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Abstract. Many different physical systems, e.g. super-coiled DNA molecules, have been
successfully modelled as elastic curves, ribbons or rods. We will describe all such systems
asframed curvesand will consider problems in which a three dimensional framed curve has
an associated energy that is to be minimized subject to the constraint of there being no self-
intersection. For closed curves the knot type may therefore be specified a priori. Depending
on the precise form of the energy and imposed boundary conditions, local minima of both
open and closed framed curves often appear to involve regions of self-contact, thatis, regions
in which points that are distant along the curve are close in space. While this phenomenon
of self-contact is familiar through every day experience with string, rope and wire, the
idea is surprisingly difficult to define in a way that is simultaneously physically reasonable,
mathematically precise, and analytically tractable. Here we use the notion of global radius
of curvature of a space curve in a new formulation of the self-contact constraint, and exploit
our formulation to derive existence results for minimizers, in the presence of self-contact,
of a range of elastic energies that define various framed curve models. As a special case we
establish the existence wfeal shape®f knots.

Mathematics Subject Classification (200@)9J99, 53A04, 57M25, 74B20, 92C40

1. Introduction

The basic question we address is the existence of curves that minimize one of a
variety of prescribed elastic energies, all subject to the topological constraint that
some tube surrounding the curve does not intersect itself. Elastic curves subject to
this type of constraint provide a model for physical objects that exhibit self-contact,
such asthoseillustrated in Fig. 1. Figure lais animage of a bacterium which appears
to exhibit extended regions of self-contact between nearly helical segments and
circular arcs. Figure 1b is an electron-micrograph of a DNA fragment which, after
drying onto a planar substrate, exhibits a small overhand knot and regions of both
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Fig. 1.Images of four different physical systems exhibiting the phenomenon of self-contact
of a tube-like object:d) an image of the bacteria B. subtilis (courtesy of M.J. Tilby [28]), (

an electron-micrograph of a DNA fragment (courtesy of A. Stasiak [2@))a photograph

of a knotted metal wire loop (actually a ‘Jumping Knot' of J. Langer, with the apple included
for scale and enhanced three-dimensionality) a numerically computeitieal shape of a
trefoil knot (image generated by smoothing data of [16]).

point and extended self-contact. Figure 1c is a photograph of a knotted metal wire
loop which apparently exhibits three regions of line contact, and Fig. 1d illustrates

a numerically computeitleal shapeof a knotted closed loop which exhibits self-
contactalong its entire length (see Section 5 for further explanation of this problem).
Perhaps the most familiar example of all is the tightly coiled, helical cord used on
many telephones. The objective of this article is to develop a mathematically precise
model of the phenomenon of self-contact of such tubular objects, which we describe
as framed curves, and to use this characterization to demonstrate the existence of
minimizers, in appropriate function spaces, for various elastic energies, all subject
to our self-contact constraint.

For our purposes, the dominant feature in all four of the examples depicted in
Fig. 1is the phenomenon of self-contact of a physical object that has the geometrical
properties of a tube. When such a tube is described by its centreline curve, points of
self-contact on the tubular surface correspond to pairs of points along the centreline
that are close in space, but not necessarily close in arclength. The condition that the
tube not pass through itself, or self-intersect, is transferred to the centreline curve;
in particular, the centreline is kept suitably far from self-intersection.

There are various ways to prevent a curve from self-intersecting. One intuitive
mechanical approach is to introduce explicit repulsive forces between pairs of points
along the curve; for example, a repulsive force which is inversely proportional to
some power of the pairwise Euclidean distance. Such forces certainly discourage
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self-intersection, and can even be made to prevent it, but they typically need to
be regularized in some way to account for points immediately adjacent in arc-
length. The necessity for this regularization can lead to non-trivial mathematical
and computational difficulties (see for example [10], [22], [31]). Natural choices
for repulsive forces may be available depending on the detailed physics of the
system, for example electrically charged polymers such as DNA, and the study of
discretized curves subject to these types of forces has been the subject of several
investigations (see for example [24], [32]).

An alternative, purely geometrical, way to prohibit self-intersections of a curve
can also be considered. Supposing that the curve is the centreline of a solid tube
of uniform diameter, the physical volume occupied by the tube material keeps the
curve from self-intersecting at a global level, and also restricts how tightly the curve
can bend atalocal level. Such a model certainly seems pertinent for the macroscopic
wire example illustrated in Fig. 1c, where the hard surface of the wire touches itself.
For the bacterium shown in Fig. 1la it is possible to imagine that both the local and
global effects of self-avoidance are active at different places. In this viewpoint the
obstruction to self-intersection is purely geometrical; the finite volume of the tube
imposes a constraint on the configuration of the centreline curve. This condition
is typically referred to as an excluded volume, hardcore or steric constraint in the
polymer physics literature; the estimation of its effects on the statistical properties
of polymer chains is a classic problem that has been studied within the context of
piece-wise linear chain models [8]. Various forms of a geometric excluded volume
constraint have also been used specifically in the mechanical modelling of DNA,
for example [4], [6], [29]. The geometrical notion of self-avoidance also lies at the
heart of the study of ideal shapes of knotted curves as discussed for example in [2],
[16] and [21].

In this article we present a new mathematical characterization of the geometric
excluded volume constraint, and study the set of admissible curves that it defines.
Moreover, we prove the existence of minimizers within our admissible set for
a range of curve energies pertinent to modelling physical systems such as those
illustrated in Fig. 1. Such existence results are ofindependent mathematical interest,
butin addition they indicate that a particular mathematical formulation of a physical
model is well-posed, and they also contribute to the efficient design of associated
numerical algorithms by providing priori information on the regularity of the
solutions that are being sought.

While the geometric excluded volume constraint is physically appealing and
intuitively clear, it is surprisingly difficult to formulate in an analytic way that is
sufficiently tractable for existence studies. We believe the concept from differential
geometry of normal injectivity radius (see, for example, [7, p. 271]) to be the only
prior, precise definition of the self-avoidance condition for curves that have not
been discretized in some way. Both the global and local properties of the excluded
volume constraint are captured in the idea of the normal injectivity radius, which
can be outlined as follows. At each point along a sufficiently smooth cuiwee
constructs a circle in the normal plane to the curve, centred on the curve and of
constant radius along the curve. For a sufficiently small radius, the tubular envelope
of these circles will be smooth. The normal injectivity radius, here derotéd],
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is then the smallest radius at which the envelope develops a singularity. The first
singularity may be local, when the radius of the circle equals the local radius of
curvature of the curve, or non-local, when two circles centred on non-adjacent
points touch.

For a physical tube of uniform radids> 0, the excluded volume constraint
on its centreliney can then be expressed as the lower bolijy] > 6. That is,
the normal injectivity radius of the centreline must be at least as large as the radius
of the tube, and equality is achieved when the tube is in self-contact, or is locally
bent as severely as allowed. For example, in Fig. 1¢, the geometrical self-avoidance
condition for a tube of uniform small radius seems to be an excellent physical
approximation for modelling self-contact of the wire. In the configuration shown,
the centreline satisfidaj[y] = 6 because the tube actually achieves self-contact at
a number of distinct points. If the wire were to be mildly deformed so as to avoid
self-contact, then the centreline would satikfj{y] > 6, but then the configuration
would presumably no longer minimize the elastic energy of bending and twisting
of the wire.

For our objective of deriving existence results, the difficulty with the classic
definition of normal injectivity radius is that it is implicit, i.e. only given through
a geometrical construction, and it has no apparent, simple analytic representation.
We therefore extend to a class of curvesufficiently large to obtain existence
results, the observation of [12] that for sufficiently smooth curydhe normal
injectivity radiusInj[y] can be given an alternative characterization in terms of a
guantity calledglobal radius of curvatureOur most general definition of global
radius of curvature is deferred until Section 2, but the central ideas can be explained
within the context of curves that are twice differentiable, and which have only
transversal crossings (i.e. wherever the curve intersects itself the two tangent vectors
are distinct). For such curves we define

Al = ;r;fe; r(z,y,z) 1
wherer(z, y, z) denotes the radius of the unique circle through the three distinct
pointsz, y andz. Then itis straightforward to argue, as in [12], that the infimum in
(1) corresponds to one of three cases: (i) In the limit, all three points in a minimizing
sequence coalesce at a pajrat which the radius of curvature is minimal along
the curve, the limiting circle is the osculating circleiatand A[] is the radius
of curvature at. (ii) In the limit, two points coalesce to a poigt with the third
converging to a different poing, and the circle is tangent to the curve at bgth
and(,, with both tangents orthogonal to the ch@id— (-. In other words A[v]
is half of the distance between a pair of poifis, (») of closest approach. This
possibility of a pair of points of closest approach includes the case in which the
curvey has a transversal self-intersection, for then there is a sequence of circles
whose radius approaches zero, idy] = 0. (iii) Or, for open curves, there are
various other possibilities involving an end-point. Given these remarks it is then
apparent that, neglecting any end-point effectgy] = Inj[~]. In particular, cases
(i) and (ii) are just the two possible ways, local and global, in which the normal
injectivity radius can be achieved.
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In fact for each pointt € v we may define th@lobal radius of curvature
function
pa(x) = inf r(z,y,z). (2)

y,z€Y
zFYyFzFe

Then the contact set can be interpreted as pairdas which the global radius of
curvature achievesits minimal value, i.e. the infimum defined in (1). For example, in
Fig. 1d, a (numerical discretization) of a tube of uniform radius and prescribed knot
type has been made as short as possible, that is, the knot has been made very tight.
Such a configuration is called ateal shapeof the knot [16]; a mathematically
precise, defining property is that the arclength of the centrelimeninimal amongst
curves of the prescribed knot type when subject to the excluded volume constraint
A[y] > 0. In Fig. 1d the tube is (up to computational tolerance) everywhere in
self-contact, so that the global radius of curvature is constant, which satisfies a
necessary condition for ideality derived in [12]. (The numerics indicate that the
usuallocal radius of curvature on this ideal shape is far from being constant.)

One of the main objectives of the present article is to extend appropriately the
definitions (1) and (2) to curves that are nota priori smooth, and thereby to
obtain an analytic characterization of normal injectivity radius in a manner that
is largely independent of curve regularity. This objective is achieved in Section 2.
More precisely, working in the space of closed curyegth a parameterization in
W4 (¢ > 1) we find that the constraint

AR] > 6 >0 3)

actually implies the existence of an arclength parameterizatiéi?n° (or equiv-
alently C11) for ~, and that the set of curves satisfying (3) is closed under weak
convergence i’ 17 (¢ > 1). Consequently, by standard direct methods we obtain
existence of constrained minimizers for a variety of physically pertinent energies,
including those arising in the usual elastic rod theories, and the integral of squared
curvature on curves of prescribed arclength. Moreover, for closed curves in the
set (3), knot types (along with a prescribed link in the case of framed curves) are
also preserved under weak convergence, which implies existence of constrained
minimizers for each type.

The presentation is structured as follows. In Section 2 we define global radius
of curvature precisely, and develop properties of the constraint set (3) as discussed
above. In Section 3 we introduce the concept of a framed curve and establish an
abstract existence theorem for minimizers of a general class of energy functions
defined on framed curves lying in weakly closed sets. This result can be applied to
many models involving elastic strings and rods because we show that link classes
and typical boundary conditions for framed curves are weakly closed. In Sections
4 and 5 we specialize the general result to some particular models and boundary
conditions. In Section 4 we consider the closed configurations of a wide class of
elastic rods, that, for example, provide a model of the system illustrated in Fig. 1c.
Specifically, we establish the existence of constrained minimizers of the elastic
energy within each prescribed knot and link class. In Section 5 we consider the
ideal knot problem underlying Fig. 1d, and establish the existenc¢& dfcurves
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minimizing arclength within each knot class subject to the constraint (3). Proofs of
all of our results are deferred, without further comment, until Section 6.

2. Global curvature and weak closure

Here we introduce for a rather general space cyrihee global radius of curvature
functions p¢ and A, and the tubular neighbourhodd, of radiusé > 0. We

study various implications of the constraid{y] > 6 and show that it provides

a geometrically exact model for the excluded volume constraint immposed by

By when considered as a material tube. To avoid discussion of many special cases
associated with end-points, we consider only closed curves. However, many of the
results carry over to the open case. As some of the arguments justifying our claims
are quite lengthy, we present here a detailed development and explanation of our
conclusions, but all proofs are deferred to Section 6.

2.1. Preliminaries

Throughout our developments we consider thegsef continuous closed curves
v : I — R3 that possess a Lipschitz continuous arclength parameteriz&gion
Sr — R3. Herel = (a,b) is an interval,L > 0 denotes the length of and Sy,

is the circle with perimetef; in particular,S;, = R/L - Z. To simplify notation,
we mostly omit the subscript and agree thaf, I}, I" correspond tey, 74, ¥ and

so on. In our analysis we will also consider the Sobolev spHces (1, R?) with

g > 1, and we note that closed curves in these spaces are alkdnrparticular,
every curvey € W14(I,R?) has bounded variation and one can find a Lipschitz
continuous arclength parameterization (see [11, vol.ll, p. 255]).

A curve~ € G will be calledsimpleif it has no self-intersections, that is, if
its arclength parameterizatidn : S; — R? is injective. Otherwise, the curve
will be callednon-simpleln this case there exist paisst € Sy, (s # t) for which
I'(s) = I'(t). Any such pair will be called double pointof ~.

We use(-, -) to denote the standard Euclidean inner produdinand| - | to
denote the (intrinsic) distance between two point®ior S; depending on the
context. To denote the angle between two non-zero veatarsdv in R? we use
A(u,v) € [0,7]. The distance between a pointc R? and a subseE’ C R3 will
be denoted bylist(z, ) and the diameter of’ will be denoted byliam(X'). For
anyr > 0 we define open neighbourhoods:oénd X’ by

B.(x)={yeR®||ly—z|<r} and B.(X)={ycR?| dist(y,¥) < r}.

When X' is the image of a curve € G, or equivalently its corresponding
arclength parameterizatioll : S;, — R3, we call B.(X) = B,(I'(SL)) the
tubular neighbourhoodf ~ with radiusr > 0. We say thaB,.(I"(SL)) is non-self-
intersectingor regular if the closest-point projection mafi : B,.(I'(S.)) —
I'(Sr) is single-valued and continuous. That is to say, for ang B, (I'(SL))
there is exactly one(x) € Sy, such thatlIp(x) := I'(s(x)) satisfies

dist(z, I'(SL)) = |I'(s(x)) — =,

and/Ir(x) is a continuous function af € B,.(I'(Sy)). For further justification of
this notion of non-self-intersecting see the discussion following Lemmas 3 and 7.
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2.2. Global radius of curvature functions

Motivated by, but also modifying, the analysis presented in [12], we define the
global radius of curvature functiong; and A for space curves as follows.

Definition 1. Consider a curvey € G with arclength parameterizatiofi(s), s €
St. Then the global radius of curvature gfat the pointl’(s) is given by

sehl(s) = {inf{R(F(S),F(U),F(T)) lo,7 €S \{s},o#£7}, ifL>0,

0, if L=0,
(4)
and we denote its infimum by
Aly] = inf pe[v](s). (5)

seSL,

HereR(z,y, z) > 0is the radius of themallestircle containinge, y andz. When
x, y and z are non-collinear (and thus distinct) there is a unique circle passing
through them and
[z —y|
BT e | ©

Whenz, y andz are collinear and distinct there is no circle passing through all three
points and we defin&(x, y, z) to be infinite, but if two points coincide, say= =
ory = z, thenthere are many circles through the three points and wéitakey, 2)
to be the smallest possible radius namely the distaneey|/2. With this choice
the functionR(x, y, z) is not continuous at double points. Notice nevertheless that,
by definition, R(z, y, z) is symmetric in its arguments.

The difference between the global radius of curvature fungtign] introduced
in [12] and the one presented above is as follows. In [12], the fundtion y, 2)
is considered directly only for distinct points y and z in the image ofy, and
the various coalescent cases are considered as limits as the points move along
the image ofy. Then in the case of smooth curves that are either simple or have
only transversal crossing®(z, y, z) is well-defined and continuous in any of the
limits x — y etc., because the direction of approach along the curve singles out
a unique limiting value ofR(z, y, z). However, the case of parameterized curves
with double-covered regions is problematic. For example, in the definition of [12], a
single-covered and a double-covered circle of radius one each have a global radius
of curvature one everywhere. In contrast, in Definition 1 above, the infimum is
over distinct arclength parametesss andr in Sy, andy(o) = z(7) is an allowed
competitor provided # 7. Then a double-covered circle of radius one has a global
radius of curvature zero everywhere (while a single-covered circle still has global
radius of curvature one everywhere). In particular, with Definition 1 we have the
following

Lemma 1. If v has a double point at the pair, t € Sy, (s # t), thenpg[y](s) =
pcv](t) = 0. 1f A[y] > 0, theny is simple.
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When a closed curve is both smooth and simple, the functiopg[y] and
A[v] are known to be related to the standard local radius of curvafyteand to
the thickness or normal injectivity radidaj[y] of v as defined, for example, in
[2] and [7, p. 271]. In particular, one h8s< p[v](s) < p[v](s) forall s € Sy,

(L > 0) andA[y] = Inj[v], [12]. In this caseA[y] > 0 is the radius of the thickest
smooth tube that can be centredpmas discussed in Section 1. In the following
developments we generalize this result to the case wheray be non-smooth.

2.3. Regularity results

Here we examine various implications of the condititpy] > 6 > 0 wheref is a
given constant. Our first result is:

Lemma2.! Lety € G and A[y] > 6 > 0 for some constard. Then the corre-
sponding arclength parameterizatidhhas a Lipschitz continuous tangertwith
Lipschitz consta—1, i.e.,I' € C11(S.,R?) and

[T (s1) — I'(s2)| < 07 sy — 52| Vs1,80 € SL. (7)

Thus a positive lower bound ad[y] imposes a certain amount of regularity on
the curvey. In particular, while an arbitrary curvg € G may not even admit a
continuous unit tangent field, those curves satisfyltig] > 6 > 0 are guaranteed
to admit a Lipschitz continuous unit tangent field. The existence of this field will
play a central role in many of the following arguments.

Our second result establishes the fact that if a cyrne G satisfiesA[y] >
6 > 0, then~ is restricted on how tightly it can bend locally, and on how close it
can come to self-intersection globally.

Lemma 3. Considery € G suchthatA[y] > Oandletl’ € C1*(S.,R?) denoteits
corresponding arclength parameterization. For a given condtantO let Dy (z, z’)
denote the open planar disk of radidsentred at: € R? perpendicular to’ €
R3\{0} and for anys, € Sy, let

C(s0,0) = 0Dg(I'(s0),I"(s0)) and M(so,0) = | Ba(2).
z€C(s0,0)
Then
(i) I'(Sp)NM(so,0)=0forall sge Sy iff Aly] > 6,
(i) diam(I'(SL)) > 20if Aly] > 6,
(i) By(I'(SL)) is regular iff A[y] > 6,

(iv) ITr has the propertylT;'(I'(so)) N Bo(I'(SL)) = Da(I'(s0), " (s0)) if
By(I'(SL)) is regular.

1 We are grateful to T. llmanen who first suggested to us that a result of this nature should
be available.
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Item (i) of the above resultimplies thatif[~] > 6, then an open ball of radids
placed tangent at any poihYsy) may be rotated around the tangent vedta(s)
without intersecting the curve. On the other hand\fy] < 6, then there is a point
on the curve about which a similar rotation of such a ball could not be effected.
Thus A[] is the radius of the largest ball that can be rotated tangentially about
every point of a curve without intersecting it. The proof of item (i) actually shows
that a stronger, local version of this result holds; namBl\§1,) N M (so, po) = 0
if po := pc[v](so) > 0. The above interpretations also suggest that the inequality
Alv] > 6 imposes a lower bound on the overall sizeypfvhich is the essence of
item (ii).

Items (iii) and (iv) imply that the regularity of the tubular neighbourhood
By(I'(SL)) is equivalent to the conditiod[y] > 6, and thatB, (I"(SL)) is the en-
velope of disjoint disky (I"(s0), I’ (s0)). Since each point € By(I'(Sg))isin
a unique diskDy(I'(so), I (s9)) normal to the curve, we deduce thag(1"(Sy))
has the structure of a uniform tube of radiusentred ony. Moreover, according
to item (iii), any tubular neighbourhood of radius larger thapy] would fail to
have this structure. Thus the conditidyjy] > 6 provides a geometrically exact
model for the excluded volume constraint9imposed by the tubular neighbour-
hood By (I'(SL)) when considered as a material tube. This idea will be developed
further in Section 3.

2.4. Weak closedness results

Here we study various implications of the conditiavjy] > 6 > 0 for closed
curvesy in the Sobolev spacd®!7(1,R?), ¢ € (1, 00). Notice that, because such
curves are also ig, a positive lower bound or[+] retains its interpretation as an
excluded volume constraint.

Our first result states that, as a subsetlof?(1, R?), the set of closed curves
satisfyingA[y] > 6 > 0 is weakly closed.

Lemma 4.Let{v,} C WH4(I,R?), q € (1,0), be a sequence of closed curves
such thaty,, — v € Wh4(I,R?) and

Alya] >0, VneN (8)
for some constarét > 0. Theny is a closed curve and
Afy] > 0. 9)

This result will be particularly useful when studying energy functionals defined on
closed curves i 1:9(1, R?). In particular, it suggests that standard direct methods
may be used to establish the existence of constrained minimizers.

In our applications we will consider energy functionals defined on closed curves
in a fixed isotopy class or knot type in the following sense.

Definition 2. Two continuous closed curvég , K, C R3 are isotopic, denoted as
K, ~ K,,ifthere are open neighbourhood§ of Ky, N, of K5, and a continuous
mapping® : N; x [0, 1] — R? such that®(Ny, 7) is homeomorphic tdv; for all

7 €[0,1], &(x,0) =z forall x € Ny, #(N1,1) = No, andP(K1,1) = K.



10 O. Gonzalez et al.

Roughly speaking, two curves are in the same isotopy class if one can be con-
tinuously deformed onto the other. The next result states that, as a subset of
Wha(I,R?), the set of closed curves in any fixed isotopy class satisfyipg >

6 > 0 is weakly closed.

Lemma 5. Let the sequencgy, } € WH9(I,R3) NG, g € (1,00), satisfy

() () ~mn), VneN,

(i) APl >0>0, VneN,

(iii) v, =y € WHe(I,R3) as n — oo.
Theny(1) ~ v (I).

Thus, the excluded volume constraifify,,] > 6 > 0 prevents a change in knot
type along weakly convergent sequences. The construction of the isotop® map
betweeny and-,, for n sufficiently large is based on the fact that the corresponding
projection onto the image 6f, restricted toy is bijective. This resultis important for

the study of energy functionals defined on closed, knotted curvestifi(1, R3).

In particular, it may be used to establish the existence of constrained minimizers
among curves of a fixed knot type.

3. Framed curves and general existence result

Here we introduce the notion of a framed curve D), where D is a field of
orthonormal frames along a space curyeas a geometric model for physical
objects such as those illustrated in Fig. 1. Then we discuss interpretations of the
excluded volume constraiai[y] > 6 > 0 and establish a general existence result
concerning the minima of energy functionals defined on framed curves subject
to this constraint. In Sections 4 and 5 we apply our result to models of elastic
rods and strings, which can be interpreted as framed curves with particular energy
functionals. Again proofs are deferred to Section 6.

3.1. Preliminaries

By aframed curve~y, D) we mean a curve : I — R? equipped with a frame field
D : I — SO(3),whereD(s) = (d1(s)|d2(s)|d3(s)) consists of three orthonormal
column-vectorsl;(s) (i = 1,2, 3) for eachs € I = [a, b]. We view the functionD
as a frame field defined along Thus, the right-handed orthonormal fraiés) is
attached to the point(s). By aclosed framed curwere mean a framed curye, D)
such thaty is closed andis(a) = ds(b). For our analysis we find it convenient
to work with the Sobolev spacé® +¢(1, R3) and WP (I, R3*3) with ¢,p > 1,
wherey € W2 andD € WP, As before, closed curves i -4 are also irg.

A framed curve(y, D) € Wb x WP may be uniquely determined from
shape and placement variables= (u, v, vo, Do) € X} with u = (u1,ug, u3)
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andv = (v1,v9, v3) via the equations

3
d(s) = [Zui(s)di(s)} Ndi(s) foraescl, k=1,2,3,
i=1

3
v (s) = ka(s)dk(s) fora.e.s eI, (10)
k=1

v(a) =, D(a)= Dy,

where X2 := LP(I,R?) x LI(I,R3) x R3 x SO(3), which is a proper subset
of the corresponding Banach spacé? := LP(I,R3) x L(I,R3) x R? x R3*3,

The functionsu; andv; may be identified as the components, in the moving frame
{d;}, of the Darboux vector for the frame field(s) and the tangent vector for the
curve~y(s). Notice thatu andv describe the shape of a framed curve whergas
andD, describe its spatial placement. The following result will be fundamental to
our developments.

Lemma 6. To each framed curvey, D) € W1Ix WP p g > 1,we canassociate
a uniquew = w(vy, D) € XY determined by (10). Conversely, to eacke X}"?
we can associate a unique framed cufyeD) = (y[w], D[w]) € W14 x Whp
such that (10) holds.

3.2. Interpreting the excluded volume constraint

There are generally two distinct tubes that can be associated with a closed framed
curve (v, D) and a constard > 0. One tube is defined by the neighbourhood
By(I'(SL)) as considered in Section 2. Another tube is defineg sy, ), where

p: 29 — R3is the map

p(0,61,82) = v(0) + &1di(0) + §2d2(0) (11)

and (2 is the straight cylinder given by
!29 ::{(07517£2) eRg ‘0’6 [Cl,b), f%-i-f% <92}'

The excluded volume constraidty] > ¢ prevents the tub®&,(I"(Sy,)) from
self-intersecting. However, as a model for a physical object, it is the poiptsif)
that are naturally identified with material points, and the excluded volume constraint
should guarantee the global injectivity of the mappingf2¢ — R3. Along these
lines we have the following

Lemma 7. Consider a closed framed cur¢e, D) € W14 x WP, p ¢ > 1, and
letw = (u,v,70, Do) € X{"? be its shape and placement variables determined by
(10). Suppose that[y] > 0 andv = (0,0, v3) withvs > 0. Thenp : £2p — R3 is
globally injective iffA[] > 6 > 0.
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The conditionv = (0,0, v3) with v3 > 0 implies that the frame field is
adapted toy in the sense thafs(s) is (positively) parallel toy’(s). In this case,
p(§25) may be identified with3, (1"(S1.)) and the result follows from the regularity
of By(I'(SL)) as discussed in Section 2. Thus, whes: (0,0, v3) with v > 0,
the conditionA[v] > 6 > 0 provides an exact excluded volume constraint for the
material tubep(£2y). Whenwv is not of this form, the conditiorA[y] > 6 > 0 is
not an exact excluded volume constraint 02, ). Notice thatp((2) itself is not
a uniform tube of radiu8 if v; or vy is non-zero.

3.3. Energy functionals and existence of minimizers

For framed curvegy, D) = (y[w], D[w]) with w € X" we consider energy
functionals of the form

E(v[w], D[w]) = E(w) := /IW(U(S),U(S), s)ds (12)

wherelV : R? x R? x I — R is a specified function. The basic question we shall
address is the existence of framed curisgsD) that minimizeE (w) subject to the
excluded volume constraiat[y] > 6 > 0 and other more typical side conditions,
such as boundary conditions etc. In particular, we consider the problem of finding
w, € C C X{'? that satisfy

B(w.) = inf B(w) (13)

whereC is a specified subset 6f}?. Our main result is contained in the following

Theorem 1.Let1 < p, ¢ < oo and suppose that
(W1) W (-, -, s) is continuous and convex for a€c I,
(W2) W (u,v,-) is Lebesgue-measurable éror all (u,v) € R? x R3,
(W3) there are constants;, c; > 0 and a functiory € L*(I), such that
W(u,v,5) = crful” + cafv]? + g(s)
forall (u,v) € R® x R3 and for a.es € I.

Furthermore, assume that the 6t X7 is nonempty and weakly closed in
XP? and that there is some constant 0 such thaivy,| < ¢ for all (u, v, o, Do)

€ C. Then there is a minimizen, € C of (13) if one of the following conditions
holds:

(i) c1,e2>0,

(i) ¢1 > 0,andthere is somé € R3 such that = o for all w = (u, v, o, Do) €
Ci

(iii) c2 > 0.and there is somé € R? such thatu = 4 for all w = (u, v, 70, Do) €
C.
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Assumptions (W1)-(W3) are standard for direct methods in the calculus of
variations, and are met by a wide class of functidiighat arise in applications.
Thus, the above result reduces the existence problem to proving the weak closedness
in X749 ofthe subsef’ C X{"? C X7, HereC represents those framed curves that
satisfy the constraini[y] > 6 > 0 along with any other prescribed side conditions.
We remark that this general existence result remains valid when a potential energy
with at most linear growth is added to the energy functidiigh).

3.4. Typical side conditions and weak closedness

Here we examine the weak closedness of typical side conditions that enter into the
subset”' of Theorem 1. Our main result in this direction is:

Lemma8.Letl < p,q < oo and consider a sequendev,,} C X}? that con-
verges weakly tw € X7 ,i.e.,w,, — win X?4. Thenw € X}*? and

D, — D in CO(I,R*>*?), 4, =~ in C°I,R?), (14)
D, — D in WYP(ILR¥3), 4, =~ in WYI(I,R?), (15)

wherey,, := y[wy,], v := vy[w], Dy, := D[wy], D := D[w].

Thus, if a sequence of shape and placement variable®nverges weakly it 9,
then the corresponding sequence of framed cufygsD,,) converges uniformly
in CY x C°, and also weakly it 14 x Wtp,
We can now provide two prototypes of weakly closed sets that will be useful in
our applications.

Lemma 9.Let K(s) C R® x R?® be a closed convex set for ae.c I and let
F: C%I,R3) x C(I,R**3) — R be a continuous mapping. Then the sets

(i) C1:={(u,v,7v, Do) € XP?]| (u(s),v(s)) € K(s) fora.e.scl}
(i) Cp:={w e Xg*| F(y[w], D[w]) =0}
are weakly closed iX?? (p,q > 1).

The sets”; andC; are typical in applications involving elastic rods and strings
as will be considered in Sections 4 and 5. Sets of the §/peay be considered
within the context of rods to ensure that contiguous cross-sections do not locally
intersect each other and that orientation is locally preserved under deformation (see
[1, Ch.VIIL.6]). Sets of type”s may be considered to prescribe pointwise conditions
on both rods and strings, e.g., boundary conditionsyfand D. For example, we
will consider framed curves whetgis closed and the framd3(a) andD(b) differ
by a prescribed rotation. Notice that the above result remains valid if the equality in
the definition ofCs is replaced by an inequality. Sets of this type arise in problems
with rigid obstacles, where the material tylig?,) is constrained to lie in a closed
region ofR3, and in problems with unilateral boundary conditions. Such obstacle
problems for Cosserat rods are studied in [25],[26].

Fixing the endpoint conditions for the frani& for example specifyind(a)
= D(b) = Dy, does not entirely determine the total amount of twist or link. In fact,
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any framed curvéy, D) whose frameD turns an integer multiple ¢fr about the
curve~ satisfies the above boundary condition. In order to identify link classes of
framed curves we make the following

Definition 3. Two continuous mapping81, D : [a,b] — SO(3) with Dy(a) =
D4 (a) and Dy (b) = D4 (b) are called homotopic, denotdd; ~ Da, if there is a
continuous mapping : [a, ] x [0,1] — SO(3), such that

U(,0)=D.() and ¥(-,1)=Dy(-) on [a,b],
U(a,-) =Di(a) and @(b,-)=Dy(b) on [0,1].

Roughly speaking, two frame field3; and D, are homotopic if for a given curve

~, the framed curve§y, D;) and(~, D) generate ribbons with the same link. The
next result states that the set of frame fields in any fixed homotopy class define
weakly closed subsets.

Lemma 10.Let{w, } C X{? withw, — win X7 (p,q > 1) and assume that
D,, := D[wy] ~ D[w1], Vn € N. (16)
Thenw € X5 and D := D[w] ~ D[w;].

Thus, for rods and ribbons one can expect to find elastic energy minimizers in each
link class. The construction of the homotopy map betwBeand D, is based on

the fact that elements close to the identitysi@(3) can be represented by rotation
vectors.

4. Applications to elastic rods
4.1. Rod theory

In this section we outline the special Cosserat theory which describes the behaviour
of elastic rods that can undergo large deformations in space by suffering flexure, tor-
sion, extension and shear. For a more comprehensive presentation see, for example,
Antman [1, Ch. VIII].

4.1.1. Kinematics We suppose that each configuration of an elastic rod can be
modelled by a framed curvg, D) € W1 x Wh! together withamap : 2y —
R3 as defined in Section 3. In particular, we identify the material rod with the tube
p(£29). Under this identification the curve(c) describes the rod centreline and
the frame fieldD (o) describes the orientation of the rod cross-sections. The cross-
section attached to a poif{o) on the centreline is spanned By, (c), d2(0)}
and is parameterized k¥, £2). Thus, the particular form of2y given in Section
3 models a rod with circular cross-sections of radiuBlotice that cross-sections
are not necessarily always orthogonal to the centrelifvehich means that the rod
can be sheared), and thais not necessarily the arclength parametenf@which
means that the rod can be stretched or compressed).

By Lemma 6, a framed curve, D) € W1 x W1 can be uniquely identified
with a set of shape and placement varialfles, vo, D) € Xé’l. Energy function-
als for rods can naturally be expressed in terms of the functicas(uy, us, us)
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andv = (v1,v2,v3), which are typically referred to agrainswithin the context
of rod theory. Recall that; andv; are the components, in the moving frafag},

of the Darboux vector for the frame field(s) and the tangent vector for the curve
().

We denote a relaxed, or stress-freeference configuratiorby (&,D) or
(a,0,v0, Do), where the function&i, ) are prescribed material parameters. There
is little loss of generality in assuming, by convention, thét actually the arclength
parameter for this reference centrelipeand moreover that cross-sections in this
reference configuration are orthogonalitoso thato := (0,0, 1). Nevertheless
notice thaty need not be a straight line, becaudseeed not be zero.

It is reasonable to demand that the map 2 — R? describing a material
rod be globally injective. Indeed, this is the essence of the self-contact or excluded
volume constraint studied in this article. Necessary and sufficient conditions for
global injectivity are given in Lemma 7 for a particular class of deformations. It is
also reasonable to demand that the mapeserve orientation in the sense that

8]?(0', 517 62)
8(0’, gla 52)
which actually guarantees thatis locally (but not globally) injective. Because

of the specific form of our domairy, we deduce that (17) is equivalent to the
following set of conditions on the strains:

vy >0 and vz >6\/u?+u3 ae onl (18)

(see Antman [1, Ch. VIII.6] for related conditions pertaining to more general do-
mains). Below we discuss how these local conditions are related to the conditions
in Lemma 7. Notice that (18) is often replaced by the single necessary condition

det [ } >0 fora.e. (0,61,&) € (29, a7

vg >0 a.e. onl. (29)

4.1.2. Constitutive modelsWe consider elastic rods whose material response can
be described by atored energy densifunction W, depending orfu, v, o), that

is convex in(u, v) and which satisfies certain growth conditions as discussed in
Section 3. Theotal elastic energypf the rod is given by

E(u,v) ::/IW(u(o),v(o),a) do.

An explicit dependence om in the energy densit}{i” occurs naturally in the case
of inhomogeneous elastic rods, where material properties may vary from one cross-
section to another.
The special case whel#& is a (shifted) quadratic ifu, v) plays an important
role in various applications:

w<u,v,a>:<A<a>(5_2),(5_2)>, (20)
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whereA : I — R®*¥6 is a Lebesgue measurable function such th@t) is sym-
metric, positive definite for a.ex € I, and(a(o),9(0)) are the reference strains
defined above.

The particular case afnshearableods is defined by the material constraint
v = (91, 09,v3) := (0,0,v3), i.e. the first two components ofare required to
always take their reference values. Thus the stored energy défisity longer
depends upom; andwvs. Notice that the constraint := (0, 0, v3) together with
(10) impliesy’ = wvsds, and thaty” generally does not exist even in the weak
sense forns € L'. However, when the conditions in (18) are satisfied, we find
that the corresponding arclength parameterizafigpossesses the weak derivative
I = (uady — uyds)/vs, which implies that the curvatureof «y is given by

2 2
H=|FN|= Vui + uj (21)

U3

(see Section 6.3 for details). Hence, for unshearable rods, the conditions in (18)
may be written as

v3>0 and p>6 ae. onl (22)

wherep = 1/k is the local radius of curvature of. Moreover, we find that
I' € W% since the second inequality in (22) implies that< 1. Notice
the relation between the conditions in (22), which are equivalent to preservation of
orientation and guarantee local injectivity, and the conditions in Lemma 7, which
guarantee global injectivity. Preservation of orientation requires that the local ra-
dius of curvature be bounded below by the cross-sectional radiisereas global
injectivity requires the stronger condition that the global radius of curvature be
bounded below by.

Unshearablanextensibleods are a further specialization. They are defined by
the material constraint := 9 := (0, 0, 1), which by (10) yields

v'=ds and k = || = \/u? + u3.

Thus, bothy andI” are arclength parameterizations in this case. The first identity
above implies thay € W?21(I,R3). Furthermore, when the conditions in (18) are
satisfied, the second identity above implies that W2°° (I, R?).

4.2. Existence of minimizers

Here we establish the existence of rod configurations that minimize a prescribed
elastic energy subject to a self-contact or excluded volume constraint. We consider
three distinct classes of rod models: unshearable, inextensible models, general mod-
els in which shear and extension are allowed, and unshearable, extensible models.
Motivated by Lemmas 3 and 7, we employ a lower bound on the global radius
of curvature as a model for the excluded volume constraint. This approach is in
contrast to those pursued in [10], [22], [31], where various integral energies are
introduced as repulsive potentials, and in [13], [30].
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4.2.1. Unshearable, inextensible model& configuration(~[w], D[w]) of an un-
shearable, inextensible rod is uniquely described by an elementu, v, vy, Do)
€ X{"* where the functiorn is constrained to take the val@e, 0, 1). Thus, this
class of rods is described by the set

XE = A{w = (u,v,70, Do) € X5 v=1(0,0,1),7 =0, Dy =1d}

where, without loss of generality, we fix andD, to eliminate rigid translations and
rotations. Notice that the choice gfs immaterial since the function= (0,0, 1)
isin L4 for anyq € (1, 00).

The stored energy density for unshearable, inextensible rods reduces to the
form W (u, o). We assume thdl/ (-, o) is continuous and convex for a®.€ I,
thatW (u, -) is Lebesgue measurable éror all v, and that

W(u, o) > ci|ul’ + g(o) forall weR?, fora.e.ccl, (23)
wherep € (1,00), ¢; > 0, andg € L*(I).

The basic problem we consider is the existence of minimizers for the total elastic
energy functional

E(w /W o)do — Min!, we X} (24)
subject to the following side conditions ¢fw], D[w])
Y[w](b) =70, D[w](b) = Dx, (25)
Apy[wl] = 0, (26)
Ywl(I) ~ k, (27)
Dlw] ~ Q. (28)

HereD; € SO(3) is a given frame which coincides wifB in its last columng >
0 is a constant that represents the cross-sectional radius of thHeisatcontinuous
closed curve irR? that represents a given knot class, @&d I — SO(3) with
Q(a) = Dy, Q(b) = Dy is a continuous map that represents a given link class
(cf. Def. 2 and 3). The conditions in (25), together with the assumptio®on
ensure thatlz[w](b) = d3[w](a), and thatd; [w](b) andd; [w](a) differ by a given
angle. Moreover, these conditions ensure tfaf is closed in the”*-sense since
v'[w](o) = d3[w](c) by the constraint om.

Thus, we seek energy minimizers for non-self-intersecting, unshearable and
inextensible rods of a prescribed knot and link type where the frabfe$(a) and
DIw](b) differ by a prescribed rotation. Our main result in this direction is:

Theorem 2.Let1 < p < oo and assume that (23) holds. Suppose that there
is an elementv € X} satisfying (25)-(28). Then the minimization problem (24)-
(28) has a solutionv € X7, whose corresponding framed cur{rgw], D[w]) €
W2P(I,R?) x WHP(I,R**3) has a centreline with an arclength parameterization
rechHt.
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This result establishes the existence of energy minimizers subject to a geometrically
exact excluded volume constraint. The exactness of (26) as a model for excluded
volume follows from Lemma 7 and the condition onAn important assumption
in the theorem is the existence of a configuration that satisfies all the imposed side
conditions; in particular, the conditions in (26) and (27). For gigeandk, these
conditions can be satisfied by rods of sufficiently large length. According to the
remarks following Theorem 1, the above existence result remains valid when a
potential energy with at most linear growth is added to the total elastic energy.
Thus, for example, body forces that do not depend on the deformed shape of the
rod, such as a uniform gravitational field, can also be included. (See [25] for related
problems in which gravitational forces are considered.)

The classic energy involving the integral of the squared curvature (see e.g.
[19],[20],[30]), or in our notation

E:/HQdS,
¥

canalso be considered. This energy can be viewed as a simple model of an unframed,
elastic, closed curve. (Note that for such unframed curves a prescribed link type has
no obvious meaning.) The weak closure results of Lemma 4 and Lemma 5 allow
us to conclude the existence of a minimizer of each prescribed knot type when
our excluded volume constraint is enforced and the length of the curve is fixed.
More precisely, we can consider curves W?22(I,R?) subject to the constraints
[V'(s)] = 1onl, y(b) = v(a) = 0,7'(a) =+'(b) = e, Al] > 6 > 0, and

v(I) ~ k, wheree is a given unit vector, ankl represents a given knot type. Since

the constraints are closed under weak convergence, and since (up to a constant
factor) the integral of the squared curvature dominatesitie norm||v| on the
admissible set, standard direct methods can be applied.

4.2.2. General models A configuration(~[w], D]w]) of a general shearable and
extensible rod is uniquely described by an element (u, v, vy, Do) € X!"?. We

fix v andDy to eliminate rigid translations and rotations as before and we consider
the class of rods described by the set

X[Z))’q = {’U} = (’U,,U,")/(),Do) € X(IJ])q| Yo = 07 DO = Id}’ pq€ (1’00)

We assume that the stored energy denBitysatisfies conditions (W1)-(W3) of
Section 3 withey, ¢ > 0.

The basic problem is the existence of minimizers for the total elastic energy
functional

E(w) = /W(u(o),v(a),a) do — Min!, we XP4 (29)
JI
subject to the following side conditions ¢n[w], D[w]):
Yw](b) =0, Dlw](b) = Dy, (30)
Aly[w]] = 0, 31)
Yw)(I) ~ k, (32)

Dlw] ~ Q (33)
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where Dy, 0, k, and@ are as defined in the previous problem. In the case of a

general rod model the second equation in (30) ensureglthal(a) = d3[w](b),

but it does not imply that the tangents of the cupye| are equal at the end points.
Our main result concerning the above problem is:

Theorem 3.Let1 < p,q < oo, let (W1)—(W3) be satisfied, and assume that
there is some admissible ¢ X2 respecting (30)—(33). Then the minimization
problem (29)—(33) has a solutian € Xgﬂ, whose corresponding framed curve
(y[w], D[w]) € Whe(I,R3) x WP(I,R3*3) has a centreline with an arclength
parameterization” € C1:!,

This result establishes the existence of energy minimizers for general rod models
subjectto the constraint (31). However, in this general case, condition (31) is merely
an approximate model for excluded volume as discussed in Section 3. As before, the
existence result remains valid when a potential energy with at most linear growth
is added to the total elastic energy.

4.2.3. Unshearable, extensible modelSheorem 3 also applies in the case of an
unshearable, extensible rod definedby (0, 0, v3) (see Section 4.1) provided that

we appropriately modify the hypothesis (W3). Specifically, the growth conditionin
(W3) should be satisfied for all:, v3) € R3 x R instead of u, v) € R3 x R3. This

case can be interpreted as an intermediate one between the general case considered
immediately above, and the unshearable, inextensible one considered earlier.

For the unshearable, extensible case the condition in (31) is an exact model for
excluded volume provided that > 0 (by Lemma 7). However); > 0 is not a
weakly closed condition in the spirit of Lemma 9, and configurations that satisfy
(31) may not necessarily satisfy > 0. In fact, since the global radius of curvature
cannot exceed the local radius of curvature, we deduce from (21) that (31) implies
only the weaker inequality

vg > 0y/u? +u3 a.e. onl (34)

in this case of unshearable rods. Thys = 0 is possible for some subset of

1, but only on straight parts of the rod in accordance with (34). Consequently,
an unshearable rod may fail to be globally injective on such parts. On the other
hand, mechanically realistic energy densities should blow up on regions of large
compression, i.e.,

W (u,v,s) = oo as vy — 0y/uf +u3 =0 (35)

(cf. Antman [1, Ch. VIL.5, VIII]). In the case that this condition holds, we find that

vg = 0 is possible only on a subset #fwith measure zero. Thus (31) together
with (35) would ensure the global injectivity of an unshearable, extensible rod since
arcs connecting two points on the centreline curve with different parameters have
positive length. Notice that energy densities with property (35) satisfy conditions
(W1)—(W3) and are covered by our existence theory.
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5. Application to ideal knots

Here we establish the existence of curves of a prescribed knot type that minimize the
arclength functional subject to a lower bound on the global radius of curvature. By
Lemma 3, this lower bound provides a geometrically exact model for the self-contact
or excluded volume constraint imposed on the curve by a tubular neighbourhood
of fixed radius. The basic problem we consider is that of minimizing the functional

L(y) = / Y(0)|do — Minl, veW"™, ge (L),  (36)
I

subject to the conditions

v(b) =~(a), Al >0 and ~y(I)~7(I). 37)

Hered > 0is a constant an§l € W-¢ is a continuous closed curve that represents
the prescribed knot type and satisfi#gy] > 6.

A solution~y of the above problem is called ateal knotin the sense of [2], [16]
and [21]. In other words, an ideal knot is a non-self-intersecting tube of fixed radius
6 > 0 and prescribed knot type with a centreline cutvef minimal length. Here
we establish an existence result for ideal knots which shows that their centreline
curves are always continuously differentiable. In fact, these curves have arclength
parameterizations of clags'!, which means that their unit tangent vector fields
are Lipschitz continuous.

To employ the general existence resultin Section 3, we merely identify a curve
~ € W with a framed curvé~y, D) € W4 x W? whereD(s) = D. Here
D e SO(3) is an arbitrary fixed frame which plays no role in our developments.
Without loss of generality, we fix the initial point(a) = ~, to eliminate rigid
translations. Thus, for the ideal knot problem we consider framed curves described
by the set

X = {w = (u,v,%, Do) € X2 | u=(0,0,0), v =0, Dy = D},

and we seek minimizers of the functional
E(w) = / lv(c)|do — Min!, w = (u,v,v, Do) € X¢
I

subject to the conditions

Y[wl() =70, Aly[w]] =20 and y[w](I) ~5(I). (38)

In the above form it seems that the ideal knot problem can be treated by The-
orem 1 and our investigations about weakly closed sets. However, the energy to
be minimized here has merely linear growth and does not satisfy (W3) foi.
Nevertheless by showing that the minimizationfp(v|qdo (¢ > 1) also provides
a curve of minimal length, we are able to circumvent this difficulty and obtain the
following

Theorem 4.For g € (1, co) the minimization problem defined by (36) and (37) has
a solution-,. This curve has an arclength parameterizatibne C':!.
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This result establishes the existence of ideal knots and shows that their centreline
curves have arclength parameterizations of cl@ss. Similar existence results
have been obtained by Kusner and co-workers [17] using ideas related to global
radius of curvature. In addition, Cantarella et.al. [3] have proved that an ideal or
tight configuration of an unknotted 3-component link is achieved by centrelines
made up from arcs of circles joined with straight line segments, i.e. a centreline
that isC':! and also piecewise smooth, but i@t overall. Similarly, numerical

data presented in [12] suggest that ideal configurations of some true (but composite)
knots are also naf?. Thus there is some evidence supporting the conjecture that
the regularity established in our existence result above may be quite sharp.

6. Proofs

In this section we provide proofs for the results described in Sections 2 to 5. We
use the same notation as in the corresponding sections.

6.1. Proofs for Section 2

Proof of Lemma 1. For the first implication we assume > 0 and that the pair
s,t € St (s # t) defines a double point of (there can be no double points if
L = 0). Then, by definition op[v] andR(z, y, z), we have

pclyl(s) = inf{ R(I'(s),I'(c), (7)) | o,7 € SL\{s}, o # 7 }
<inf{ R(I'(s),I'(t), I'(1)) | 7 € St \{s,t} }
=inf{ [I'(s) — I'(7)|/2 | 7 € SL\{s,t} }
—0

and similarly forps[v](t). Thus, ify is non-simple, then necessarily|y] = 0,
and the second implication follows.OO

Proof of Lemma 2. 1. Consider a connected subatc := I'([o¢, o1]) with fixed
endpointsP, := I'(0y) and Py := I'(01), and suppose thalfiam 4; < 26 and
|P; — Py| < 0/2, which is possible by choosing; — o, | sufficiently small. Let;
be the lens-shaped intersection of all open balls of ralicentainingP, and P;
on their boundaries, i.e.,

h= () Bula),

z€C(Py,P1)
whereC(Py, P1) := {z € R? | |2 — Py| = |z — P1| = 0}. We claim that
A Clh. (39)

To see this, suppose for contradiction that¢ I, and consider the set

== U B (40)

ZGC(Po,Pl)
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Then, using the facts thatis simple (by Lemma 1)liam A; < 20 and| P, — Po| <
6/2, we deduce that there must be a pathie (A, N =)\l;. Moreover, we find
that

5 1P = Bl

R(H),Pl,P): <9, where @ := g(H)—p,Pl—P). (41)

2sin@
Since this contradicts the lower bourddy] > # we must haved; C I, as claimed.

Notice that there is indeed a poift € (4; N Z)\l;. Otherwise, we would
havediam A; > 26, because any curve ik*\ = connectingP, and P, must have
diameter atleast as large as the great circl@Bg( z) connecting?, andP; outside
of ; for any of the ballsB, (=) that generaté&’. Moreover, sincéP, — Py| < 0/2,
the portion of such a great circle has diameér

The result in (41) may be seen by considering the intersectidfi with the
plane containing the three non-collinear poiRs P; andP. This intersection may
be described by two overlapping planar digksz; ) andDy( 25 ) of radiusf, where
0Dg(z1) N 0Dy(z2) = { Py, P1}, and we may assume without loss of generality
that P € Dy(21)\Da(22). From elementary geometry we recall that, for @ng
8D9(Zl)\{P(), Pl},We have) = ‘Pl—P()|/(2 sinﬂ) Where,@ = 4(]3()—57 Pl—g).
To establish (41), we first suppose tlat (0,7/2). In this case we may choose
& € 0Dy(z1)\Dy(z2) such that? € (0, @), i.e.,sin S <sin@, which implies (41).
If we suppose that € /2, 7), then we may choosee 9Dy (z1) N Dy(z2) such
thatg € (@, ), i.e.,sin 8 < sin@, which also implies (41).

2. Givenog, o1 € Sy, as above, we next consider a sequenge. oo (n > 1).
We introduceP,, := I'(0,), A, := I'([00,0,]) and the lens-shaped regidn
defined byP,, P, andd > 0 as before. Moreover, for eaech> 1, we introduce
the tangent con#,, of I, in Py as

Th:={zeR®|z=Xqg—P), A>0,q€l,}.

Since|P,, — Py| < 6/2 anddiam A,, < 20 we may use the same argument as in
step 1 to conclude

A, Cl,, VneN. (42)

Furthermore, by straightforward geometrical arguments we also find
lpt1Clp, and T, CT,, YneN. (43)
3. Letay, be the opening angle of the coffig. Since0 < |P, — Py| < /2 and

. |Pn - P0|
n/2) = 22 44
sin(a, 2) = (44)
we deducey,, € (0,7/2). Moreover, sincéP,, — Py| — 0 we deducey,, — 0 as
n — 0Q.

4. For eaclm > 1 we introduce a unit vector

tn = (Pn— Py)/| P, — Py| € S?,
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which is well-defined since,, | oy and|P,, — P,| > 0. By definition of the cone
T, we havet,, € T,, and sincel},,, C T, (m > n) and the opening angles satisfy
a, — 0, we deduce thaft, },en C S? is a Cauchy sequence. Therefore we find
a vector () (o)
. I'(oy,) — I'(0g
t = lim ——————=—
700 = 0 () = Too)]

Notice thattr(oo) does not depend on the choice of sequenge. o. In fact,
assuming that a different sequemnge/ o leads to a different unit vectof, (oo) #
tr(op), we arrive at a contradiction. In particular, the mixed sequdngg :=
{o1,0%,09,0%,...} would lead to a Cauchy sequence of unit vectors with no
unique limit. Thus we must hawé,(co) = tr(oo).

5. Given any pointy € Sy, and two sequences, | oy andry 1 o¢ we have
two well-defined unit tangent vectors B{o); namely,tz(oo) defined as above
and

€ 52,

= imM
0= B o) — T

We claim thattr(0o9) = t(00). TO see this, assume for contradiction that
tr(oo) # tr(og). Consider the lens-shaped regions

1= N By(z) and If:= (1 B2
z€C(Py,I'(0y)) z€C(Py,I'(1r))

€ 52

and the unit vectors

ty = (I'(mk) = I'(00))/|'(7k) — I'(00)]|
tn = (I'(on) = I'(00))/|I"(om) — I'(00)].

By the same arguments as in step 1 we deduceffifat,, oo]) N IF = () and
I'([og,0,])) N1E = 0 for all sufficiently largen, k € N. Thus the anglé € [0, ]
betweentr (o) and—tr,(0p) satisfied) < ¢ < w. Moreover, since

lim <I(tk-,tn) =19
k,n—o0
and
lim I'(r,) = lim I'(oy,) = I'(00p)

k—oc0 n—o00

we deduce that

lim R(I'(7y), (o), I'(00)) = lim 12(7) = I'(aw)]

= 0’
k,n—o00 k,n—oco  28in g:(tk, tn)

which contradicts the lower bound[y] > 6 > 0. Thus we must haveg (o)
=t (0p) as claimed.

6. If og is a parameter wher€£ is differentiable, then” (o) = tr(oo) =
tr,(op). This follows from the fact that, if" is differentiable at, then|I”(o¢)|
=1and

I'(0n) — I'(00) = I'"(00)(0n — 00) + 0|0, — 00])
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for any sequence,, | og. The result follows since

I(on) = I'(00) _ I"(00)(9n = 00) + 0lon = 00]) [1 _ o(lon — Uo|)}
[I'(on) = I'(00)] |on — a0

|Un _UUl

ando(|oy, — o9l)/|on — 00| — 0 @s|o, — oo — 0.
7. If I' is differentiable at, oo € Sy, then

[l (01) = T'"(02)] < |o1 — 02]/6.

To establish this result, we consider first the case Wi&n,) — I'(02)| < 6/2.
In this case we havé’(o1) € Ty, and by symmetry™”(o2) € Ty, whereT; is the
tangent cone of; in I'(o1) with opening angley; € (0,7/2). Using the fact that

sin(ay /2) = [I'(01) — I'(02)|/20
together with the law of cosines we find

| (01) — I (02)| < V2 —2cosay (45)
= |I'(01) = I'(02)/0 < |on — 02|/,

as claimed. In the case whef(o1) — I'(02)| > 6/2 the result is still true. In
particular, the ardoy,02] C S;, may be divided into subards;, 7;41] C S.
(z = 1,...m) such thatr; are points of differentiability (which is possible since
I' is Lipschitz continuous and hence differentiable almost everywhere); 1,
09 = Tm41 and|F(7‘i) — F(Ti+1)| < 0/2 Applylng (45) to the SUbarC[S‘i,Ti_;'_l]
and summing yields the required result.

8. We can now show thdt € C1:1(Sy,R?) and that!” has Lipschitz constant
1/6.To begin, we consider first the sub@tof S, wherel is differentiable. Since
Sy is dense inS;, and by (45) the mag” : S, — R3is uniformly continuous,
we deduce that there is a unique uniformly continuous exterigios;, — R3. In
particular,V € C%1 (S, R?) with Lipschitz constant /6. To see that this implies
I e CH1(SL,R3), letog € Sy, be given and note that sindec C%1(S.,R3) is
absolutely continuous we have

[ox

P(on) = Ioo) = |

g0

' I'(r)dr = / ' V(r)dr

which implies

[(on) = Lloo) _ _ 1 /%Vhﬁh

Op — 00 Onp — 00 oo

for anyo,, # o¢. SinceV € C%1(Sy,R3) the limito,, — oq is well-defined, i.e.,
I (0y) exists and
F’(O’o) = V(O‘Q), Yoo € S

ThusI” € C%1(Sy,R3) with Lipschitz constant /6. O
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Proof of Lemma 3. 1. For any fixedso € Si, andd > Olets,, | so, P, := I'(sn),
Py :=TI'(sg) and

Cp:=C(Py,P,) :={26R® ||z~ Py| = |z — P,| =6 }.

Notice thatC', is the circle of radiug,, := \/02 — | P, — Py|?/4 centred ayy,, :=
(P, + Py)/2 and perpendicular to the unit vectd?,, — Py)/| P, — Fo|. We claim
that

distg (Cp,C(s0,0)) -0 as n — oo, (46)

where C(sg,0) is the circle defined in the statement of the lemma and
distz (A, B) denotes the Hausdorff distance [9, p. 183] between two suls&ef
R3. To establish this result, we note first that— 6 andy,, — P,. Moreover, since
Aly] > 0, we have by Lemma 2 that(P, — Py)/|P. — Pl
— I''(sp). ThusC,, converges to a circle of radidswith centreP, in the plane
perpendicular td™(sq). Since these properties completely charactefize,, 0)
the result follows.

2. Thefirstclaiminitem () isthatif\[y] > 6 > 0, thenI"(S;) N M (so,0) = 0
for all sy € Sy.. To establish this, we consider the sets

Z. = |J Bul2)

ZeCn

as in the proof of Lemma 2. We assume for contradiction that there is apaint
I'(St) N M(sg,8), which impliesdist(P, C(sg,0)) < 6. Forn € N sufficiently
large, we deduce from (46) thatst(P, C,,) < 6, which impliesP € =, and
moreover we havéP — Py| > |P, — Py|. These observations lead to the result
P e E,\I,,, where

In:= [ Bol2).

zeChy,

By exactly the same arguments as in the proof of Lemma 2, we arrive at a statement
of the form (41) withP, replaced byP, . Since this contradicts the lower bound
Alv] > 6 the first claim in item (i) must be true.

3. The second claim in item (i) is thatft(.S; ) N M (so, 0) = B forall sg € S,
then A[y] > 6. To establish this result, we assume for contradiction that
A[y] < 6 and we consider minimizing sequences o, 7, € S (Sn, On, T
mutually distinct for each) that achieved[4], i.e.,

Al] = lim R(D(s,), D(0n), I'(a)-

HereR,, := R(I'(s,), '(on), (7)) is the radius of the unique circlé,, defined

by the three distinct pointE(s,,), I'(o,) andI'(7,). (Recall thatl" is simple by
Lemma 1 and has a Lipschitz continuous tangent field by Lemma 2 dipde> 0.)
SinceSy iscompact we may assume thgt— s, 0,, — & andr,, — 7, and without

loss of generality, we have only three kinds of minimizing sequences; fa)r
distinct, (b)s £ & = 7 or (c) § = 6 = 7. We claim that sequences of type (a) need
not be considered, and those of type (b) and (c) lead to the required contradiction.
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To see that sequences of type (a) may be excluded from consideration, we
suppose that\[] is achieved by distinct parametexss and7, which correspond
to three distinct points oft. Let A denote the unique circle defined by these points
and @ the unique sphere that contaifs as a great circle. Unless the curye
is tangent taP at one of these points, we obtain an immediate contradiction, for
otherwise we may shring and find three other distinct points that define a circle
of radius smaller tham[v]. Assuming the tangency is &), the circle through
I'(3) and tangent td” at I'(7) is on®, and hence has radius less than or equal to
the great circle radius. Since this circle may be obtained as the limit of a sequence
of type (b), we conclude that[y] can never exclusively be achieved by a sequence
of type (a).

If Aly] < 6 is achieved by a sequence of type (b), then there is a circle
of radiusé = Al] that is tangent td” at I'(5) and containg(s) # I'(5).
ThusI'(s) € M(7,0)\{I'(5)} C M(a,0), which contradicts the hypothesis that
F(SL) n M(So,e) = forall so € St

If A[y] < 6 is achieved by a sequence of type (c), we also arrive at a contra-
diction. To see this, lep,, denote the centre of the circlé,, and without loss of
generality assume, < o,, < 7,. Thus

[I'(8n) = pul = |I'(0n) — Pul = [I'(70) — pn| = Rn

andR, — ¢ < 6 whered = A[y]. By applying the Mean Value Theorem to
the differentiable functionf(s) = |I'(s) — pn|?, s € [sn,0n], We deduce that
there exists_ ,, € (s,,0,) suchthatl(s_ ,,) — p, is perpendicular td” (s_ ,,).
Similarly, there exists ,, € (o,,7,) such thatl'(s; ) — p, is perpendicular
to I’ (s »). Following the same arguments as in the proof of Lemma 2 we must
havel'(s_,) € I_, andI'(s; ) € I, for n sufficiently large. Heré_ ,, is the
lens-shaped region defined bYs,,), I'(0,,) andd > 0, andl ,, defined byl"(o,,),
I'(t,)ands > 0,asinLemma2. Sina#am(l, ,,) — 0andR,, — ¢ < fitfollows
thatoy ,, := |I'(s+.n) — pn| < 6 for n sufficiently large, and we may assume that
d_n < d4p. ThisimpliesI'(s_ ) € M (54, 04.2)\{I'(s4n)} C M(54+.1,0),
which contradicts the hypothesis tHatSy ) N M (sq, 0) = 0 for all sq € Si.. Thus
we must haveA[y] > 6 as claimed.

4. To establish the claim in item (ii) we assumé¢y] > 6 and we consider any
two pointsP; = I'(s1) and P, =I'(s2) (s1,s2 € Sp) that realize the diameter,
i.e.,d:=diamI'(Sy) = |P1 — P|. Then the functiorfi () := |P1 — I'(7)| has
a local maximum at», andfo(7) := |P> — I'(7)| ats;. Sincel” € C11(Sr,R3)
we deduce that the tangent vectdt'§s, ) andI™’(s2) must be perpendicular to the
chordI'(s1) — I'(s2). Assumingd < 26 we arrive at a contradiction to item (i),
since then(s1) € M(sz,0). Thus we must havé > 26 as claimed.

5. The first claim in item (iii) is that ifA[y] > 6 > 0, then the tubular neigh-
bourhoodB, (I"(SL)) is regular as defined in Section 2.1. To show that the closest-
point projection mapll is well-defined forz € By(I'(SL)), we note that if
dist(z, I'(SL)) = 0, thenz = IT(x) is well-defined since is simple by Lemma
1.1f 0 < dist(z, I'(SL)) < 6, then there is at least one poiste Sy, such that
|z — I'(s)| = dist(x, ['(S)) sincel’(Sg) is a compact set. For any susfthe
differentiable functionf(t) := |z — I'(¢)|? has the property (t) > f(s) := 6>
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forall t € S;, where§ < 0. ThusO = f/(s) = 2(x — I'(s),I"(s)). If there were
another pointr € Sy, with f(o) = f(s) (s # o) then

I'(0) € 0B;s(x)\{I'(s)} C By(y) C M(s,0)

wherey = I'(s) + 0(x — I'(s))/|z — I'(s)|, which contradicts item (i). Hence
IIp : By(I'(SL)) — I'(SL) given by Il (z) := I'(s(x)) for x € By(I'(SL)) is
well-defined. Assuming for contradiction th&t- is not continuous, we could find
asequence,, — x € By(I'(S1)) and a constant>0 with |ITy(x,,) — I (x)| >

c. SinceI'(Sr) is compact, we may assume thdi(z,,) — p € I'(SL) with
lp— IIr(z)| > c. Using the continuity of the distance functidist(-, I'(S.)) and
the uniqueness of(z) we obtain

dist(z, I'(S1)) = | — TTr()] < |o = p| = Tim |z, — r(z,)
= lim dist(z,,, I'(S1)) = dist(z, I'(S1)),
n—oo

whichisacontradiction. Thug - is also continuous and the regularity®f(1"(Sy.))
is established.

6. The second claimin item (iii) is thati®y (I"(S 1)) is regular, them\[y] > 6 >
0. To establish this claim, we assumg(I'(Sy)) is regular which, by definition,
implies thaty is simple. We assume for contradiction tiHty] < 6, which implies
there is a poingy € S, such thapg[y](so) < 6. Then, by Definition 1, there exist
distinct pointss;, so € Sy, different froms, such that) < pg[v](so) < 6 < 0
whered = R(I'(so), '(s1),I'(s2)). Moreover, since is simple, the point$’(sy),
I'(s1) and I'(s2) are distinct. These points define a unique cir€leof radius
0, and we denote the centre 6f by p. Without loss of generality we assume
0 =59 < 81 < 89 < L and we consider the disjoint, open subarc$ pfdefined
by Dy = (80781), Fi = (81782) andEZ = (82, 80).

Sincelp — I'(s;)] = § (¢ = 0,1,2) we havedist(p,I'(Sz)) < 6 < 6
which impliesp € By(I'(SL)). Moreover, we must have the strict inequality
dist(p, I'(SL)) < ¢ since by hypothesis there is a uniqu@) € Sy, such that
dist(p, I'(SL)) = |[p — I'(s(p))|. Thuss(p) # s; (¢ = 0,1, 2) and we may assume
s(p) € Dy.

We next consider the subaf®;, = E; U {s2} U E5 so thatSy, = Dy U Dy U
{s0, 1}, and we consider the line segment betweemd(ss2), i.e.,

z(a)=(1—a)p+al(s:), «ac]l0,1].
This segment has the properties théd) = p, (1) = I'(s2),
|z(a) — ['(s2)| < |z(a) = I'(s5)], 0<a<1l (i=0,1)

andz(a) € By(I'(SL)) for 0 < a < 1. To obtain the required contradiction,
notice that
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whichimplieslI;(z(«)) # I'(s;)for0 < a <1(i = 0, 1). HoweverII(z(0)) =
I'(s(p)) € I'(Dy) andIIp(x(1)) = I'(s2) € I'(Dy). Thus the image of the line
segment:(a) under the mafI is disconnected. Since this contradicts the hy-
pothesis thaBBy (I'(S,)) is regular we must hava[y] > 6 as claimed.

7. To establish the claim in item (iv) we assume tia{(1'(S1)) is regular.
Then for eache € By(I'(Sy)) there is a unique = s(z) € S, such thafz —
I'(s)] < @ and{(xz — I'(s),I"(s)) = 0. Notice that for each point in a given
normal diskDy () := Dy (I'(s0), I’ (s0)) the pointsy has these properties, which
implies s(z) = so for all x € Dy(sp). ThusIIF(Dg(sg)) = I'(so). Assuming
for contradiction that there is a pointe By (I'(S1))\Dg(so) such thatlIr(y) =
I'(sp), wemusthavey — I'(sg), " (s0)) = 0,whichimpliesy € D,,(s0)\Da(s0)
for someyp > 6. However, for such a point we would hadést(y, I'(S.)) > 6,
which is a contradiction. The claim follows.O

Proof of Lemma 4. 1. The Sobolev embeddifig (1, R3) «— C%1~1/4(T R?)
implies uniform convergence

Yo =y in CYI,R3). (47)

Thusthe limitcurvey is closed. Because of Lemma3and (47) we kixen (I"(S1))
> 26, henceL > 0 and~ is not a single point.

2. The limit curvey is simple. If this were not the case, we could finds; €
St (s1 # s3) such thatl'(s;) = I'(s3), where we may assume without loss of
generality thaD = s; < s3 < L. Let D denote the open subarc 6f defined by
(s1,s3) of length|ss — s1| and letE denote the complementary open subarc of
lengthL — |s3 — s1|. Since the curves defined by restrictiidto D and E each
have positive length and hence positive diameter, we can find a gomtD and
a points, € E such thatl"(s2) # I'(s4), with each of these points distinct from
I'(s1). These two points may be found by considering the intersectio¥ bY)
andI'(E) with two spheres of different diameter centred &k ).

Assume without loss of generality that= s; < s5 < s3 < s4 < L, let
0 = min{ |F(31) — F(82)|,|F(81) — F(S4)|,9} and leta = t; < t3 < t3 <
ty < b be parameters such thatt;) = I'(s;) (¢ = 1,...,4). Moreover, let
o; € Sy, be the arclength parameters fgron ~,, i.e., I,(o;) = ~,(t;) and
0 =01 <09 < o3 < o4 < L,. Since each curve,, satisfies the hypotheses
of Lemma 3 we notice first thall -, is continuous o3, (I, (Sr, )). Moreover,
from (47) we deduce that there exists&irsuch that~,, (¢;) — y(t;)| < 6/8 for all
n>N(@G=1,...,4).

We next consider the line segment

z(a) = aly(o) + (1 —a)ly(o3), «€]0,1].

This segment has the property thist(z(a), I, (SL,,)) < §/4, which implies
z(a) € Bo(I,(Sr,)), foralla € [0,1] and alln > N. Thus we clearly have the
strict inequality

|z(a) — I, (x(a))] < 36/8, Va€][0,1], Vn> N.
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Since for eaclw > N we havell, (¢(0)) = I,(03) andIl, (z(1)) = I}, (01),
but
| (0;) —z(a)] > 6/2, Yael0,1], (i=2,4),

we conclude that the image of the line segmefit) under the continuous map
ITr, cannot be connected. Since this contradicts the continuiy;ofthe curvey
must be simple as claimed.

3. The limit curvey satisfies the lower bound[~] > 6. To establish this claim,
we assume for contradiction that there is a peinE Sy, such thatog[v](so) <
6. Then, by Definition 1 and the fact thatis simple, there exist distinct points
s1, 89 € Sy, different fromsg such that

[I'(s2) — I'(s0)|

- <46 (48)
2sin a

R(F(So)»F(51)7F(52)) =

wherea := J(I'(so) —I'(s1), ['(s2) —I'(s1)) € (0, 7). By (47), we can find three
distinct pointsI’, (o;) that converge td"(s;) (i = 0,1, 2). For sufficiently large:
we thus have

|l (02) — Tn(00)]
2sin ay,

R(I(00), [n(o1), [h(o2)) = <40
wherea,, := I(I,(00) — [h(01), In(o2) — I(01)) € (0, 7). Since this contra-
dicts the hypothesig\[vy,,] > 6 we must haveld[+] > 6§ as claimed. O

Proofof Lemma5. By Lemma8we may considerc N so large thaly,, —| co <
0/2, in particulary(I) C By(I3,(SL,)). It suffices to show that the projection
I, I I — I, is a bijective mapping for. sufficiently large. In fact, then we

can argue as follows: Far:= I',(c) andz’ := I} (o) there is exactly one point
p(z) € I'(S¢) suchthat=1IIr, (p(2)),i.€.,p(z) = (I, |F)—1(z). Hence we can

look at the planar open disk3y 5 (z, 2') and Dy 2 (p(2), 2) of radiusf /2 centred
atz € I,(Sr, ) andp(z) € I'(Sy) respectively, perpendicular td and define the
open neighbourhoods

N, = U Dy/s(z,2") and
z€ln(SL,)

Nn = U D9/2(p(2), Z/).
z€ln(SL,)

By Lemma 3 we readily see that, is justthe oped /2-neighbourhood of ,(S7,,,)
and by (49) belowV,, is an open neighbourhood Of(S1,) at least for larger€ N.
In fact, we can use the same argument as the one at the end of the proof showing
that the set/,, considered there is open farsufficiently large.

The desired isotopy/(I) ~ v,(I) ~ v (I) for n sufficiently large is fur-
nished by the following mapping : N,, x [0,1] — R? defined as

O(x,7) :=x+ 7|, (x) - (HFH‘F)*(HF” (z))] for zeN,,T€0,1].
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In fact, & is continuous with®(z,0) =z forall z € N,,, (N, 1) = N,,, since
&(., 1) is just the translation of the planar digk, /> (p(z), z') onto Dy /5 (2, ") for
eachzeI3,(SL, ). Moreover, for allpe I'(Sy,)

?(p,1) =p+IHr,(p) - (Up”|p)’1(ﬂrn (p)) =p+1Ir,(p) —p = Ir,(p),
hence®(I'(Sy),1) C I,(SL,) We even get equality, sindéfrnw is surjective.
The continuous inversé—1(., 7) of &(., 7) is given by

&N T) =6 —T[ I, (€) - (Hpn|p)71(17rn(§)” for £eN,,7€[0,1],
since for{ € Dy »(z, 2) one has by Lemma 3

HIr, (&) = Hr, (7[5, (€) — (Hpn|p)71(17rn(f))]) =z,

which implies®(®~1(¢,7),7) = £ This way we obtainy(I) ~ ~,(I) for n
sufficiently large and by assumption (i) als@l ) ~ ~, (I).

It remains to show thaltf . \r is bijective forn sufficiently large. We first claim
that forse Sy,

lim |(I"(s), I (0n))] = 1, (49)

n—oo

whereo, € Sp, is the unique parameter such thiag, (I'(s)) =1, (o4 ). Assuming
(49) is not true we can find sonde>0 such that for alhy €N there isn>nq such
that

(I(s), I (on(s)))| <1 0. (50)
Taking subsequences if necessary we can assume that
|10(00 () = I(s)| = dist(T(s), ) < |y = vl cosy < 1/n. (51)

LetC,, := C(on(s), 0) bethe planar circle of radids> 0 centred af, (o, (s))
perpendicular td’, (o, (s)) as introduced in Lemma 3 (i). For somes (0, 6) to
be specified later we look at the set

M, = M(0n(s),0 — €) := | ] Bo_c(2),
zeCp

and observe that
M, N B(I3,) = 0, (52)

sinceM (o, (s),0) NI, (SL, ) = 0 by Lemma 3 (i) applied te,, €G. Furthermore
the corresponding sét/ := M (s, 0) for I' atI'(s) satisfies

MO (S) = 0. (53)
But (50) implies that'’ (¢, (s)) — v€S? for n — oo with
(T'(s), )] <1=6 (54)
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Fig. 2. Two-dimensional illustration of the sétB,. (I"(s)) — M C M,,.

for some further subsequence. Together with (51) this implies
disty (C,,,C,) — 0 for n — oo, (55)

whereC, is the planar circle of radiug centred at’(s) perpendicular ta and
where dis; (., .) is the Hausdorff distance as in the previous proof.

An elementary geometric argument shows thatdor= arccos(l — d) €
(0,7/2], r := Osin(a/2), € := (1 — cos(«/2)) and the set

M, = |J By_c(2)
z€Cy
the relation(0B,(I'(s)) — M) C M,, holds, i.e. dist(y,C,) < 6 — ¢ for all
y € 9B, (I'(s))— M. Now from (55) we infer

dist(y,Cy,) < —¢ forall y € 0B, (I'(s))—M for n sufficiently large. (56)

Sincey has no double points (see Lemma 4 and 1) and is a closed continuous curve
with diam(vy(7))>26 (Lemma 3 (ii)), it must interse@B,—M by (53), say in(3)

for somese Sy,. This leads to a contradiction, since (51) implié&) € B.(I3,) for

n sufficiently large, but on the other hand by (56)5) e M,,, i.e.I'(3) & B.(I,,)

by (52). Hence (49) is proved.

Now we can show that/ , Is is injective for sufficiently large:. Otherwise

there existed infinitely many distinct integers= N and pairs of distinct parameters
S1m F Som IN S, such that

Ir,, (I'(s1m)) = Im(0m(s1m)) = Lin(om(s2m)) = 1, (I'(s2m))-
Consequently, ifn is chosen large enough,

[T (s1m) = I'(sam)| < [(s1m) = I, (I'(s1m))| + [, (I'(s52m)) = I'(52m)]
<2ly = ml < 2/m. (57)
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In addition, we have by the proof of Lemma 3 (iii)
T(s1m) — I'(sam) L I (0m(S1m))- (58)

A simple geometric observation using (49),(57), (58) now showsTthad,, ) €
M (s1m, 0) for m sufficiently large, contradicting Lemma 3 (i), which is applicable
to I" by Lemma 4.

Finally we are going to prove theﬂIFn‘F is surjective. We consider the set

Jn = {0 €Sy, |Ih(o)eIlr, (I'(Sy))} and claim that/,, = Sy, for n large
enough. Since both'(Sy,) and I3,(Sy, ) are compact, there is at least one pair of
points(x, z,)€I'(Sy) x I,(SL, ) such that,,=IIr, (x), hencel, # 0.

J,, is also closed, because for a convergent sequepcer o,0; € J, we
have a sequencg € S, with I,(0;)=1II,(I'(s;)). For a subsequence one has
s; — s€ S, hence by continuity we arrive dt, (o) =11, (I'(s)), i.e.c€J,. In
order to show that/,, is open, we observe by Lemma 3 (iv) that we can rewfjte
as

Jp={0€SL, | [nw(o)=IIr,(I' N\ Dy(L(0), I (0)))},

? n

where Dy (I, (o), I} (o)) denotes the planar disk of radidsperpendicular to
I'! (o) centred atl}, (o). Now (49) implies that, fom sufficiently large,I” inter-
sectsDy (I, (o), I}, (o)) transversely. Consequently, we havg(1, (7), I} (7)) N
I'(Sp) # 0 forall €S, with |0 — 7| sufficiently small andh sufficiently
large, sincd, is Lipschitz continuous. Hencg, is open, which finishes the proof

thatJ, =S, i.e. I, \r is surjective fom sufficiently large. O

n?

6.2. Proofs for Section 3

Proof of Lemma 6. To each framed curve@d, D) € W4 x WP we can asso-
ciate a uniquev = w(vy, D) € X{"? given by (10) as follows. The first equation

in (10) is obtained by differentiating the map— D(s)D(sq)~! ats = s, and
observing that the tangent space to the manif$i23) ¢ R3*? at the identity

is the set of skew matrices [14, Il, Ch.17]. The second equation in (10) is just the
representation of’(s) in the frameD(s). Solving these two equations farandv

leads to the result

3
Z Eijk<d;7dk> and Vi = <’y/7di> (Z = 1,2,3).
jik=1

U; =

Heree; i, = (e;, e A eg) is the permutation symbol wheeg is the standard basis
for R3. Conversely, givem = (u,v,vo, Do) € X4*?, theinitial value problem (10)
for the frame field has a unique absolutely continuous solutloa (d;|dz|ds3) €
Whr(I,R3*3), seee.g., [15, p. 193] or [33, vol.II, p. 1043]. In addition, sifb@)

is continuous and

d > & .
<k, di) = (1D widi] Ady,dy) + (., [;uidi] Ad)) =0 ae.inl,

i=1
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we deduce thaD(s) € SO(3) for eachs € I. Notice that standard existence
results guarantee only a local solution f0(s). However, since orthonormality
implies boundedness, local solutions can be continued to &, 6f. OnceD(s)
is known, the initial value problem fey may be solved by quadrature, namely

3 s
Y(s)=r0+ Y / op(T)dy(T)dr. O
k=1"¢

Proof of Lemma 7. 1. Notice first thaty € G and A[y] > 0, hencey possesses
an arclength parameterizatidn € C1!(Sy,R?) by Lemma 2. Moreover, since
|v'| = |vs| > 0, there is a bijection betweene [a, b) ands € [0, L). Notice also
that, for each fixed € [a,b), the mapp(, -, ) is injective and that the image of
p(t, -, ) is the open diskDy (I'(s(t)), "' (s(t))) as considered in Lemma 3.

2. Ouir first claim is that ifA[y] > 6, thenp : 2y — R? is globally injective.
To see this, assume for contradiction thatoes not have this property. Then there
existsty, ta € [a,b) (t1 # t2), with corresponding arclength parameters# s,
such thatDy (I"(s1), I (s1)) N De(I'(s2),I"(s2)) # 0. We denote by any point
inthis intersection. Sincd[y] > 6 we may apply Lemma 3 (iii) to conclude that the
projectionI : By(I'(SL)) — I'(Sy) is single-valued, and apply Lemma 3 (iv)
to conclude thafl(x) = I'(s1) andII(x) = I'(s2), which is a contradiction.
Thusp : 29 — R? must be globally injective.

3. Our second claim is thatjif: 29 — R? is globally injective, themA[y] > 6.
To see this, assume for contradiction that A[y] < 6 and consider anysuch that
Aly] < n < 0. Thenby Lemma 3 (i) there is a parameteie Sy, suchthaf(S,)N
M (s.,n) # 0. This implies there is a point. € C(s,,n) = 0D, (I'(sx), " (s4))
such thatdist(z., I'(S)) < n. By compactness, there is a poifi{s) such that
dist(z., I'(SL)) = |z« — I'(5)], ands # s, since|z, — I'(8)| < n. Moreover,
(z« — I'(3),I'"(5)) = 0. Sincen < 6 we havez, € Dy(I'(5),I"(5)) and also
2. € Dy(I'(s4), I"(s4)), Which contradicts the global injectivity @f: 2, — R3.
ThusA[y] > 6 as claimed. O

Proof of Theorem 1. SinceC # () we may assume there is sontec C with
E(@) < oo; otherwise, anyw € C will satisfy (13) with infinite energy. Thus, any
minimizing sequencéwy, }nen = {(Un, Vn,Y0,n, Do.n) tnen C C stays bounded
in XP¢ since
n11_>1r010 E(w,) = ul;relfc E(w) < E(W) < cc.

To see this, notice that condition (W3) guarantees in all three cases (i)-(iii) that
|lwn||» @and|jv,||La are uniformly bounded for alt € N. Moreover,SO(3) is
compact inR3*3 and, by assumptiorky .| < cforalln € N.

Since{w,} is bounded and the spacé&?? (p,q > 1) is reflexive, there is
a weakly convergent subsequencg, — w, € XP4. In particular, we have
(unk ) vnk) - (u*v ’U*) € LP(I7 Rj) XLq(Ia Rd) and(’YO,nk ’ Dovnk) - (FYO,*7 DO,*)
€ R3 x SO(3) ask — oo. Moreoverw, € C becaus& is weakly closed. Since
conditions (W1)-(W3) imply thal’ is weakly lower-semicontinuous o¥i*? (see,
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e.g., [5, Thm.3.4, p. 74]), we dedud®(w.) = inf,cc E(w). ThusE attains a
global minimum at the poinb, € C. O

Proof of Lemma 8. 1. Givenl < p,q < oo and{w,} C X! we are assuming
wy, — w in X7 wherew,, = (un, Un, Yo n, Do,n) andw = (u, v, v, D). Notice
first that, sinceD,,, € SO(3) C R**3 andDy,, — Do we haveD € SO(3).
This implies thatw € X!*? as claimed.

2.1n (14) we claim that weak convergence of the shape and placement variables
w, implies convergence i@° of the framed curve$y,,, D,,). To establish this
result, we note first that,, — w in L? (I, R?) implies there is a constaat-0 such
that||u,||z» < ¢ < oo for all n € N. Letd, ,, denote the first column ab,,, d;
the first column ofD, and consider ang;, € (a,b) such thatt, — a| < (3¢)~*"
wherel/p* + 1/p = 1. Then, by continuity, there is@, € [a, t;] such that

‘dl,n(an) —di(o,)] = g[léﬂf] |d1,n(T) — di(7)|, (59)

and by compactness we can find a subsequence (keeping therirfdexonve-
nience)o,, — o € [a, t1]. From (59) and an integrated version of (10) we obtain

ld1,n — dillco((a,n),r3) = [d1n(on) — di(on)]
on 3
d, + / [Z ui7n(r)di7n(r)‘| Ady (7 dr
a i=2

On 3
—d? — / [Zui(T)di(T)] Ady (1) dr
a 1=2

wheredy ,, denotes the first column ab,,, and so on. Expanding the vector
products, rearranging terms and applying the triangle inequality leads to

ld1,n — dallco(ae,re) < |dY,, — dY|

| [ ()~ ualr)lda(r) + fua(r) = e (D))} dr

+

[ s dan(7) = o)) + 0 (D7) = (7))}

Sinceu,, is bounded inL? this implies
||d1,n - leCO([mh]}R?’) < |d(1J,n - d(1)|

b
+ / {[us.n (1) —us(T)lda(7) + [ua(T) — u2,n(7)ld3(T)} Xia,o)(T) dT

3
+lon = al"" lunlle Y lldin — dillcoga,ez),

=2
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and by choice of; ando,, we obtain

|d1n = dillcoa,),re) < |dY ,, — dY|

b
+ / {[us,n(7) — us(7)ld2(7) + [uz(7) — u2,n(7)]d3(7)} Xa,0,,)(T) dT

1
+ 3 Z Hdzn - diHC’O([a,tl],R?’)
=2
(60)
wherex|, .| is the characteristic function for the interyal o,,]. By Lebesgue’s
theorem of dominated convergence we have

dQX[a,U,,L] — dQX[a,a] and d3X[a,o’,L] — d3X[a,U] in Lp* (Ia RB)
Using this result, together with the facts that — w in L? andd? ,, — d}, we

deduce from (60) that for any> 0 there is anV such that
1 3
ld1,n — dillco((a,t]r8) < 3 Z |din — dillco((a,t,),r3) +€/9, ¥n > N.
1=2
Taking further subsequences, we can deduce analogous inequalitié$; for-
dillco((a,t,1,r3) (@ = 2,3), which after summation gives

3 3
2

Z l|din — dillco((a,t),r3) < 3 Z l|din — dillcola,e),re) +€/3

i=1

i=1
and consequently

3

> ldim = dillcoayzs) <€ Yn > N. (61)

=1
This implies convergence on the subintervak, ]. However, we can then consider
anyt, > t; such thaft, —t;| < (3¢)~?", and usingl; ,,(t;) instead ofd?,, and
S0 on, we can obtain an estimate analogous to (61),0t,]. Hence, after finitely
many steps, we cover the intenfak= [a, b] and obtainD,, — D in C°(I, R3*3)
for some subsequence.

Continuing with the subsequence(ef,, D,,) found above, we can find for each

n a parametes,, € [a, b] such that

|7n(8n) - V(Sn)| = Inax |’7n(7—) - V(T)l' (62)

T€[a,b]

By compactness, we can extract a further subsequence (again indicatesiumh
thats,, — s € [a, b]. From (62) and an integrated version of (10) we obtain

I = Yo @ rey = [1n(sn) = v(sn)]

Sn 3 Sn 3
Yon + / Z Ve (T)dp o, (7) dT — 70 — / Z vg(7)dg (7) dT
@ k=1 @ k=1

35
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Rearranging terms, applying the triangle inequality and employing the character-
istic function forla, s, leads to

H'Yn - 'YHCO RS) >~ "YO n '70‘

+Z
+Z

Vg n dk n( ) dk (T)} X[(L,Sn] dr

)

Uk n — Uk (T)]dk (T) X[a,sn] dr

and since the subsequenbg converges irC° we obtain

7 = Yoz rsy < o — Y0l + [|Dn = Dllcoz axsy [|vnllr(rre)
+Z

For each: = 1,2, 3 we have as before that

(63)

/ Vg, n — ’Uk(T)}dk(T) Xa,sn] dr|.

dk:X[a,sn] — de[aA,s] in Lq* (I7 RB)

wherel/q*+1/q = 1. Thus, we conclude that the right-hand side of (63) converges

to zero asw — oo. Hencey,, — v in C°(1,R?) for some subsequence. Since the

previous arguments apply to any subsequendewf} ey C X359, and the same

limits D and~ are obtained, the whole sequence must satisfy (14) as claimed.
3.In (15) we claim that weak convergence of the shape and placement variables

w,, implies weak convergence !¢ x Wh» of the framed curvesy,, D,,). To

see this, we multiply (10) by an arbitrary elemerg L (I,R?) (1/¢* —|—1/q =1)

and integrate to obtain

/, (), 9(r)) dr = / kz Vdin(r)g(r))dr.  (64)

Since by (14) we havédy ,,, g) — (dx,g) in L9 (I,R), and by assumption we
havevy, , — v in LY(I,R) for k = 1,2, 3, we obtain

/ (7). g(r)) dr — / (), g(r))dr, Vg€ L9 (I,RY).
I I

This impliesy/, — +/ in L4(I,IR?). Moreover, by (14), we also havg, — v in
L4(I,R3). This readily implies that,, — ~ in W4 as claimed. By applying the
same reasoning tb,, the result (15) is established
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Proof of Lemma 9. To establish the result fat';, we note first that a sequence
{wn }nen C Cy that converges strongly,, — w in X?*¢ contains a subsequence
{Wn, ren C C1 such thatw,,, (s) — w(s) fora.e.s € I. SinceK (s) is closed for
a.e.s € I, we havew(s) € K(s) for a.e.s € I, which impliesw € C;. ThusCy

is strongly closed. Furthermoré€; is convex sincds (s) is convex for a.es € I.
Thus( is also weakly closed [23, Thm 3.12] as claimed. The resulffdiollows
directly from Lemma 8. O

Proof of Lemma 10. The elements) € SO(3) can be represented by a vector
£(Q) € R? where the direction of (Q) describes the rotation axis and the length
of £(Q) gives the rotation angle ifi-m, 7]. In a neighbourhood of the identity
in SO(3), the mapping? — £(Q) € R? is uniquely defined and continuous as
well as the inversio — Q(&) € SO(3). In particular, we hav&)(£(Q)) = Q,
&(Id) = 0 € R?* andQ(0) = Id € SO(3). By Lemma 8, we havev € X}
andD,, — D in C°, which impliesD(a) = D,(a) and D(b) = D,,(b) for all

n € N sinceD,, ~ D;. Furthermore, the continuity afi — A~' in GL(3)
(Cramer’s Rule) implies thab(s) D,,(s) ! is continuous ins and uniformly close
to the identity for alln € N sufficiently large. With this in mind, we consider the
homotopy map

W(s,7) := Q(TE(D(5)Dp(8) 1)) Dy(s), s€[a,b], 7€][0,1].

Notice that¥(s,0) = D, (s) and¥(s,1) = D(s) for all s € [a,b], and that
¥ : [a,b] x [0,1] — SO(3) is continuous. Moreover, it is straightforward to show
that¥(a, ) = D, (a) and¥ (b, 7) = D, (b) for all 7 € [0, 1]. Hence,D ~ D, for

all n sufficiently large. Sincé,, ~ D, for all n € N we conclude thab ~ D; as
claimed. O

6.3. Proofs for Section 4

Proof of Equation (21). Sincey’ =wvsds for the unshearable extensible case, the
arclength ofy is given by

t
la,] 5 ¢ s s(t) = / vs(r) dr € [0, L.
This map is strictly monotone by (18), hence invertible. Denoting the inverse func-

tion by : [0, L] — [a, b], we form the compositiod” := yo 7 : [0, L] — R3 and
compute the derivatives

I'(s) =7 (1(s)) 7=7(s) = v3(7(s))ds(7(s)) ) d3(7(s))
d , 1

I (s) = dy(r(5)) o (5) = () o

From (10) we deducé; = —u1ds + usdy, which proves the formulas far” and
the curvatures given in (21). O
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Proofof Theorem 2. LetC bethe subsetofelementsc X} ¢ X?,q € (1, 0),

that satisfy conditions (25)-(28), which by assumption is non-empty. We claim that
C is weakly closed. To see this, notice that Lemma 9 (ii) applies to condition (25),
Lemma 8 and Lemma 4 apply to condition (26), Lemma 5 applies to condition (27)
and Lemma 10 applies to condition (28), which establishes the claim. The exis-
tence result now follows from Theorem 1 (ii), which is applicable since conditions
(W1)-(W3) are satisfied with, = 0 and~y = 0. The regularity statement follows
from Lemma 2 by (26) and from/'[w] = d3[w] € W1P(I,R3). O

Proof of Theorem 3. The result follows from Theorem 1 (i) and arguments similar
to those used in the proof of Theorem 23

6.4. Proof of Theorem 4

Let C be the subset of elemenis € X{ C X7 that satisfy the conditions in
(38). Notice thatC' is non-empty by assumptior(= w|?] is in this set), and by
Lemmas 9 (ii), 4 and 5, it is also weakly closed. Moreover, for any ¢ < oo,
notice that the modified energy

b
E,(w) :z/ lv(o)|? do

has a minimizew, € C'. This follows from Theorem 1 (iii).

We claim thatw, also minimizes the desired ener@}w). To see this, con-
sider anyw; € C, lety; = ~[w;] be the corresponding curve with arclength
parameterizatiod’; and define an auxiliary curve

Y2(7) := T (La(T — a)/(b—a)), 7€ [a,b],
whereL; := f;’ |v1(0)] do = E(w;). Notice thatL; < oo sincey; € L9,
L1 o E(wl)

d
%72(7”: b—a b—a

and thatw, = w[y:] is also inC'. Using the definitions of andE,, together with
Holder’s inequality, we have

b q
[B(w.))t == [ / mmwl

b
<G-ar [ piedr = 0 -0t Ey )
Moreover, sincewv, is a minimizer ofE, and|v;| = E(w1)/(b — a) is constant,
we obtain
[B(w.)]? < (b= a)"™ Eg(w.) < (b—a)"" By(wz) = [E(w1)]!.

Since this inequality holds for arbitrary; € C we conclude thatv, € C is
a minimizer of E as claimed. The regularity statement thiate C11(S.,,R3)
follows from Lemma 2. O
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