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ON THE HYDRODYNAMIC DIFFUSION OF RIGID PARTICLES OF
ARBITRARY SHAPE WITH APPLICATION TO DNA∗

O. GONZALEZ† AND J. LI‡

Abstract. A general model for the diffusive dynamics of rigid particles in a viscous solvent
is studied. The model applies to particles of arbitrary shape and allows for arbitrary cross- and
self-coupling between translational and rotational degrees of freedom. Scaling and perturbation
techniques are used to characterize the dynamics at time scales relevant to different classic experi-
mental methods. It is shown that translational and rotational motion can be treated as independent
at these time scales and can be described by simplified diffusion models, provided that certain ge-
ometric and hydrodynamic parameters associated with a particle are small. These parameters are
estimated for DNA molecules of different length using a sequence-dependent geometric model based
on x-ray crystallography and a numerical boundary element technique. Our results suggest that, for
short DNA fragments up to about a persistence length, translational data can be accurately analyzed
using a simplified model characterized by a scalar, orientationally averaged diffusion coefficient, but
not rotational data. Indeed, the accurate analysis of rotational data may require a model which
accounts for self-coupling and other possible effects at the rotational time scale.
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1. Introduction. Various experimental methods for probing the structure of
rigid molecules in dilute solution are based on translational or rotational motion at
diffusive time scales, for example, velocity sedimentation [14, 32, 35], dynamic light
scattering [3, 34], electric dichroism and birefringence [13], and fluorescence polar-
ization [40]. The interpretation of experimental data obtained from these methods
relies on various simplifying assumptions about the dynamics of the molecules. The
most basic of these is that translational and rotational motion can be treated as in-
dependent. In the translational case, it is traditionally assumed that the motion of a
distinguished point in a molecule is described by an isotropic diffusion equation in a
given spatial domain and characterized by a scalar diffusion coefficient corresponding
to the average of those associated with translation along three principal axes [7, 37].
Similarly, in the rotational case, it is traditionally assumed that the motion of a distin-
guished axis in a molecule is described by an isotropic diffusion equation on the unit
sphere and characterized by a scalar diffusion coefficient corresponding to rotation
transverse to the axis [7, 13, 37].

The interpretation of experimental data also requires a geometric model for the
hydrated surface of a molecule. Consistent with the dynamical assumptions, this
surface has traditionally been modeled by a simple, symmetric shape such as an
ellipsoid or a cylinder [7, 37]. For these shapes, translational and rotational motion are
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independent, and the traditional isotropic diffusion models can be expected to provide
accurate descriptions of the independent motions in various cases. Indeed, we expect
an isotropic model to accurately describe the translational motion of the center of a
nearly spherical ellipsoid, as well as the rotational motion of the axis of a relatively
elongated cylinder. Recently, however, hydrodynamic experiments have been used
to estimate structural features of proteins [2, 6, 16] and DNA [1, 19, 26] using more
realistic geometric models. Unlike ellipsoids and cylinders, these models are irregularly
shaped and have no apparent symmetry. For such models, translational and rotational
motion are generally coupled, and the traditional diffusion models which treat these
motions as independent may no longer be accurate. Indeed, whereas the diffusional
characteristics of a simple, symmetric shape are described by independent diffusion
coefficients associated with translation and rotation along three principal axes, the
characteristics of an irregular shape are described by a six-dimensional diffusion tensor
with various different couplings [20, 21, 24].

In this article, we study the diffusive dynamics of rigid particles of arbitrary shape
and examine the effect of various couplings at time scales relevant to different clas-
sic experimental methods. We consider the general model of hydrodynamic diffusion
introduced by Brenner [4, 5], with arbitrary cross- and self-coupling between transla-
tional and rotational degrees of freedom, and we use techniques of perturbation theory
to characterize the dynamics at different time scales. At scales relevant to experimen-
tal methods based on translation, we show, for a particle of arbitrary shape, that all
cross- and self-coupling effects vanish in a leading-order approximation, provided only
that a geometric parameter ε, defined as the dimensionless ratio of the characteristic
size of the particle to that of the observed experimental domain, is small. In this
case, the translational motion of any reference point in the particle is described by
an isotropic diffusion equation. The equation is characterized by a scalar diffusion
coefficient corresponding to the orientational average of the three-dimensional dif-
fusion tensor associated with pure translation. Indeed, this coefficient characterizes
the translational diffusion of not only symmetric and nearly spherical shapes, but also
asymmetric and highly aspherical shapes as well. Thus the traditional isotropic model,
with an appropriately defined translational diffusion coefficient, is expected to provide
an accurate description of translational motion at the relevant time scales under an
appropriate restriction on the size of a particle, with no restriction on its shape.

Different conclusions may be drawn for methods based on rotation. At time scales
relevant to these methods, we show, for a particle of arbitrary shape, that all cross-
coupling effects vanish in a leading-order approximation, provided as before that the
geometric parameter ε is small. In this case, the rotational motion of the particle is
described by a self-coupled diffusion equation on the space of three-dimensional ro-
tations. Moreover, we show that certain self-coupling effects vanish, and the motion
of any distinguished axis or unit vector n in the particle is described by an isotropic
diffusion equation on the unit sphere, when additionally a shape-dependent hydro-
dynamic parameter ζn, defined as the dimensionless ratio of diffusion coefficients for
rotation transverse and parallel to n, is small. The resulting equation on the unit
sphere is characterized by a scalar diffusion coefficient corresponding to the orienta-
tional average, in the two-dimensional subspace orthogonal to the distinguished axis,
of the three-dimensional diffusion tensor associated with pure rotation. Thus the tra-
ditional isotropic model on the unit sphere, with an appropriately defined transverse
rotational diffusion coefficient, is expected to provide an accurate description of the
rotational motion of a distinguished axis at the relevant time scales under appropriate
restrictions on both the size and shape of a particle.
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Various aspects of these results have been considered before. Brenner [4] studied
cross-coupling between translational and rotational diffusion for a restricted class of
shapes with no self-coupling. However, time scale and general coupling effects for
arbitrary shapes were not considered. Berne and Pecora [3] studied self-coupling
effects in the rotational diffusion of arbitrary shapes. However, time scale and cross-
coupling effects between translational and rotational diffusion were not considered.
The subject of rotational diffusion for different shapes in the absence of cross-coupling
effects has been studied extensively, beginning with the pioneering work of Debye [8]
and Perrin [30, 31], and continued in the works by Favro [12], McConnell [27], and
the references therein. In this work, we use scaling and perturbation techniques to
study arbitrary cross- and self-coupling effects for particles of arbitrary shape. We
show that translational and rotational diffusion can be treated as independent at
appropriate time scales, and can be described by traditional simplified models with
appropriately defined coefficients, provided that the parameters ε and ζn introduced
herein are small. Moreover, we study the properties of the diffusion coefficients that
arise in the simplified models. Analogous to the center of diffusion which minimizes
the translational diffusion coefficient [6, 21], we establish the existence of an axis of
diffusion which minimizes the transverse rotational diffusion coefficient.

As an application of our results, we examine various classic hydrodynamic meth-
ods for probing the structure of short DNA molecules up to about a persistence length,
which corresponds to about 150 basepairs [33]. We restrict our attention to this length
scale since the rigidity assumption in the present theory becomes more of an issue at
longer lengths. We estimate the parameters ε and ζn for DNA in this length range
using a sequence-dependent geometric model based on x-ray crystallography and a
numerical boundary element technique described in detail elsewhere [18, 19]. Our re-
sults show that, for translational methods such as velocity sedimentation and dynamic
light scattering, the parameter ε is small for any sequence, which suggests that the
translational motion measured by these methods is accurately described by the tradi-
tional isotropic model. In contrast, for rotational methods such as electric dichroism
and birefringence, as well as fluorescence polarization, the parameter ζn is highly vari-
able and can be close to order unity depending on the sequence, which suggests that
the rotational motion measured by these methods may not be accurately described
by the traditional isotropic model. Thus, for short DNA molecules up to about a
persistence length, the use of a more realistic geometric model is compatible with
traditional assumptions made in the analysis of translational data, but not rotational
data. Indeed, the accurate analysis of rotational data may require a diffusion model
which accounts for self-coupling and other possible effects at the rotational time scale.

The presentation is organized as follows. In section 2, we outline a general, fully
coupled model of hydrodynamic diffusion of rigid particles and establish notation. In
section 3, we outline an initial-boundary value problem for the general diffusion model,
derive our main results on translational and rotational diffusion at different time
scales, and study various properties of the scalar coefficients arising in the simplified
models. In section 4, we use our results to examine various classic hydrodynamic
methods for studying DNA.

2. Theory. Here we outline a model introduced by Brenner [4, 5] for the diffusion
of rigid particles of arbitrary shape in a viscous solvent. The final form of the model
is a convection-diffusion equation on a six-dimensional space of particle positions and
orientations; see (2.40) below. We give a careful summary of the hydromechanical ba-
sis of the model, highlight and clarify various inherent approximations, and establish
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notation and results that are necessary for its physical and mathematical interpreta-
tion.

2.1. Hydromechanical relations. Consider a single, rigid particle of arbitrary
shape immersed in a viscous solvent and moving under the action of various external
forces. The configuration of the particle is specified by the location of a reference point
r fixed in the particle, and the orientation of a right-handed, orthonormal frame {di}
(i = 1, 2, 3) attached to the particle. The kinematics of the particle relative to a
right-handed, orthonormal experimental reference frame {ei} are encapsulated in the
relations

(2.1) ṙ = v, ḋi = ω × di,

where v is the velocity of the particle reference point, ω is the angular velocity of
the particle frame, an overdot denotes a derivative with respect to time holding {ei}
fixed, and × denotes the standard cross product.

We assume that the particle is relatively large compared to the solvent molecules
and that its velocities (v,ω) can be decomposed into a sum of rapidly fluctuating
velocities (v′,ω′) due to thermal effects, and slowly varying velocities (v,ω) due to
external effects, namely,

(2.2) v = v′ + v, ω = ω′ + ω.

We assume that the velocities (v′,ω′) have vanishing means in the sense that their
time averages, taken over any window that is sufficiently large compared to the char-
acteristic molecular collision time, are negligibly small. In this case, the velocities
(v,ω) can be identified as the time averages of (v,ω) over a local, moving window
in time. We assume that (v,ω) and the window size are sufficiently small so that
the body configuration can be approximated as constant in the window. As a con-
sequence, (v,ω) are objective in the sense that their components in the particle and
experimental frames are related through the usual transformation laws for a change
of frame.

We denote the net external force and torque on the particle by (fext, τ ext), where
the torque is referred to the particle reference point. We assume that (fext, τ ext)
depend on the configuration of the particle, but not its linear or angular velocities.
Moreover, we assume that

(2.3) fext = f0 + fρ, τ ext = τ 0 + τ ρ,

where (f0, τ 0) are net loads associated with body (distributed) and point (concen-
trated) forces of any type except osmotic, and (fρ, τ ρ) are net loads associated with
forces of osmotic type, which will be described later. Assuming that the particle and
solvent have uniform mass densities, and that all body force fields are conservative,
we have

(2.4) f0 = mbf
body + fpoint, τ 0 = mbτ

body + τpoint,

where mb is the buoyant mass of the particle in the solvent, (fbody, τbody) are net
body loads per unit mass, and (fpoint, τpoint) are net point loads.

We assume that the time-averaged velocities of a particle are entirely determined
by the net external loads acting on it. Specifically, we assume a general linear relation
of the form

(2.5) v = M1f
ext +M3τ

ext, ω = M2f
ext +M4τ

ext,
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where M1, . . . ,M4 are given hydrodynamic mobility tensors. Consistent with the
assumptions on the smallness and slowly varying nature of the velocities (v,ω), these
relations are assumed to be objective in the sense that they hold without modification
in both the particle and experimental frames. That is, any induced forces caused by
the relative translation and rotation of these frames are assumed to be negligible when
averaged in time. These relations are consistent with a Stokesian hydrodynamic model
of the solvent and are a generalization, to a rigid particle of arbitrary shape, of the
classic Stokes laws for the force and torque on a sphere. In general, the mobility tensors
may depend on the configuration of the particle as well as the choice of reference point
and frame fixed in the particle [15, 19, 20, 21, 24].

Various considerations arise in applications in which the experimental frame is
rotating. In this case, the particle velocities must be interpreted as relative velocities,
and the net body loads must be augmented to account for acceleration effects induced
by rotation. Assuming that the experimental frame {ei} rotates with a slowly varying
angular velocity ζ, and that the particle velocities (v,ω) are small, we neglect angular
acceleration and Coriolis effects and consider only centrifugal effects. Accordingly,
we augment fbody with the term −ζ × (ζ × r), and augment τbody with the term
−ζ × (Γζ), where Γ is the rotational inertia tensor [17, 23] of the particle per unit
mass about the reference point r.

2.2. Component form. The hydromechanical relations outlined above involve
vector and tensor quantities which are defined independently of any frame. We next
express these quantities in terms of a convenient set of components in the experimental
frame {ei} and the particle frame {di}. To begin, let r ∈ R3 and Q ∈ R3×3 denote
the components of r and {di} in the frame {ei}, where ri = ei · r, Qij = ei · dj , and
a dot denotes the standard dot product. In terms of these components, we have

(2.6) r = riei, dj = Qijei.

Here and throughout we use the usual summation convention on pairs of repeated
indices. Notice that because {di} and {ei} are right-handed, orthonormal frames, we
have Q ∈ SO3, where SO3 ⊂ R3×3 is the set of proper, three-dimensional rotation
matrices, namely, QT = Q−1 and detQ = 1. Thus the configuration of a particle is
uniquely defined by an element (r,Q) ∈ R3 × SO3.

Let V, V ′, V ∈ R3 and Ω,Ω′, Ω ∈ R3 denote linear and angular velocity compo-
nents in the frame {di}, defined by Vi = v · di, V

′
i = v′ · di, Vi = v · di, and so on.

Then the kinematical equations in (2.1) and (2.2) take the form

(2.7)
ṙ = QV, Q̇ = Q[Ω×],

V = V ′ + V , Ω = Ω′ +Ω,

where for any vector Ω ∈ R3 we define a skew-symmetric matrix [Ω×] ∈ R3×3 by

(2.8) [Ω×] =

⎛⎝ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞⎠ .

By definition, this matrix satisfies [Ω×]g = Ω × g for all g ∈ R3. For any skew-
symmetric matrix W ∈ R3×3 it will be convenient to define a vector vec[W ] ∈ R3

by

(2.9) vec[W ] =

⎛⎝ W32

W13

W21

⎞⎠ .
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By definition, this vector satisfies vec[W ]× g =Wg for all g ∈ R3, and by combining
(2.8) and (2.9), we find vec[g×] = g. In indicial notation, we have [Ω×]ij = εikjΩk

and vecj [W ] = 1
2εijkWik, where εijk is the permutation symbol of vector analysis. In

later developments, we will make use of the standard epsilon-delta identity εijkεmnk =
δimδjn − δinδjm, where δij is the Kronecker delta symbol.

Let F ext, F 0, F ρ ∈ R3 and T ext, T 0, T ρ ∈ R3 denote force and torque components
in the frame {di}, defined by F ext

i = f ext · di, F
0
i = f0 · di, F

ρ
i = fρ · di, and so on.

Then the load relations in (2.3) take the form

(2.10) F ext = F 0 + F ρ, T ext = T 0 + T ρ.

We note that the body and point load relations in (2.4) take a similar form in similar
components. Throughout our developments, we will also consider the force and torque
components f ext, f0, fρ ∈ R3 and τext, τ0, τρ ∈ R3 in the experimental frame {ei},
defined by f ext

i = f ext · ei, f0
i = f0 · ei, fρ

i = fρ · ei, and so on. These components
satisfy a relation analogous to (2.10). Moreover, in view of (2.6), they are related to
the previous components through a standard change of frame relation. Specifically,
omitting the superscripts for brevity, we have

(2.11)

(
F
T

)
= QT

(
f
τ

)
,

where Q ∈ R6×6 is a change of frame matrix defined as

(2.12) Q =

(
Q 0
0 Q

)
.

Let Ma ∈ R3×3 (a = 1, . . . , 4) denote the components of the mobility tensors Ma

in the frame {di}, defined by (Ma)ij = di ·Madj . Then the hydrodynamic relations
in (2.5) take the form

(2.13) V =M1F
ext +M3T

ext, Ω =M2F
ext +M4T

ext.

For convenience, we introduce an overall mobility matrix M ∈ R6×6 by

(2.14) M =

(
M1 M3

M2 M4

)
.

Assuming a standard Stokesian hydrodynamic model [15, 19, 20, 21, 24], the matrixM
is constant, symmetric, and positive-definite. The first property is frame-dependent
and holds only in the particle frame, which motivates our use of that frame, whereas
the latter two properties are frame-independent. Thus the overall matrix satisfies
MT = M > 0, which implies that its block entries satisfy MT

1 = M1 > 0, MT
4 =

M4 > 0, and M2 =MT
3 .

For a standard Stokesian model, the matrix M also satisfies a simple transfor-
mation law under a change of particle reference point and particle frame. Indeed, let
(r′,d′

i) and (r,di) be two arbitrary points and frames fixed in the particle, and let
ξ ∈ R3 and Ξ ∈ SO3 be the components of the relative displacement and rotation
defined such that r′ = r + ξidi and d′

j = Ξijdi. Then the associated component
matrices M ′ and M satisfy [21]

(2.15) M ′ = TTMT,
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where T ∈ R6×6 is a transformation matrix defined in partitioned form by

(2.16) T =

(
Ξ 0

[ξ×]Ξ Ξ

)
.

Combining (2.14) and (2.15) we find that the blocks of M ′ and M satisfy

(2.17)

M ′
1 = ΞT

(
M1 +M3[ξ×] + [ξ×]TM2 + [ξ×]TM4[ξ×]

)
Ξ,

M ′
2 = (M ′

3)
T = ΞT

(
M2 +M4[ξ×]

)
Ξ,

M ′
4 = ΞTM4Ξ.

2.3. Local coordinates. It will be convenient to formulate the hydromechanical
relations of the previous section in local coordinates. To this end, we consider an
arbitrary, local coordinate chart on the space of configurations (r,Q) ∈ R3 × SO3 of
the form

(2.18) r = ψ(q), Q = φ(η),

where (q, η) ∈ R3×R3. We assume that (ψ, φ) is a smooth bijection between some open
subset of R3×R3 = R6 and some open subset of R3×SO3. Thus to each configuration
(r,Q) in the image of the chart we associate a unique local representation (q, η).

For any time-dependent curve of configurations, the linear and angular velocity
components (V,Ω) ∈ R6 have a unique local representation V ∈ R6. Indeed, from
(2.7) and (2.18) we find

(2.19) V = QT ṙ = QT∇qψq̇, Ω = vec[QT Q̇] = Sη̇,

where ∇qψ(q) ∈ R3×3 is the Jacobian matrix of ψ(q), and S(η) ∈ R3×3 is a structure
matrix associated with φ(η) given by

(2.20) Smj = vecm

[
QT ∂Q

∂ηj

]
=

1

2
εimkφli

∂φlk
∂ηj

.

Consistent with the assumption that (ψ, φ) is a bijection, we assume that the matrices
∇qψ and S are invertible. Thus, for any given curve of configurations, the components
(V,Ω) are uniquely determined by the coordinate derivatives (q̇, η̇), with the converse
also being true. Writing (2.19) in matrix form, we get

(2.21)

(
V
Ω

)
= ΛV,

where Λ(q, η) ∈ R6×6 is a velocity connection matrix and V ∈ R6 is a local velocity
vector defined as

(2.22) Λ =

(
QT∇qψ 0

0 S

)
, V =

(
q̇
η̇

)
.

Analogous to the decomposition of (V,Ω), we assume that the local representation
V can be decomposed into the sum of a rapidly fluctuating part V′ and a slowly varying
part V as

(2.23) V = V′ + V.
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We assume that V′ has a vanishing mean so that V can be identified as the time
average of V over a local, moving window in time. Taking the time average of (2.21),
treating the configuration variables as constant in the averaging window, we find

(2.24)

(
V
Ω

)
= ΛV.

Just as the velocity components, the external load components also have a unique
local representation. To any arbitrary load components (F, T ) ∈ R6 we associate a
local representation F ∈ R6 via the expression

(2.25) F · V =

(
F
T

)
·
(
V
Ω

)
∀
(
V
Ω

)
= ΛV.

From this we deduce, by the arbitrariness of V,

(2.26) F = ΛT

(
F
T

)
= ΛTQT

(
f
τ

)
.

The first equality follows directly from (2.25), whereas the second follows from (2.11).
Thus the local representation F of an arbitrary load can be written in terms of com-
ponents (F, T ) in the particle frame, or components (f, τ) in the experimental frame.

The local form of the hydrodynamic relations can now be derived. Substituting
(2.26) and (2.24) into (2.13) we obtain

(2.27) V = MFext,

where Fext is the local representation of the load (F ext, T ext) and M ∈ R6×6 is a local
representation of the hydrodynamic matrix M defined by

(2.28) M = Λ−1MΛ−T .

If we partition M into blocks Ma ∈ R3×3 as in (2.14), then from (2.28) and (2.22) we
find

(2.29)

(
M1 M3

M2 M4

)
=

( ∇qψ
−1QM1Q

T∇qψ
−T ∇qψ

−1QM3S
−T

S−1M2Q
T∇qψ

−T S−1M4S
−T

)
.

A related matrix that will arise in later discussions is C = MΛTQT ∈ R6×6. For
future reference, we note that the partitioned form of this matrix is

(2.30)

(
C1 C3

C2 C4

)
=

( ∇qψ
−1QM1Q

T ∇qψ
−1QM3Q

T

S−1M2Q
T S−1M4Q

T

)
.

2.4. Admissible configurations. Throughout our studies, we assume that the
solvent in which one or more particles are immersed occupies a fixed, bounded domain
E ⊂ R3 in Cartesian coordinates in the experimental frame {ei}. Accordingly, we
define the space of admissible configurations (r,Q) for each particle to be E × SO3.
Inherent in this definition is the assumption that particles are always well separated
and are small compared to the size of the domain. We will always assume this to
be the case; a more sophisticated definition which accounts for the finite size of the
particles and steric effects between them would be necessary otherwise.
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We consider an arbitrary, local coordinate chart Φ : E×A → E×SO3 of the form

(2.31) (r,Q) = Φ(q, η) = (ψ(q), φ(η)),

where E and A are subsets of R3. We assume that E and A are open and bounded
with piecewise smooth boundaries, and that Φ is a smooth bijection onto its image.
Moreover, we assume that the image of Φ has full measure in E×SO3. This assumption
is made purely for convenience and will allow us to state all results in terms of a single
chart Φ rather than an atlas of overlapping charts which covers the entirety of E×SO3.

The set E × SO3 can be viewed as a six-dimensional manifold in the Euclidean
space R12. Indeed, E × SO3 is the Cartesian product of the three-dimensional mani-
folds E ⊂ R3 and SO3 ⊂ R3×3 = R9. In terms of the chart Φ, the intrinsic six-volume
of a subset B ⊂ E× SO3 is given by [28, 38]

(2.32) vol(B) =

∫
B

g dV, g =
√
det[∇ΦT∇Φ],

where B ⊂ E×A is the preimage of B under Φ, dV = dVqdVη is the standard volume
element in E×A, and ∇Φ(q, η) ∈ R12×6 denotes the Jacobian matrix of Φ(q, η) viewed
as a map from R6 into R12. From the structure of Φ given in (2.31) we find

(2.33) g = gqgη, gq =
√
det[∇qψT∇qψ], gη =

√
det[∇ηφT∇ηφ],

where ∇qψ(q) ∈ R3×3 and ∇ηφ(η) ∈ R9×3 denote the Jacobian matrices of ψ(q) and
φ(η), with the latter viewed as a map from R3 into R9.

From the assumption that Φ is a smooth bijection onto its image, it follows that
g > 0 in E × A. However, from the assumption that Φ has full measure, it follows
that g = 0 at some points on ∂(E × A) = (∂E × A) ∪ (E × ∂A). Indeed, by intrinsic
properties of the set SO3, we must necessarily have gη = 0 on some portion of ∂A.
Moreover, it may also happen that gq = 0 on some portion of ∂E, as occurs, for
example, when cylindrical or spherical coordinates are used to represent domains in
Cartesian coordinates. Points at which g = 0 will be referred to as singular points of
the chart Φ.

2.5. Diffusion model. We consider a dilute solution in which a solvent and
a large number of identical but arbitrarily shaped solute particles occupy a domain
E. To each solute particle Pa (a = 1, . . . , N) we associate a point (q, η)a ∈ E × A

which describes the position and orientation of the particle at time t ≥ 0. We invoke
the continuum approximation and assume that, at any instant, the points (q, η)a are
continuously distributed with number density ρ : E × A → R with respect to the
intrinsic volume element gdV . Thus the number or mass of particles with positions
and orientations in a subset B ⊂ E×A is given by

(2.34) mass(B) =

∫
B

ρg dV.

We employ the image set B on the left-hand side of (2.34) to emphasize the fact that ρ
represents the density of particles per unit volume of the configuration space E×SO3.
Indeed, when ρ is uniform, we see from (2.34) and (2.32) that the masses of any two
subsets are equal when their intrinsic volumes are equal.

To each solute particle Pa we associate a vector V
a ∈ R6 which describes the

time-averaged velocity of the particle at time t ≥ 0. In the continuum approximation,
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we assume that these velocities are modeled at any instant by a field V : E×A → R6,
where V(q, η) is the time-averaged velocity of the particle whose current coordinates
are (q, η). In a similar manner, the amplitude or variance of the rapidly fluctuating,
zero-mean velocity of each particle at any instant can be modeled by a temperature
field Θ : E × A → R, which we assume to be uniform and constant. Moreover, we
assume that the net external load on each particle at any instant can be modeled by
a field Fext : E×A → R6. In view of (2.3) and (2.10), we have

(2.35) Fext = F0 + Fρ,

where F0 is a net load associated with body and point forces of any type except
osmotic, and Fρ is a net load associated with forces of osmotic type due to gradients
in the particle density. Specifically, in view of (2.26), we assume

(2.36) F0 = ΛTQT

(
f0

τ0

)
, Fρ = −∇μ,

where (f0, τ0) are net load components in the experimental frame and μ = kΘ ln(ρ/ρ∗)
is the chemical potential associated with ρ. Here k is the Boltzmann constant, ρ∗ is
a normalizing constant, and ∇ = (∇q,∇η) is the standard gradient operator with
respect to the coordinates (q, η) as employed earlier.

A basic equation describing the distribution of solute particles in a dilute solution
can now be derived. Indeed, consider a distribution with density field ρ moving with
an arbitrary velocity field V. Assuming that particles can be neither created nor
destroyed, we deduce from (2.34) that the scaled density ρg must satisfy a standard
conservation of mass equation in the Euclidean space E× A, namely, ∂(ρg)/∂t+∇ ·
(ρgV) = 0. Introducing the mass flux field J = ρV ∈ R6, and dividing through by the
Jacobian factor g > 0, which is independent of time, we obtain

(2.37)
∂ρ

∂t
+ g−1∇ · (gJ) = 0.

Substituting (2.36) and (2.35) into the hydrodynamic relation (2.27), we find that the
mass flux J takes the form

(2.38) J = −D∇ρ+ ρCh,

where h ∈ R6, C ∈ R6×6, and D ∈ R6×6 are given by

(2.39) h =

(
f0

τ0

)
, C = MΛTQT , D = kΘM.

Partitioned forms of C and D (or M) are given in (2.30) and (2.29). Eliminating J
between (2.38) and (2.37) yields

(2.40)
∂ρ

∂t
= g−1∇ · (gD∇ρ− gρCh), (q, η) ∈ E×A, t > 0.

Equation (2.40) is a linear, variable-coefficient, convection-diffusion equation which
describes the evolution of the particle density ρ, defined per unit volume of the in-
trinsic configuration space, under arbitrary external loads. It is expected to be valid
only for dilute solutions in which the solute particles are identical, well separated,
and small compared to the size of the domain occupied by the solution. While this
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equation describes the evolution of the density in the local coordinate space E×A and
hence depends on the choice of the coordinate chart Φ, we remark that the induced
evolution on the intrinsic configuration space E × SO3 is independent of this choice.
Indeed, (2.40) can be interpreted as the local representation of a convection-diffusion
equation on E× SO3. This equation seems to have first appeared in work by Brenner
[4, 5], where it was derived by a different approach.

Aside from geometric factors associated with the local coordinate chart and phys-
ical constants, the convection and diffusion matrices C and D appearing in (2.40) are
entirely determined by the shape of a solute particle through the hydrodynamic mo-
bility matrix M , or its local representation M. The diagonal blocks C1,D1 ∈ R3×3

are associated with the translational motion of a particle, whereas C4,D4 ∈ R3×3

are associated with rotational motion. The off-diagonal blocks C2,3,D2,3 ∈ R3×3 are
associated with cross-coupling between translational and rotational motion, whereas
the off-diagonal entries in the diagonal blocks C1,4,D1,4 ∈ R3×3 are associated with
self-coupling. The relation D = kΘM between the diffusion and mobility matrices
can be viewed as a generalization, to a particle of arbitrary shape, of the classic
Stokes–Einstein relation for a particle of spherical or ellipsoidal shape [7, 10, 25].

3. Analysis. Here we outline an initial-boundary value problem for the diffusion
of rigid particles in a viscous solvent, transform it into a dimensionless form convenient
for analysis, and use perturbation techniques to derive leading-order equations for the
particle dynamics at different time scales. We show that the leading-order equations
are characterized by scalar coefficients with simple interpretations and study their
properties.

3.1. Initial-boundary value problem. To state an initial-boundary value
problem for the density field ρ, it is first necessary to consider appropriate bound-
ary conditions for (2.40). To this end, we view this equation as the local repre-
sentation of an equation on E × SO3 and note that, since SO3 has no boundary,
∂(E × SO3) = ∂E × SO3. Thus the only intrinsic boundary conditions are those
pertaining to the physical domain E which contains the solvent and solute particles.
Assuming that the boundary of E is impermeable, we require that the normal com-
ponent of the intrinsic mass flux vanish on ∂E× SO3. In terms of a coordinate chart
on E×A, the representation of this condition is

(3.1) gJ · ν = 0, (q, η) ∈ ∂E×A,

where ν is the outward unit normal on ∂(E×A) = (∂E×A) ∪ (E× ∂A). Notice that
ν = (νq, 0) on ∂E × A and ν = (0, νη) on E × ∂A, where νq and νη are the outward
unit normals on ∂E and ∂A.

Special considerations are required on the boundary component E × ∂A, which
has no intrinsic counterpart and is entirely associated with the coordinate chart Φ.
Without loss of generality, we consider charts based on standard Euler angle parame-
terizations of SO3, for which A is the Cartesian product of open intervals Ii = (ai, bi),
where each coordinate ηi is either regular or singular in the sense that g 	= 0 or g = 0
on ∂Ii. For such charts, the local representation of any function on SO3 is periodic
in the regular coordinates. Because of this periodicity, and the fact that the outward
normals on opposite faces of ∂A are oppositely oriented, we find that an appropriate
boundary condition on the normal component of the mass flux is, for each i,

(3.2) gJ · ν|ηi=bi = −gJ · ν|ηi=ai , (q, η′i) ∈ E× ∂′Ai.
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Here ∂′Ai = Ij × Ik and η′i = (ηj , ηk), where j < k are indices distinct from i. Notice
that (3.2) implies periodicity when g 	= 0 and is trivially satisfied when g = 0 on ∂Ii.

An initial-boundary value problem for the diffusion of rigid particles of arbitrary
shape in a viscous solvent can now be stated. Combining (2.38)–(3.2) we find that,
for a given initial condition ρ0, the time-dependent particle density field ρ : E ×A×
[0,∞) → R must satisfy

(3.3)

∂

∂t
ρ = g−1∇ · (gD∇ρ− gρCh), (q, η) ∈ E×A, t > 0,

g(D∇ρ− ρCh) · ν = 0, (q, η) ∈ ∂E×A, t ≥ 0,∑
ηi∈∂Ii

g(D∇ρ− ρCh) · ν = 0, (q, η′i) ∈ E× ∂′Ai, t ≥ 0,

ρ|t=0 = ρ0, (q, η) ∈ E×A, t = 0.

3.2. Nondimensionalization. Here we introduce various scales relevant to (3.3)
and transform it into a dimensionless form convenient for analysis. We first introduce
the projection matrices Pq, Pη ∈ R6×6 defined in partitioned form by

(3.4) Pq =

(
1 0
0 0

)
, Pη =

(
0 0
0 1

)
,

where 0, 1 ∈ R3×3 denote the zero and identity matrices. For any scalars a, b we notice
that the matrix (aPq + bPη) is symmetric and commutes with any block-diagonal
matrix, and moreover, if a, b 	= 0, then it is invertible with inverse (a−1Pq + b−1Pη).
Furthermore, for any scalars a, b, c, d we have (aPq+bPη)(cPq+dPη) = (acPq+bdPη).

To define dimensionless quantities associated with the space of admissible config-
urations, we introduce a characteristic length scale L for the spatial domain E and
define dimensionless variables by

(3.5) r∗ = L−1r, Q∗ = Q, q∗ = q, η∗ = η,

where, without loss of generality, we assume that the local coordinates are dimension-
less. The above definitions imply a dimensionless coordinate chart Φ∗ = (ψ∗, φ∗) :
E∗ × A∗ → E∗ × SO∗

3, where ψ
∗ = L−1ψ and φ∗ = φ. From (2.33) we deduce the

dimensionless Jacobian factors g∗ = L−3g, g∗q∗ = L−3gq, and g∗η∗ = gη, and from
(2.22) and (2.20) we deduce the dimensionless connection matrix

(3.6) Λ∗ = (L−1Pq + Pη)Λ = Λ(L−1Pq + Pη),

where the second equality follows from the fact that Λ is block diagonal. Moreover,
from (2.12) we deduce Q∗ = Q.

To define dimensionless quantities associated with an individual solute particle,
we introduce a characteristic length scale � for the particle and force scale α for the
external loads. We then define dimensionless mobility matrices by

(3.7)
M∗

1 = μ�M1, M∗
2 = μ�2M2,

M∗
3 = μ�2M3, M∗

4 = μ�3M4,

where μ is the absolute viscosity of the solvent, and dimensionless external loads by

(3.8) f0∗ = α−1f0, τ0∗ = α−1�−1τ0.
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The scaling of the mobility matrices in (3.7) and the torque in (3.8) is consistent with
a standard Stokesian hydrodynamic model and the relation between force and torque
for a particle of characteristic size �. Expressing these component relations in matrix
form, we get

(3.9)
M∗ = μ�(Pq + �Pη)M(Pq + �Pη),

h∗ = α−1(Pq + �−1Pη)h.

A dimensionless form of the initial-boundary value problem can now be stated.
Let tc be an arbitrary time scale, let ρc be an arbitrary density scale, and introduce
the dimensionless variables t∗ = t−1

c t and ρ∗ = ρ−1
c ρ. Then a dimensionless form of

(3.3) is given by (using flux notation for convenience)

(3.10)

∂

∂t∗
ρ∗ + (g∗)−1∇∗ · (g∗J∗) = 0, (q∗, η∗) ∈ E∗ ×A∗, t∗ > 0,

g∗J∗ · ν∗ = 0, (q∗, η∗) ∈ ∂E∗ ×A∗, t∗ ≥ 0,∑
η∗
i ∈∂I∗i

g∗J∗ · ν∗ = 0, (q∗, η∗i
′) ∈ E∗ × ∂′A∗

i , t∗ ≥ 0,

ρ∗|t∗=0 = ρ∗0, (q∗, η∗) ∈ E∗ ×A∗, t∗ = 0.

Here ∇∗ = (∇q∗ ,∇η∗) is the gradient with respect to the coordinates (q∗, η∗), ν∗ is
the outward unit normal on the boundary of E∗ ×A∗, J∗ = −D∗∇∗ρ∗ + ρ∗C∗h∗ is a
dimensionless mass flux, C∗,D∗ are dimensionless convection and diffusion matrices
defined by

(3.11)
C∗ = (aPq + bPη)M

∗Λ∗TQ∗T ,
D∗ = (cPq + dPη)M

∗(cPq + dPη),

M∗ = (Λ∗)−1M∗(Λ∗)−T is a dimensionless mobility matrix, and a, b, c, d are dimen-
sionless parameters defined by

(3.12) a =
αtc
μ�L

, b =
αtc
μ�2

, c =

√
kΘtc
μ�L2

, d =

√
kΘtc
μ�3

.

3.3. Scaling limits. Here we use perturbation techniques [22, 41] on (3.10)
to derive leading-order equations for the particle dynamics at different time scales.
We restrict our attention to the dimensionless formulation outlined above and omit
the superscript stars for brevity. We consider three basic scales corresponding to
translational diffusion, translational sedimentation, and rotational diffusion. In the
latter case, we consider the rotational diffusion of not only the particle-fixed frame,
but also of a single, arbitrary particle-fixed vector.

Translational diffusion scale. We consider the dynamics of particles on the
time scale tc,t = μ�L2/kΘ. This scale is based on the classic theory of diffusion of
spherical particles [7, 10, 37]. Up to a multiplicative constant, it is the time required
for a particle of size � to translate a distance L by diffusion (Brownian motion) in a
solvent of viscosity μ at temperature Θ. Substituting this time scale into (3.12) and
(3.11), we get

(3.13)

C = δ

(
Pq +

1

ε
Pη

)
MΛTQT ,

D =

(
Pq +

1

ε
Pη

)
M

(
Pq +

1

ε
Pη

)
,
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where ε = �/L is the ratio of particle size to diffusion distance and δ = αL/kΘ is the
ratio of external potential energy to thermal energy of a particle.

Assuming ε � 1, we can derive a leading-order approximation of (3.10). Indeed,
in view of (3.13), we find that the system is singularly perturbed. Away from an
initial layer in time, the leading-order equations are

(3.14)

∇η · (gηD4∇ηρ) = 0, (q, η) ∈ E×A, t > 0,∑
ηi∈∂Ii

gηD4∇ηρ · νη = 0, (q, η′i) ∈ E× ∂′Ai, t > 0.

Multiplying the first relation in (3.14) by ρ, integrating over A, and then using the
second relation together with the positivity of gη and D4, we deduce that ∇ηρ = 0 in
E × A. This implies that ρ is independent of the coordinates η, or equivalently that
ρ = Pρ, where P is a projection operator defined for any function f : E×A → R by

(3.15) Pf =

∫
A
f dVη∫

A
dVη

.

An evolution equation for the projection Pρ, or any multiple of it, away from an
initial layer in time can also be deduced. Specifically, multiplying the first relation in
(3.10) by gη, applying the operator P to this relation and the second, and then using
the third relation and the fact that ρ is independent of η, or equivalently that ρ = Pρ,
we obtain

(3.16)

∂

∂t
ρt = g−1

q ∇q · (gqD̂1∇qρt − gqρtγ̂), q ∈ E, t > 0,

gq(D̂1∇qρt − ρtγ̂) · νq = 0, q ∈ ∂E, t > 0,

where ρt is the particle density per unit volume of the spatial domain E defined by

(3.17) ρt =

∫
A

ρgη dVη,

and D̂1 ∈ R3×3 and γ̂ ∈ R3 are defined by

(3.18) D̂1 =
P(gηD1)

Pgη
, γ̂ =

P(gηC1f
0 + gηC3τ

0)

Pgη
.

From the definition of the projection P and the Jacobian factor gη, we deduce that
D̂1 and γ̂ can be interpreted as the averages of D1 and C1f

0 + C3τ
0 over the space

SO3 of particle orientations. Assuming the external load components (f0, τ0) are
independent of the particle orientation coordinates η, we can evaluate both averages
in (3.18) explicitly. Working in any local coordinates for SO3, for example, the Euler
angle chart introduced later, we find from (3.13) that

(3.19) D̂1 = Dt ∇qψ
−1∇qψ

−T , γ̂ = δ∇qψ
−1(Dtf

0 +Dtrτ
0),

where Dt > 0 and Dtr are constant scalar coefficients given by

(3.20) Dt =
1

3
tr(M1), Dtr =

1

3
tr(M3).
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Notice that Dt is the orientational average of the matrix M1 associated with pure
translational motion, and Dtr is the orientational average of the matrixM3 associated
with cross-coupling between translational and rotational motion.

The system defined by (3.16)–(3.18) and (3.19) takes a particularly simple form
when the local coordinates q are Cartesian and there are no external loads. In this
case, E is identified with E, ∇qψ is the identity, gq is unity, and γ̂ is zero, and we
obtain

(3.21)

∂

∂t
ρt = DtΔqρt, q ∈ E, t > 0,

Dt∇qρt · νq = 0, q ∈ ∂E, t > 0.

This is an isotropic diffusion equation for the ordinary particle density ρt. It is a
leading-order approximation of (3.10) on the translational diffusion time scale tc,t
under the assumption that ε is small. It shows that, regardless of the details of the
particle geometry and the cross- and self-coupling effects reflected in the hydrody-
namic mobility matrix M , the translational motion of particles is decoupled from
rotational motion at this time scale and is characterized to leading order by the scalar
translational diffusion coefficient Dt. Moreover, from (3.16)–(3.20) we deduce that
the influence of an orientation-independent external load f0 is also characterized by
the translational coefficient Dt, whereas the influence of an orientation-independent
external torque τ0 is characterized by the coupling coefficient Dtr.

Translational sedimentation scale. We consider the dynamics of particles on
the time scale tc,s = μ�L/α. This scale is based on the classic theory of sedimentation
of spherical particles [7, 14, 37]. Up to a multiplicative constant, it is the time required
for a particle of size � to translate a distance L by sedimentation under a force of
magnitude α in a solvent of viscosity μ. Substituting this time scale into (3.12) and
(3.11), we get

(3.22)

C =

(
Pq +

1

ε
Pη

)
MΛTQT ,

D = λ

(
Pq +

1

ε
Pη

)
M

(
Pq +

1

ε
Pη

)
,

where ε = �/L is the ratio of particle size to sedimentation distance and λ = kΘ/αL
is the ratio of thermal energy to external potential energy of a particle.

Assuming ε � 1, the system in (3.10) is singularly perturbed with the same
structure as before, and we again arrive at the leading-order approximation given in
(3.16)–(3.18). Moreover, assuming that the external loads (f0, τ0) are due solely to
centrifugal and uniform body force effects, so that f0 is independent of η, and τ0

depends on η only through the particle inertia matrix in the centrifugal term, we can
evaluate both averages in (3.18) explicitly. Indeed, the contributions of the external
torque vanish, and we obtain

(3.23) D̂1 = λDt ∇qψ
−1∇qψ

−T , γ̂ = Dt∇qψ
−1f0,

where Dt > 0 is the translational diffusion coefficient defined in (3.20).

The system defined by (3.16)–(3.18) and (3.23) takes a particularly simple form
when the local coordinates q are Cartesian. As before, E is identified with E, ∇qψ is
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the identity, and gq is unity, and we obtain

(3.24)

∂

∂t
ρt = ∇q · (λDt∇qρt −Dtρtf

0), q ∈ E, t > 0,

(λDt∇qρt −Dtρtf
0) · νq = 0, q ∈ ∂E, t > 0.

This equation can be recognized as the classic Lamm equation [7, 14, 37] written in
Cartesian coordinates with dimensionless sedimentation coefficient equal to Dt. This
equation is a leading-order approximation of (3.10) on the translational sedimenta-
tion time scale tc,s under the assumption that ε is small. As before, it shows that,
regardless of the details of the particle geometry and the cross- and self-coupling ef-
fects reflected in the hydrodynamic mobility matrix M , the translational motion of
particles is decoupled from rotational motion at this time scale and is characterized
to leading order by the scalar translational diffusion coefficient Dt.

Rotational diffusion scale. We consider the dynamics of particles on the time
scale tc,r = μ�3/kΘ. This scale is based on the classic theory of rotational diffusion
of ellipsoidal particles [7, 30, 31, 37]. Up to a multiplicative constant, it is the time
required for a particle of size � to rotate through a unit radian angle by diffusion in a
solvent of viscosity μ at temperature Θ. Substituting this time scale into (3.12) and
(3.11), we get

(3.25)
C = δε(εPq + Pη)MΛTQT ,

D = (εPq + Pη)M(εPq + Pη),

where ε = �/L and δ = αL/kΘ are parameters as defined before.

Assuming ε � 1, we can again derive a leading-order approximation of (3.10),
which in contrast to the previous two cases is now regularly perturbed. Indeed,
substituting (3.25) into (3.10), retaining only the leading-order terms, multiplying by
gq, and then integrating over E, we obtain

(3.26)

∂

∂t
ρr = g−1

η ∇η · (gηD4∇ηρr), η ∈ A, t > 0,∑
ηi∈∂Ii

gηD4∇ηρr · νη = 0, η′i ∈ ∂′Ai, t ≥ 0,

ρr|t=0 = ρr0, η ∈ A, t = 0,

where ρr is the particle density per unit volume of SO3 defined by

(3.27) ρr =

∫
E

ρgq dVq.

This is a local representation of a diffusion equation on the manifold SO3. It is a
leading-order approximation of (3.10) on the rotational diffusion time scale tc,r under
the assumption that ε is small. It shows that, regardless of the details of the particle
geometry and the cross-coupling effects reflected in the hydrodynamic mobility matrix
M , the rotational motion of particles is decoupled from translational motion at this
time scale and is characterized to leading order by the rotational diffusion block
D4 ∈ R3×3. Notice that, whereas cross-coupling effects vanish, self-coupling effects
may still be present as reflected in the off-diagonal entries of D4.
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Rotational diffusion of a single vector. In some applications, the motion
of a single unit vector n fixed in each particle, and not the three orthonormal frame
vectors {di}, is of primary interest. Here we study the dynamics of a single unit vector
on the rotational time scale introduced above. For simplicity, we initially assume that
the given unit vector n of interest corresponds to the particle frame vector d3. This
can always be achieved by a suitable rotation of the particle frame. Let M4 ∈ R3×3

be the rotational block of the hydrodynamic mobility matrix in the particle frame,
and define constant scalar coefficients D⊥

r > 0 and D
‖
r > 0 associated with rotation

transverse and parallel to d3 by

(3.28) D⊥
r =

M11
4 +M22

4

2
, D‖

r =M33
4 .

From (3.25) we have D4 = M4 = S−1M4S
−T , and by definition of D⊥

r and D
‖
r we

can write

(3.29) D4 = S−1(D⊥
r M

⊥
4 +D‖

rM
‖
4 )S

−T ,

where M⊥
4 ∈ R3×3 and M

‖
4 ∈ R3×3 are scaled matrices defined by

(3.30) M⊥
4 =

1

D⊥
r

⎛⎜⎝ M11
4 M12

4 M13
4

M21
4 M22

4 M23
4

M31
4 M32

4 0

⎞⎟⎠ , M
‖
4 =

⎛⎝ 0 0 0
0 0 0
0 0 1

⎞⎠ .

We consider a system of Euler angle coordinates η = (η1, η2, η3) on SO3 in which
η2 and η3 are the latitudinal and longitudinal coordinates of d3 on the unit sphere,
and η1 is a twist coordinate which locates d1 and d2 in the tangent plane to the
sphere at d3 as illustrated in Figure 3.1. Specifically, we consider the Euler angle
chart φ : A → SO3 defined by [17, 23]

φ =

⎛⎝ c1c3 − c2s1s3 −c3s1 − c1c2s3 s2s3
c2c3s1 + c1s3 c1c2c3 − s1s3 −c3s2

s1s2 c1s2 c2

⎞⎠ ,(3.31)

where ci = cos(ηi), si = sin(ηi), and A = (0, 2π) × (0, π) × (0, 2π). For this chart,
the associated Jacobian factor is gη = 2

√
2 sin η2 and the associated structure matrix

S ∈ R3×3 and its inverse are

(3.32) S =

⎛⎝ 0 c1 s1s2
0 −s1 c1s2
1 0 c2

⎞⎠ , S−1 =

⎛⎝ − c2s1
s2

− c1c2
s2

1

c1 −s1 0
s1
s2

c1
s2

0

⎞⎠ .

Assuming M⊥
4 is of order unity and that D

‖
r 
 D⊥

r , we can derive a leading-
order approximation of (3.26). Indeed, in view of (3.29), we find that the system is
singularly perturbed. Away from an initial layer in time, the leading-order equations
are

(3.33)

∂

∂η1

(
D‖

r

∂

∂η1
ρr

)
= 0, η ∈ A, t > 0,

D‖
r

∂

∂η1
ρr|η1=2π

η1=0 = 0, η′1 ∈ ∂′A1, t > 0.
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Fig. 3.1. Illustration of Euler angle coordinates for the orientation of the particle frame {di}
relative to the experimental frame {ei}. η2 and η3 are the coordinates of d3 on the unit sphere,
and η1 is a twist coordinate which locates d1 and d2 (not shown) in the tangent plane to the sphere
at d3.

Multiplying the first relation in (3.33) by ρr, integrating over η1, and then using the
second relation together with the positivity of D

‖
r , we deduce that ∂ρr/∂η1 = 0 in A.

This implies that ρr is independent of the coordinate η1, or equivalently that ρr = Aρr,
where A is a projection operator defined for any function f : A → R by

(3.34) Af =
1

2π

∫ 2π

0

f dη1.

Just as in the translational case, an evolution equation for the projected density
away from an initial layer in time can be deduced. Specifically, applying the operator
A to the first relation and the last two components of the second relation in (3.26),
and using the fact that ρr is independent of η1, or equivalently that ρr = Aρr, we
obtain

(3.35)

∂

∂t
ρd3 = g−1

σ ∇σ · (gσD̂4∇σρd3), σ ∈ S, t > 0,∑
σi∈∂Ki

gσD̂4∇σρd3 · νσ = 0, σ′
i ∈ ∂′Si, t > 0,

where σ = (η2, η3) are coordinates on the unit sphere, K1 = (0, π) is the domain of
σ1, K2 = (0, 2π) is the domain of σ2, and S = K1 ×K2, ∂

′Si = Kj , σ
′
i = σj (i = 1, 2;

j 	= i) is notation analogous to before. In the above equation, gσ = sin η2 is the
associated Jacobian factor, νσ is the outward unit normal on ∂S, ρd3 is the particle
density per unit area of the unit sphere defined by

(3.36) ρd3 =

∫ 2π

0

ρr dη1,

and D̂4 ∈ R2×2 is the average over the twist coordinate η1 of the projection of D4

onto the two-dimensional coordinate space corresponding to η2 and η3, namely,

(3.37) D̂4 = A(PD4P
T ), P =

(
0 1 0
0 0 1

)
,

where P ∈ R2×3 is the coordinate projection matrix. The average in the above equa-
tion can be computed explicitly. Indeed, if D⊥

r is the transverse rotational diffusion
coefficient defined in (3.28), then

(3.38) D̂4 = D⊥
r

(
1 0
0 1/ sin2 η2

)
.



ON THE HYDRODYNAMIC DIFFUSION OF RIGID PARTICLES 2645

The system defined by (3.35)–(3.38) can be identified as a local representation of an
isotropic diffusion equation on the unit sphere. It is a leading-order approximation of
(3.26) under the assumption that the hydrodynamic ratio D⊥

r /D
‖
r is small. It shows

that, regardless of the self-coupling effects reflected in the rotational diffusion block
D4, the motion of the single unit vector d3 is described by an isotropic equation and
is characterized to leading order by the scalar coefficient D⊥

r . We remark that when
ρd3 can be approximated as being uniform in the angle η3 (see Figure 3.1), the system
defined by (3.35)–(3.38) can be further reduced to a one-dimensional, axisymmetric
equation on the sphere.

The above results also apply when the unit vector of interest is not d3, but rather
a given unit vector n. Indeed, if we let η2 and η3 be the latitudinal and longitudinal
coordinates of n relative to the experimental frame, then the motion of n is described
to leading order by an isotropic diffusion equation of the same form as above with
coefficient D⊥

r,n , provided the ratio D⊥
r,n/D

‖
r,n is small, where

(3.39) D⊥
r,n =

1

2
tr(PnM4Pn), D‖

r,n = n ·M4n.

Here n ∈ R3 are components in the particle frame and Pn = I − nnT ∈ R3×3 is
the projection onto the two-dimensional subspace orthogonal to n. Notice that the
relations in (3.39) reduce to those in (3.28) when n = (0, 0, 1), equivalently n = d3,
and that D⊥

r,n is the orientational average of the projection of M4 orthogonal to n,
whereas D

‖
r,n is the projection of M4 parallel to n. Intuitively, we expect the ratio

D⊥
r,n/D

‖
r,n to be small when particles are compact in directions orthogonal to n, and

relatively elongated in the direction of n. Mathematically, by properties of symmetric
positive-definite matrices, the ratio D⊥

r,n/D
‖
r,n is minimized when n corresponds to an

eigenvector of M4 with the largest eigenvalue.

3.4. Properties of diffusion coefficients. Here we discuss various properties
of the dimensionless scalar coefficients Dt and D⊥

r,n for a standard Stokesian hydro-
dynamic model. We discuss their dependence on the choice of particle reference point
and particle frame, and in the case of D⊥

r,n the dependence on the observation vector
n.

Translational coefficient. Let (r′,d′
i) and (r,di) be two arbitrary points and

frames fixed in a particle, and let s = �−1ξ ∈ R3 and Ξ ∈ SO3 be the dimensionless
components of the relative displacement and rotation as defined in section 2.2. Then
from (2.17) we deduce that the dimensionless matrices M ′

1 and M1 are related as

(3.40) M ′
1 = ΞT

(
M1 +M3[s×] + [s×]TM2 + [s×]TM4[s×]

)
Ξ.

Taking the trace of (3.40) and using the facts that the trace is invariant under rotations
and M2 = MT

3 , together with the definitions of [s×] and vec[M3 − MT
3 ] and the

epsilon-delta identity outlined in section 2.2, we deduce

(3.41) D′
t = Dt − 2

3
vec[M3 −MT

3 ] · s+ 1

3
s · [tr(M4)I −M4]s.

The main properties of the translational diffusion coefficient can now be stated.
Specifically, from (3.41) we see that the coefficient is independent of the choice of
particle frame, but is dependent on the choice of particle reference point. Indeed,
because the matrix [tr(M4)I − M4] is symmetric and positive-definite, there is a
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unique choice of reference point at which the coefficient achieves a minimum value. If
the mobility matrix M is known at some given reference point r, then by minimizing
the expression in (3.41) over s, we find that the minimum value is achieved at the
unique point r′ defined by

(3.42) s = [tr(M4)I −M4]
−1 vec[M3 −MT

3 ].

This point is referred to as the center of diffusion of the particle [6, 21]. By combining
(3.42) and (3.41) we find that the minimal value is given by

(3.43) D′
t = Dt − 1

3
vec[M3 −MT

3 ] · [tr(M4)I −M4]
−1 vec[M3 −MT

3 ].

From (3.42) and (3.43) we observe that the center of diffusion can also be described
as the unique point at which the cross-coupling block M3 and consequently M2 is
symmetric. For symmetric particles like spheres, ellipsoids, and straight cylinders,
the center of diffusion is coincident with the center of volume. However, for particles
of arbitrary shape, these two points are generally distinct.

Transverse rotational coefficient. As before, let (r′,d′
i) and (r,di) be two

arbitrary points and frames fixed in a particle, and let s = �−1ξ and Ξ be the dimen-
sionless components of the relative displacement and rotation. Then from (2.17) we
deduce that the dimensionless matrices M ′

4 and M4 are related as

(3.44) M ′
4 = ΞTM4Ξ.

Moreover, let n be a given unit vector with components n′ and n in the frames {d′
i}

and {di} so that n′ = ΞTn. Then the associated projection matrices Pn′ and Pn

satisfy

(3.45) Pn′ = ΞTPnΞ,

and combining (3.44) and (3.45), we find

(3.46) Pn′M ′
4Pn′ = ΞTPnM4PnΞ.

The main properties of the transverse rotational diffusion coefficient can now be
stated. Specifically, taking the trace of (3.46) and noting that the trace is invariant
under rotations, we obtain

(3.47) D
′⊥
r,n′ = D⊥

r,n .

Thus the coefficient is independent of both the particle frame and particle reference
point and depends only on the unit vector n. Moreover, from the definition of D⊥

r,n

in (3.39), we obtain the more explicit expression

(3.48) D⊥
r,n =

1

2
[tr(M4)− n ·M4n].

This shows that the coefficient achieves a minimum value when n corresponds to an
eigenvector ofM4 with the largest eigenvalue. WhenM4 has distinct eigenvalues, there
is precisely one such independent eigenvector, and whenM4 has repeated eigenvalues,
there is one or more such independent eigenvectors. In direct analogy to the center
of diffusion which minimizes Dt, any unit vector n which minimizes D⊥

r,n may be
referred to as an axis of diffusion. For symmetric particles like ellipsoids and straight
cylinders, the longest symmetry axis would be the axis of diffusion, and the longer this
axis is compared to the others, the smaller the ratio D⊥

r,n/D
‖
r,n will be. For particles

of elongated but arbitrary shape, we expect the direction of elongation to roughly
correspond to the axis of diffusion.
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4. Discussion. Here we use our results to examine various classic hydrodynamic
methods for probing the structure of short, stiff DNA molecules up to about a persis-
tence length.

4.1. Translational methods. Classic experimental methods based on transla-
tional motion include velocity sedimentation [14, 32, 35] and dynamic light scattering
[3, 34]. The interpretation of experimental data obtained from these methods relies on
the simplifying assumptions that translational and rotational motion at the relevant
time scale can be treated as independent, and that the motion of a reference point in
a particle is described by an isotropic diffusion equation with a scalar translational
diffusion coefficient. Our results show that the simplifying assumptions are satisfied
in a leading-order approximation with a diffusion coefficient Dt as defined in (3.20),
provided the parameter ε = �/L is small. Here � is a characteristic length scale for
a particle and L is a characteristic length scale for the spatial domain under obser-
vation in the experiment. We remark that if the point whose motion is measured is
not known with certainty, then it is convenient to use the center of diffusion as the
reference point. This yields the smallest possible value of Dt for a given particle and
guarantees that the theoretical diffusion coefficient is not overstated.

The validity of the simplifying assumptions for classic translational methods for
DNA can now be examined. A characteristic length scale for a DNA molecule con-
taining up to about 150 basepairs is the axial length, which is of the order � = 10−8m
based on a rise of 3.4Å per basepair [36]. A characteristic length scale for the spatial
domain in velocity sedimentation is the size of the observed volume, which is of the
order L = 10−3m [14]. A characteristic length scale for the spatial domain in dynamic
light scattering is the size of the illuminated volume, which is of the order L = 10−4m
[3, 34]. Thus for typical velocity sedimentation and dynamic light scattering exper-
iments we estimate ε = 10−5 and ε = 10−4. Based on these estimates, for DNA
molecules up to about a persistence length, we expect the simplifying assumptions to
hold with high accuracy for both methods. Indeed, the analysis of experimental trans-
lational data in previous investigations of DNA [19, 39] and also proteins [2, 6, 16]
supports the validity of the traditional diffusion model.

4.2. Rotational methods. Classic experimental methods based on rotational
motion include electric dichroism and birefringence [13] and fluorescence polarization
[40]. The interpretation of experimental data obtained from these methods relies on
the simplifying assumptions that translational and rotational motion at the relevant
time scale can be treated as independent, and that the motion of a distinguished axis
or unit vector n (a dipole or polarization axis) is described by an isotropic diffusion
equation on the unit sphere with a scalar transverse rotational diffusion coefficient.
Our results show that the simplifying assumptions are satisfied in a leading-order
approximation with a diffusion coefficient D⊥

r,n defined in (3.39), provided the param-
eters ε = �/L and ζn = D⊥

r,n/D
‖
r,n are small. Here � and L have the same meaning as

before and D
‖
r,n is the parallel rotational diffusion coefficient also defined in (3.39). If

the axis whose motion is measured is not known with certainty, then it is convenient
to use an axis of diffusion as the distinguished axis. This yields the smallest pos-
sible value of D⊥

r,n for a given particle and guarantees that the theoretical diffusion
coefficient is not overstated.

The validity of the simplifying assumptions for classic rotational methods for DNA
can now be examined. As before, a characteristic length scale for a DNA molecule
containing up to about 150 basepairs is � = 10−8m. A characteristic length scale for
the spatial domain in a typical rotational experiment is the size of the illuminated
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volume, which is of the order L = 10−3m [13]. Thus we have the estimate ε = 10−5,
and the parameter ε is small regardless of the detailed shape of a molecule. In contrast,
the hydrodynamic ratio ζn depends on the detailed shape and on the unit vector n.
To explore the magnitude of this parameter, we employed a numerical procedure
described in detail elsewhere [18, 19]. Specifically, we used a sequence-dependent
curved tube model of DNA based on x-ray crystallography and an accurate boundary
element technique to compute ζn = D⊥

r,n/D
‖
r,n for random DNA sequences of different

length: the coefficients D⊥
r,n and D

‖
r,n were determined by the mobility matrix M4

via (3.39), the matrix M4 for a given sequence was determined by the Stokes flow
equations as described in [19], and the Stokes equations were solved numerically using
the boundary element technique described in [18]. For each sequence, we chose the
unit vector n to be an axis of diffusion so that the value obtained for the ratio ζn was
the smallest possible for that sequence.

Fig. 4.1. Curved tube models of three different 120-basepair sequences. The models shown have
a tube radius of 13Å. The gray colors represent the sequence of bases along one strand (T = dark,
A = medium dark, C = medium light, G = light), and the dashed curve on the surface illustrates
the helical twist.

Figure 4.1 illustrates the geometric model for some representative DNA sequences.
The hydrated surface is modeled as a circular tube of uniform radius with ends capped
by hemispheres. The axis of the tube is a space curve whose length and curvature are
determined locally using a rigid basepair model of double-helical DNA in which the
relative displacement and orientation between adjacent basepairs (dimer step) is de-
scribed by a set of six parameters depending on the dimer composition [9, 11, 29]. The
rigid surface is expected to provide a reasonable approximation for DNA fragments
with length from about 20 to 150 basepairs. At longer lengths, we expect a flexible
surface to be more appropriate, and at shorter lengths, we expect an atomistic-type
surface which captures local fine-scale features to be more appropriate. For purposes
of comparison, we also consider a classic straight tube model with length determined
by the average separation distance or rise per basepair, which is about 3.4Å [36]. The
tube radius in both the curved and straight models is a prescribed constant, with an
estimated value in the range 10–13Å [19, 36, 39]. In our computations of ζn, we con-
sidered random DNA sequences of length 15, 20, 25, . . . , 120 basepairs, and for each
length we generated a sample set of 50 sequences that were approximately uniformly
distributed in radius of gyration.

Figure 4.2 shows computed values of the hydrodynamic ratio ζn versus length for
both the curved and straight tube models. We plot the inverse ratio 1/ζn rather than
ζn since it enhances the sensitivity and makes the results more easily visible. The data
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Fig. 4.2. Inverse hydrodynamic ratio 1/ζn versus length in basepairs. The open circles denote
results for random DNA sequences of different length computed with the curved tube model with
radius 10Å. The solid curve denotes results obtained from the straight tube model with the same
radius.

in the figure show that ζn is only moderately small for sequences corresponding to the
upper envelope of the data, and is rather close to unity for sequences corresponding
to the lower envelope. The solid curve near the upper envelope corresponds to results
for the straight tube model. While the solid curve should presumably provide a
strict upper bound on the data, small errors are visible due to small differences in
the axial length of the curved and straight models. The local maximum visible in
the lower envelope can be understood in terms of aspect ratio and axial curvature
effects. Intuitively, the tubular geometry for sequences along this envelope is compact
at short lengths, curved at long lengths, and elongated at intermediate lengths. The
local maximum arises because 1/ζn increases (ζn decreases) with elongation. The
results shown correspond to a tube radius of 10Å. For larger values of the radius, we
obtained similar results, but with lower values of 1/ζn (higher values of ζn) for all but
the shortest sequences.

The data in Figure 4.2 suggest that, for some sequences, the rotational motion
measured by classic methods may not be accurately described by the traditional dif-
fusion model. Indeed, the data show that the parameter ζn is highly variable and
can be close to order unity depending on the sequence. We remark that 10Å is an
effective lower bound for the radius of DNA based on x-ray diffraction data [36], and
that a more realistic radius for DNA in solution is closer to 13Å [19, 39]. For this
radius, the values of the parameter ζn would be larger, which would only strengthen
our doubts. Indeed, discrepancies observed in the analysis of experimental rotational
data in previous work [19] might be explained by the limited validity of the tradi-
tional model. We surmise that the accurate analysis of rotational data may require
a diffusion model which accounts for self-coupling and other possible effects at the
rotational time scale, which is of the order tc,r = 10−5s for a DNA molecule of about
one persistence length. A different hydrodynamic model and different interpretation
of the hydrated surface may be required at this scale than at the much slower scales
associated with translational data, which for velocity sedimentation is of the order
tc,s = 102s.
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