will use
the fact that, for any At € [0, ], the mapping Bx[0,1] 5 (V,t) — dS;N,(V) € RP*?
is continuous in V' and continuously differentiable in ¢, and we note that dS’t(th(V)

is invertible for each V € B and t € [0, T1.
Consider the local evolution semigroups at vo generated by (2.1) and (2.4), and
without loss of generality assume B = B, T' =T, and h = h. For any U € B, and

for ¢ € [0,7] and At € [0, h] sufficiently small, we may expand S(U,t), S(U, At) and
S™(U,t, At) in Taylor series about t = 0 and At = 0 as

k4
U= %aj(U) + O (1F+) (3.4)
G A k+1
S(U, At) = Z Tﬂj(U) +O(AF ) (3.5)
k J . j— ¢
SOW A=) (i) tj#dﬂw) + O ((t+ Atk (3.6)
§=0 £=0

o7

a;(U) = 977 T:()S(U’ T) (3.7)
9i _

BiU) = 55| _ SWUT) (3.8)

- 7 5 ()

OZJK(U) = m —o SZQS (U, T, S). (39)

By definition of the semigroups we have
ap(U) = Bo(U) = coo(U) =U (3.10)

and, since S ™ (U, 0, At) = U for all At € [0, k], we have

a;;(U)=0, 1<j<k (3.11)
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Now, since (2.4) is an order r approximation to (2.1), we have
a;(U) =p;(U), 1<j<r (3.12)

for all U € B. Furthermore, from (3.1), (3.2) and its relation with (2.1) we deduce
that
ajo(U) = oj(U), 1<j<k (3.13)

and that
djg(U) =0, 1<j<k, 1<{4<min{rj+1}. (3.14)

Hence the coefficients &;,(U) for 0 < j < 7 and 0 < £ < j are fully determined by
properties of the underlying evolution semigroups. Our task now is to examine the
remaining coefficients &;,(U) for » < j < k and r < £ < j, and choose the functions
q, such that (2.4) is an order r + N approximation to (3.1). From (3.1) and the
definition of its local evolution semigroup we deduce that the functions ¢, appear in
the coefficients &y for r +1 < j <7+ N and £ = j — 1; in particular,

Qz(U) = d(i-i—r) (i4r—1) (U)/(Z +r— 1)!7 t=1,...,N. (315)

This follows from (3.9) using the fact that

1 ai—i—r—l F o)
q@(U) = (2 +r— 1)' Osttr—1 L:va:q (U) (316)
and
£U) = a% _SW.Ts). (3.17)

We now determine the functions ¢, such that (2.4) approximates (3.1) to order
r+ N. Note that this order is achieved if over one time step, i.e. ¢ = At, the Taylor
expansions of S (U, At, At) and S(U, At) agree through order r + N; that is, if

> (i)dﬂ(U)Zﬁj(U), 0<j<r+N. (3.18)

£=0

In view of (3.10) through (3.14) we have this equality for 0 < j < r, and we now
choose the functions ¢, (i = 1,..., N) so that this equality holds for r+1 < j < r+N.
Replacing j in (3.18) by i + r we get

i+ .
Z (z -Z T) Qitre(U) = Bir(U), 1<i<N (3.19)

{=0
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and, since ¢ +r > 2 for 1 < < N, we may write

+r—2 ,. )
RANAY t+1r 0\
ez—; < ’ )ai+r£(U) + (2 e 1>a(,-+,,) (1) (U)

T+ L .
* <Z n T) Q(i+r) (i) (U) = Pigr(U), 1<i< N (3.20)

In view of (3.11) and (3.15) we obtain

i+r—2 /.
q,(U) = ﬁ <ﬂi+r(U) - Z (Z -Z T) di+r€(U)>

{=0

and hence, by (3.13) and (3.14), we find that

i+r—2 /.
q,(U) = L <5z’+r(U) — i (U) = ) (Z -Z T) @i+re(U)> : (3:21)

(i 4 7)! —

Here we use the convention that a sum from £ = a to £ = b with b < a is zero.

By direct calculation one can show that the coefficients {d(Hr)g}i’;_Z only

depend upon the functions {g; 3;11, and thus (3.21) provides a recursive definition for

the functions g; (see Gonzalez & Stuart [1995] for details). Also, since the evolution
semigroups are by assumption C°° smooth, we note that the functions ¢; are C'°
smooth.

Remarks

1) The foregoing developments provide only local definitions of the functions g,
in a ball B about an arbitrary point vy € IRP. However, since the above
constructions can be performed at any point, we can use these local definitions
to construct mappings on all of IRP. Note that these global mappings are well-
defined since the local ones are equal on the intersection of their domains; in
particular, this follows from the fact that the underlying evolution semigroups
are equal on the intersection of their domains, i.e. uniqueness of solutions to
the systems in (2.1), (2.4) and (3.1).

2) Arguments similar to those just given may also be found in Section 3 of Benettin
and Giorgilli [1994]. ]

Since the semigroup for the modified equation (3.1) over a time interval of
length At agrees with that of the numerical method over one time step to order
O(AtHN ), it follows by standard techniques (see e.g. Stuart & Humphries [1996,
Theorem 6.2.1]) that the solution operator and its derivative with respect to initial
data converge with order » + N. Furthermore, because the modified vector field is
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(’)(Atr) close to the original vector field in the C' sense, it follows that any local
evolution semigroup of the modified equation is (’)(At’") close to the corresponding
local evolution semigroup of the original equation in the C! sense. These observations
are combined with the foregoing developments in the following

Theorem 3.1. Given any uy € R? and any integer N > 1 there exists a ball B at
uo, real numbers h, T > 0, and smooth functions q, (i =1,...,N) such that the local
evolution semigroups Si, Sat, S't(,?t : B — R? for (2.1), (2.4) and (3.1), respectively,
are defined for all t = nAt € [0,T] with At € [0,h]. Furthermore, for each U € B,
there is a constant Cg = Cs(T, N,U) > 0 such that

11dS¢ 2%, (U) = dSz, (Ul + 115, 2,(U) = S5 (U)]] < CsAt™Y (3.22)

and

11485 (U) = dSy(U)[|| + ([, 2:(U) = Se(U) || < CsAl (3.23)

for all t = nAt € [0,T] with At € [0, h].

4. Qualitative Properties of the Modified Equations.

In this section we will employ an induction on N to prove various properties of
the modified equation (3.1). In view of Theorem 3.1 we see that, given any uy € RP?,
the ball B at ug and the numbers h,T" > 0 will in general depend upon N. In the
following induction arguments we will choose a ball B and numbers h,T" > 0 such
that all the local evolution semigroups S, Sat, St(,'z)t :B—> R (m=1,...,N+1)
are defined for any ¢ = nAt € [0,T] with At € [0, h]. Note that h may shrink to zero
as N — oo, but will be finite for every fixed integer N > 1.

By virtue of Theorem 3.1 we may assume, without loss of generality, that the
same constants Cq,Cy, C3 and Cy which appear in (2.3) may be used to bound the
derivatives of the semigroups for the modified equations up to order N + 1. Thus,
for1<m< N +1,

Cr < SR ()N < G2 and - Cs < |||dS 3, (U) || < Ca. (4.1)

For simplicity we define the modified equation of order N = 0 to be the original
unperturbed equation (2.1) itself. Thus

SO(u,t) = S(u,t) and f7(u) = f(u), Vu € RP. (4.2)
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4.1. Integrals for the Modified Semigroup.

Suppose that the underlying system (2.1) and the approximation scheme (2.4)
share an integral F € C1(R?, R). That is, for any uy € RP the function F is invariant
under the local semigroups S and S in the sense that, for any U € B and At € [0, k],
we have F(S;(U)) = F(U) and F(S%,(U)) = F(U) for all t € [0, T] and nAt € [0,T).
Given a modified equation for (2.1) and (2.4) the question arises as to whether or not
F is an integral for the modified system. In this section we show that F is indeed
an integral for the associated modified equation of index N for any integer N > 1.
Precisely, we have the following

Theorem 4.1. Suppose the underlying system (2.1) and the approrimation scheme
(2.4) share an integral F € C*(RP,R). Then F is an integral for the associated
modified equation (3.1) of index N for any integer N > 1. In particular, the modified
equation (3.1) has the form

N
dv P —
a f(v) + At E At g, (v)
i=1

where
VF@w) q,(v)=0, Yve R, i=1,...,N.

K2

Proof. For induction assume the modified equation of index N, with local semigroup
denoted by S, has F : R — R as an integral. Note that this is true for N = 0
since the modified equation of order 0 is the original equation (2.1) itself.

Consider any up € RP. Then, for any U € B and At € [0, h] we have

F (84" (U,1)) = F(U), (4.3)
for all ¢ € [0, T]. Equivalently, for any At € [0, h|, we have
VFu)  f (u) =0, Yu € Im(Ss;") (4.4)

where

Im(SA) ={ue R |u= S\’ (U,t), UeB, tel0,T]}. (4.5)

Now assume, for contradiction, that F is not an integral for the modified equa-
tion of index N + 1, which is of the form

dv  zvir x ,
= = Ta T (0) = JA7 (0) + AT g (v). (4.6)

Then there exists ug € R? such that

V}—(Uo) . QN+1 (UO) 7£ 0. (47)
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Otherwise, VF(u) - f{¥*" (u) = 0 for all u € R? and F would be an integral.

Let Co(uo) = VF(uo) - gy, (u0)/2 # 0 and assume, without loss of generality,
that Cy(up) > 0; otherwise, if Cg < 0, then one can redefine F by changing sign. By
continuity there is a closed ball D at uy such that

VFU) qy,,(U)>Cy>0, YUED. (4.8)
Consider a point U € DN B and let h,T > 0 be such that, for any At € [0, h], the
evolution semigroups satisfy Si; " (U,t) € D for all t € [0,T] and U,, = S%(U) € D
for all nAt € [0,T]. Then, for any At € [0,h] and t € [0,T], we have by (4.4) and
(4.6)
0

e, TS (U T) = VES (U, 4) - f (S5 (U01)

= AUTVVF(SG T (ULL) - 4y (547 V(U )
> CyAt™ TN, (4.9)
which implies ~
| F(SST(U,T)) — F(U)| > CoT ALY, (4.10)

for all At € [0, h].
By compactness of the closed ball D, since F € C'(IR?, R), there is a real
number Cig > 0 such that

|F(U) = F(V)| < CuollU=V]|, VU,V eD. (4.11)

Furthermore, in view of (3.22), the modified equation of index N+1 and the numerical
scheme (2.4) have solutions satisfying

1S5 (U, T) = S5,(U)]] < CsAtH, (4.12)

for all At = T'/n and n > n*, where n* is any positive integer such that 7'/n* € [0, h].
Since by hypothesis F is an integral for the local numerical semigroup S we use (4.11)
and (4.12) to write

FET(U,1) = FO)| = |[F(SG™(U,T) = F(S5,(U))]
< CullSas ™ (U, T) = Sy, (V)]
< CgCroAt™ TN T (4.13)
for all At =T /n and n > n*. This yields a contradiction, since for At < T'Cy/CsC1y
both (4.10) and (4.13) cannot hold. Hence F must be an integral for the modified

equation of index N + 1. Since N = 0 gives the original equation (2.1), the result
follows by induction. [

Remark A more general result which includes the above as a special case has re-
cently appeared in Reich [1996].
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4.2. Symplecticity of the Modified Semigroup.

Suppose now that the underlying system (2.1) is Hamiltonian on R? with the
canonical symplectic structure (assuming p is even, say p = 2m) and local semigroup
denoted by S. Furthermore, assume the numerical approximation scheme (2.4) gen-
erates a semigroup S which is symplectic. Given an associated modified equation for
(2.1) and (2.4) the question now arises as to whether or not the semigroup for the
modified system defines a symplectic map. In this section we show that the semi-
group for the associated modified equation of index N is indeed symplectic for any
integer N > 1. Before doing this we introduce some notation.

For simplicity, we assume that the vector field f : R? — RP is Hamiltonian
with respect to the canonical symplectic structure, that is

F(u) = JVH (u) (4.14)

for some smooth function H : RP — R where J € RP*? is of the form

Om In
o0 I, o

Here O,, and I,,, denote the zero and identity matrices in R"™>*™, respectively.

Theorem 4.2. Suppose the underlying system (2.1) and the approzimation scheme
(2.4) both generate symplectic semigroups. Then the associated modified equation
(3.1) of index N generates a symplectic semigroup for any integer N > 1. Thus the
modified equation (3.1), (3.2) has the form

= IVLH) + AFQ ;A1) (4.16)

Proof. The result follows by a contradiction argument similar to that used in the
proof of Theorem 4.1. The main idea is to show that fi} ™ is infinitesimally sym-
plectic given that f{}’ is. One then uses induction and the results of Dragt & Finn

[1976] to establish the result. See Gonzalez & Stuart [1995] for details. ]
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