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ON STABLE, COMPLETE, AND SINGULARITY-FREE BOUNDARY
INTEGRAL FORMULATIONS OF EXTERIOR STOKES FLOW∗
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Abstract. A new boundary integral formulation of the second kind for exterior Stokes flow is in-
troduced. The formulation is stable, complete, singularity-free, and natural for bodies of complicated
shape and topology. We prove an existence and uniqueness result for the formulation for arbitrary
flows and illustrate its performance via several numerical examples using a Nyström method with
Gauss–Legendre quadrature rules of different order.
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1. Introduction. In this article we study boundary integral formulations of ex-
terior Stokes flow problems around arbitrary bodies with prescribed velocity data.
For such problems it is well known that a formulation based on either of the classic
single- or double-layer Stokes potentials is inadequate [29, 30]. A formulation based
on the single-layer potential leads to a boundary integral operator which is unstable
in the sense that its condition number is unbounded and incomplete in the sense that
its range is deficient. Consequently, such a formulation is not optimal for numerical
discretization and not capable of representing an arbitrary exterior flow. A formula-
tion based on the double-layer potential leads to a boundary integral operator which
is stable in the sense that its condition number is bounded but which is incomplete—
even more so than the single-layer potential. Thus, in contrast to the single-layer
case, a double-layer formulation is optimal for numerical discretization, but like the
single-layer case, it is not capable of representing an arbitrary exterior flow.

Various authors have shown that a double-layer formulation can be modified so
as to obtain completeness while retaining stability [14, 18, 20, 26, 28]. In Power and
Miranda [28] it was shown that a complete formulation can be obtained by adding two
classic singular flow solutions (a stokeslet and rotlet) to the double-layer potential,
where the poles of the singular solutions are coincident and placed at an arbitrary
location within the body. In Hebeker [14] it was shown that a complete formulation
can be obtained by simply taking a positive linear combination of the classic single-
and double-layer potentials. The approach of Power and Miranda has the desirable
feature of being singularity-free in the sense that it leads to an integral equation
involving only bounded integrands. In contrast, the approach of Hebeker leads to
an integral equation with unbounded integrands. On the other hand, the approach
of Power and Miranda is not natural for flows around bodies of complex shape or
topology for which there is no distinguished point for the stokeslet and rotlet pole.
In contrast, the approach of Hebeker is natural for flows around bodies of arbitrary
shape.
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Here we introduce a new boundary integral formulation for exterior Stokes flow
which combines the strengths of the Power and Miranda and the Hebeker formu-
lations. The new formulation is stable, complete, singularity-free, and natural for
bodies of complicated shape and topology. The formulation is made complete by
virtue of a positive linear combination of single- and double-layer potentials and is
made singularity-free by mapping the single-layer potential onto an appropriate par-
allel surface. We prove an existence and uniqueness result for the formulation for
arbitrary flows and illustrate its performance via several numerical examples using a
standard Nyström method based on Gauss–Legendre quadrature rules. Our results
show that a standard method applied to the singularity-free formulation provides
a simple and viable alternative to specialized methods required by classic formula-
tions.

Classic boundary integral formulations of the Stokes equations involve weakly sin-
gular kernels that require special treatment. Such formulations can be treated with
variants of the Nyström method which employ kernel-adapted product integration
rules [3, 19] or coordinate transformations and projections which effectively remove
the singularity [33]. Several types of Galerkin and collocation methods [3, 5, 6, 19]
can also be applied to these formulations, as well as spectral Galerkin [2, 10, 12] and
wavelet-based methods [1, 21, 32]. However, these approaches generally require basis
functions that may be difficult to construct or which may exist only for certain classes
of geometries. Moreover, they require special techniques for computing weakly singu-
lar integrals, which can be expensive. Here we show that such issues associated with
classic formulations can be avoided in a simple and efficient way by a straightforward
discretization of the singularity-free formulation.

The presentation is structured as follows. In section 2 we outline the Stokes equa-
tions for the steady flow of an incompressible viscous fluid in an exterior domain. In
sections 3 and 4 we establish notation and collect several results on singular solutions
and surface potentials for the Stokes equations that will be employed throughout our
developments. In sections 5 and 6 we summarize, for purposes of comparison, the
Hebeker and the Power and Miranda formulations of the exterior Stokes problem and
highlight several of their properties. In section 7 we introduce our new formulation
and establish its solvability properties for arbitrary data. In section 8 we describe a
numerical discretization of our formulation using a standard Nyström method with
an arbitrary quadrature rule. In section 9 we illustrate our approach with numerical
examples and summarize our conclusions.

2. The exterior Stokes problem. In this section we define the boundary-value
problem that we will study. We briefly outline standard assumptions which guarantee
existence and uniqueness of solutions, and we introduce various flow quantities of
interest that will be used to understand the properties of different boundary integral
formulations.

2.1. Problem formulation. We consider the steady motion of a body of ar-
bitrary shape through an incompressible viscous fluid at a low Reynolds number.
In a body-fixed frame, we denote the body domain by B, the fluid domain exterior
to the body by Be, and the body-fluid interface by Γ . Given a body velocity field
v : Γ → R

3, the basic problem is to find a fluid velocity field u : Be → R
3 and pressure

field p : Be → R which satisfy the classic Stokes equations, which in nondimensional
form are
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(2.1)
Be

B

Γ

ui,jj − p,i = 0, x ∈ Be,
ui,i = 0, x ∈ Be,
ui = vi, x ∈ Γ,
ui, p→ 0, |x| → ∞.

Equation (2.1)1 is the local balance law of linear momentum for the fluid and
(2.1)2 is the local incompressibility constraint. Equation (2.1)3 is the no-slip boundary
condition which states that the fluid and body velocities coincide at each point of the
boundary. The limits in (2.1)4 are boundary conditions which are consistent with
the fluid being at rest at infinity. Unless mentioned otherwise, all vector quantities
are referred to a single basis and indices take values from one to three. Here and
throughout we will use the usual conventions that a pair of repeated indices implies
summation and that indices appearing after a comma denote partial derivatives.

2.2. Solvability. We assume B∪Γ ∪Be fills all of three-dimensional space, B is
open and bounded, and Be is open and connected. Moreover, we assume Γ consists
of a finite number of disjoint, closed, bounded, and orientable components, each of
which is a Lyapunov surface [13]. These conditions on Γ imply that standard results
from potential theory for the Stokes equations may be applied [20, 26, 29]. Moreover,
together with the continuity of v, they are sufficient to guarantee that (2.1) has a
unique solution (u, p) with the following decay properties [9, 20]:

(2.2) ui = O(|x|−1), ui,j = O(|x|−2), p = O(|x|−2) as |x| → ∞.

The solution (u, p) is smooth in Be but may possess only a finite number of bounded
derivatives in Be ∪ Γ depending on the precise smoothness of Γ and v.

2.3. Basic flow quantities. The volume flow rate associated with a flow (u, p)
and a given oriented surface S is defined by

(2.3) Q =
∫

S

ui(x)ni(x) dAx,

where n : S → R
3 is a given unit normal field and dAx denotes an infinitesimal area

element at x ∈ S. When S is closed and bounded, we always choose n to be the
outward unit normal. In this case, Q quantifies the volume expansion rate of the
domain enclosed by S.

The fluid stress field associated with a flow (u, p) is a function σ : Be → R
3×3

defined by

(2.4) σij = −pδij + ui,j + uj,i,

where δij is the standard Kronecker delta symbol. For each x ∈ Be the stress tensor
σ is symmetric in the sense that σij = σji. The traction field f : S → R

3 exerted by
the fluid on a given oriented surface S is defined by

(2.5) fi = σijnj .

The resultant force F and torque T , about an arbitrary point c, associated with f are

(2.6) Fi =
∫

S

fi(x) dAx, Ti =
∫

S

εijk(xj − cj)fk(x) dAx,
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where εijk is the standard permutation symbol. As before, when S is closed and
bounded, we always choose n to be the outward unit normal field. In this case, F and
T are loads exerted on S by the fluid exterior to S.

For convenience, we assume all quantities have been nondimensionalized using a
characteristic length scale � > 0, a velocity scale ϑ > 0, and a force scale μϑ� > 0,
where μ is the absolute viscosity of the fluid. The dimensional quantities correspond-
ing to {x, u, p, v} are {�x, ϑu, μϑ�−1p, ϑv}, and the dimensional quantities correspond-
ing to {Q, σ, f, F, T} are {ϑ�2Q,μϑ�−1σ, μϑ�−1f, μϑ�F, μϑ�2T }.

3. Singular solutions of the Stokes equations. In this section we outline
various classic singular solutions of the homogeneous, free-space Stokes equations

(3.1)
ui,jj − p,i = 0, x �= y,
ui,i = 0, x �= y,
ui, p→ 0, |x| → ∞.

Here y is a given point called the pole of the solution. Various representations of the
solution of (2.1) can be derived and understood in terms of these solutions and their
properties. Notice that, by linearity, any multiple or linear combination of solutions
of (3.1) is also a solution where defined. In what follows, we let z = x− y and r = |z|,
and we let Sint and Sext denote the interior and exterior domains associated with
a given closed, bounded surface S. The notation and results outlined here will be
employed throughout our developments.

3.1. Point-source solution. The point-source solution is defined by ui = UPS
i ,

p = ΠPS, σik = ΞPS
ik , where

(3.2) UPS
i =

zi

r3
, ΠPS = 0, ΞPS

ik =
2δik
r3

− 6zizk

r5
.

This solution may be derived from (3.1) by making the ansatz ui = φ,i and p = 0
for some radially symmetric function φ [30]. The resultant force F , torque T about
an arbitrary point c, and volume flow rate Q associated with an arbitrary closed,
bounded surface S can be found by direct computation and depend on the relative
location of the pole y. When y ∈ Sext the divergence theorem and (3.1) can be used
to show that the relevant integrals over S all vanish. When y ∈ Sint the divergence
theorem and (3.1) can be used to transform the relevant integrals over S into integrals
over an arbitrary sphere in Sint centered at y, which can then be evaluated directly.
The results are

(3.3)
Fi = 0, Ti = 0, Q = 4π, y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

3.2. Point-source dipole solution. The point-source dipole solution is de-
fined by ui = UPSD

ij gj, p = ΠPSD
j gj , σik = ΞPSD

ikj gj, where gj is an arbitrary vector
independent of x and

(3.4)
UPSD

ij :=
∂

∂yj
UPS

i = −δij
r3

+
3zizj

r5
, ΠPSD

j :=
∂

∂yj
ΠPS = 0,

ΞPSD
ikj :=

∂

∂yj
ΞPS

ik =
6(δikzj + δijzk + δkjzi)

r5
− 30zizkzj

r7
.

This solution is implied by the solution in (3.2) and the linearity of (3.1). The resultant
force F , torque T about an arbitrary point c, and volume flow rate Q associated with
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an arbitrary closed, bounded surface S can be computed as previously described. The
results are

(3.5) Fi = 0, Ti = 0, Q = 0, y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

3.3. Point-force solution: Stokeslet. The point-force solution is defined by
ui = UPF

ij gj, p = ΠPF
j gj , σik = ΞPF

ikjgj , where gj is an arbitrary vector independent
of x and

(3.6) UPF
ij =

δij
r

+
zizj

r3
, ΠPF

j =
2zj

r3
, ΞPF

ikj = −6zizkzj

r5
.

Up to a normalizing constant, this solution corresponds to the classic fundamental
solution of (3.1) and can be derived using the technique of Fourier transforms [20, 30].
It is typically referred to as a stokeslet. The resultant force F , torque T about an
arbitrary point c, and volume flow rateQ associated with an arbitrary closed, bounded
surface S can be computed as previously described. The results are

(3.7)
Fi = −8πgi, Ti = −8πεijk(yj − cj)gk, Q = 0, y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

3.4. Point-force dipole solution: Stresslet, rotlet. The point-force dipole
solution is defined by ui = UPFD

ijl gjl, p = ΠPFD
jl gjl, σik = ΞPFD

ikjl gjl, where gjl is an
arbitrary tensor independent of x and

(3.8)

UPFD
ijl :=

∂

∂yl
UPF

ij =
δijzl − δilzj − δjlzi

r3
+

3zizjzl

r5
,

ΠPFD
jl :=

∂

∂yl
ΠPF

j = −2δjl

r3
+

6zjzl

r5
,

ΞPFD
ikjl :=

∂

∂yl
ΞPF

ikj =
6(δilzkzj + δklzizj + δjlzizk)

r5
− 30zizkzjzl

r7
.

This solution is implied by the solution in (3.6) and the linearity of (3.1). By
considering the decomposition gjl = gsym

jl + gskw
jl , where gsym

jl = 1
2 (gjl + glj) and

gskw
jl = 1

2 (gjl−glj), and by using the parameterization gskw
jl = 1

2εjmlg
vec
m , we find that

the point-force dipole solution can be decomposed as

(3.9)
UPFD

ijl gjl = −UPS
i δjlg

sym
jl + USTR

ijl gsym
jl + UROT

im gvec
m ,

ΠPFD
jl gjl = −ΠPSδjlg

sym
jl +ΠSTR

jl gsym
jl +ΠROT

m gvec
m .

Here (UPS
i , ΠPS) is the point-source solution given in (3.2) and (USTR

ijl , ΠSTR
jl ) and

(UROT
im , ΠROT

m ) are detailed below. By linearity, and the fact that gsym
jl and gvec

m are
independent, we deduce that each of these pairs provides an independent solution of
(3.1).

Stresslet solution. The stresslet solution is ui = USTR
ijl hjl, p = ΠSTR

jl hjl, σik =
ΞSTR

ikjl hjl, where hjl is an arbitrary tensor independent of x and

(3.10)
USTR

ijl =
3zizjzl

r5
, ΠSTR

jl = −2δjl

r3
+

6zjzl

r5
,

ΞSTR
ikjl =

2δikδjl

r3
+

3(δijzkzl + δilzjzk + δjkzizl + δlkzizj)
r5

− 30zizjzkzl

r7
.
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Due to the symmetry of the above functions in the indices j and l we notice that
only the symmetric part of hjl contributes to the solution in concordance with (3.9).
The resultant force F , torque T about an arbitrary point c, and volume flow rate Q
associated with an arbitrary closed, bounded surface S can be computed as previously
described. The results are

(3.11) Fi = 0, Ti = 0, Q = 4πhjj , y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

Rotlet (or couplet) solution. The rotlet solution is ui = UROT
ij hj , p = ΠROT

j hj ,
σik = ΞROT

ikj hj , where hj is an arbitrary vector independent of x and

(3.12) UROT
ij =

εijlzl

r3
, ΠROT

j = 0, ΞROT
ikj =

3(εiljzkzl + εkljzizl)
r5

.

The resultant force F , torque T about an arbitrary point c, and volume flow rate Q
associated with an arbitrary closed, bounded surface S can be computed as previously
described. The results are

(3.13)
Fi = 0, Ti = −8πhi, Q = 0, y ∈ Sint,
Fi = 0, Ti = 0, Q = 0, y ∈ Sext.

Remarks 3.1.

1. It can be shown that all higher-order point-source solutions beginning with
the dipole can be expressed in terms of the point-force solution [30]. In
particular, we have

UPSD
ij = −1

2
∂2UPF

ij

∂yk∂yk
, ΠPSD

j = −1
2
∂2ΠPF

j

∂yk∂yk
.

Thus the family of higher-order point-source solutions is contained within the
family of higher-order point-force solutions.

2. One approach to solving the boundary-value problem in (2.1) is to consider
a linear combination (discrete or continuous) of singular solutions with poles
placed arbitrarily within the body domain B. The coefficients in the combina-
tion are then determined by enforcing the boundary condition on Γ . However,
because arbitrary boundary conditions can in general not be satisfied exactly
in this approach, it yields only approximate solutions of (2.1) [7, 30]. For
example, slender-body theory is based on this approach [4, 15, 17].

3. A related approach to solving (2.1) is to consider a linear combination of
singular solutions with poles distributed continuously over the surface Γ .
The density of the distribution is then determined by enforcing the boundary
condition on Γ . This approach leads to the classic theory of surface potentials
for the Stokes equations and yields exact representations of the solutions of
(2.1) [20, 26, 29, 30].

4. Surface potentials for the Stokes equations. In this section we outline
the classic single- and double-layer surface potentials for the Stokes equations and
summarize their main properties. All the boundary integral formulations that we will
study are based on these potentials. In what follows Γ is an arbitrary closed, bounded
surface with interior domain B and exterior domain Be, as described in section 2.
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4.1. Definition. Let ψ : Γ → R
3 be given. Then by the Stokes single-layer

potentials on Γ with density ψ we mean

(4.1)
Vi[Γ, ψ](x) =

∫
Γ

UPF
ij (x, y)ψj(y) dAy ,

PV [Γ, ψ](x) =
∫

Γ

ΠPF
j (x, y)ψj(y) dAy,

and by the Stokes double-layer potentials on Γ with density ψ we mean

(4.2)
Wi[Γ, ψ](x) =

∫
Γ

USTR
ijl (x, y)ψj(y)νl(y) dAy ,

PW [Γ, ψ](x) =
∫

Γ

ΠSTR
jl (x, y)ψj(y)νl(y) dAy.

Here (UPF
ij , ΠPF

j ) is the point-force or stokeslet solution in (3.6) with pole at y,
(USTR

ijl , ΠSTR
jl ) is the stresslet solution in (3.10) with pole at y, and ν is the unit

normal field on Γ directed outwardly from B. All densities ψ will be assumed con-
tinuous.

4.2. Analytic properties. For arbitrary density ψ the single-layer potentials
(V [Γ, ψ], PV [Γ, ψ]) and double-layer potentials (W [Γ, ψ], PW [Γ, ψ]) are smooth at each
x /∈ Γ . Moreover, by virtue of their definitions as continuous linear combinations of
stokeslets and stresslets, they satisfy the homogeneous Stokes equations (2.1)1,2,4 at
each x /∈ Γ .

For arbitrary ψ the functions V [Γ, ψ] and W [Γ, ψ] are well defined for all x ∈
B ∪ Γ ∪ Be. For x ∈ Γ the integrands in (4.1)1 and (4.2)1 are unbounded functions
of y ∈ Γ , but the integrals exist as improper integrals in the usual sense [13] provided
that Γ is a Lyapunov surface. The restrictions of V [ψ, Γ ] and W [ψ, Γ ] to Γ are
denoted by V [ψ, Γ ] and W [ψ, Γ ]. These restrictions are continuous functions on
Γ [20]. Moreover, for any x0 ∈ Γ the following limit relations hold [20, 29, 30]:

lim
x→x0
x∈Be

V [Γ, ψ](x) = V [Γ, ψ](x0),(4.3)

lim
x→x0
x∈B

V [Γ, ψ](x) = V [Γ, ψ](x0),(4.4)

lim
x→x0
x∈Be

W [Γ, ψ](x) = αψ(x0) +W [Γ, ψ](x0),(4.5)

lim
x→x0
x∈B

W [Γ, ψ](x) = −αψ(x0) +W [Γ, ψ](x0).(4.6)

Here α is a constant that depends on the choice of normalization of the stresslet
solution (3.10). For our choice we have α = 2π. Notice that, by continuity of ψ and
W [Γ, ψ], the one-sided limits in (4.5) and (4.6) are themselves continuous functions
on Γ .

In contrast to the case with V [Γ, ψ] and W [Γ, ψ], for arbitrary ψ the functions
PV [Γ, ψ] and PW [Γ, ψ] do not exist as improper integrals in the usual sense when
x ∈ Γ . In particular, the integrands in (4.1)2 and (4.2)2 are excessively singular
functions of y ∈ Γ . Nevertheless, for sufficiently smooth Γ and ψ, the functions
PV [Γ, ψ] and PW [Γ, ψ] have well-defined limits as x approaches the surface Γ [20,
29, 33]. Introducing xε = x0 + εν(x0), where x0 ∈ Γ , the continuity properties of



940 O. GONZALEZ

the functions V [Γ, ψ], W [Γ, ψ], PV [Γ, ψ], PW [Γ, ψ] around ε = 0 can be illustrated as
follows:

ε

V i [Γ,ψ]

ε

i [Γ,ψ]W

ε

P [Γ,ψ]
V

ε

P
W

[Γ,ψ]

In general, the limits of the functions V [Γ, ψ], W [Γ, ψ], PV [Γ, ψ], PW [Γ, ψ] as x
approaches Γ from Be or B have more physical significance than any directly defined
values of these functions on Γ . In particular, physically meaningful boundary condi-
tions are imposed on limit values and not on directly defined values. We remark that
directly defined values of PV [Γ, ψ] and PW [Γ, ψ] on Γ may be obtained by appealing
to the theory of singular and hypersingular integrals [22, 24, 25].

4.3. Associated stress fields. For arbitrary ψ the stress fields associated with
the single- and double-layer potentials are

Σik
V [Γ, ψ](x) =

∫
Γ

ΞPF
ikj (x, y)ψj(y) dAy,(4.7)

Σik
W [Γ, ψ](x) =

∫
Γ

ΞSTR
ikjl (x, y)ψj(y)νl(y) dAy,(4.8)

where ΞPF
ikj and ΞSTR

ikjl are the stress functions corresponding to the point-force and
stresslet solutions in (3.6) and (3.10). For arbitrary ψ the single-layer stress field
ΣV [Γ, ψ] is smooth at each x /∈ Γ and is the actual stress field associated with the
Stokes flow with velocity field V [Γ, ψ] and pressure field PV [Γ, ψ]. A similar remark
applies to the double-layer stress field ΣW [Γ, ψ].

For x ∈ Γ and arbitrary ψ the single-layer traction field ΣV [Γ, ψ]ν exists as an im-
proper integral in the usual sense—but not the double-layer traction field ΣW [Γ, ψ]ν.
Moreover, for sufficiently smooth Γ and ψ the following limit relations for ΣV [Γ, ψ]ν
[20, 29] and ΣW [Γ, ψ]ν [29] hold for each x0 ∈ Γ :

lim
ε→0
ε>0

ΣV [Γ, ψ](xε)ν(x0) = βψ(x0) +ΣV [Γ, ψ](x0)ν(x0),(4.9)

lim
ε→0
ε<0

ΣV [Γ, ψ](xε)ν(x0) = −βψ(x0) +ΣV [Γ, ψ](x0)ν(x0),(4.10)

lim
ε→0
ε>0

ΣW [Γ, ψ](xε)ν(x0) = lim
ε→0
ε<0

ΣW [Γ, ψ](xε)ν(x0).(4.11)

Here xε = x0 +εν(x0) and β is a constant that depends on the choice of normalization
of the point-force solution (3.6). For our choice we have β = −4π. The result in (4.11)
is commonly referred to as the Lyapunov–Tauber condition.

For arbitrary ψ and x0 ∈ Γ the continuity properties of ΣV [Γ, ψ](xε)ν(x0) and
ΣW [Γ, ψ](xε)ν(x0) around ε = 0 can be illustrated as follows:

ε

k
ν[Γ,ψ]

V
Σ

ik

ε

k
ν[Γ,ψ]

W
Σ

ik
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We remark that, as with PW [Γ, ψ], a directly defined value of ΣW [Γ, ψ]ν on Γ may
be obtained by appealing to the theory of hypersingular integrals.

4.4. Flow properties. Let S be an arbitrary closed, bounded surface with
Γ ⊂ Sint, and let n be the outward unit normal field on S. For arbitrary ψ the
resultant force FV [Γ, ψ], torque TV [Γ, ψ] about an arbitrary point c, and volume flow
rate QV [Γ, ψ] associated with S and the single-layer flow (V [Γ, ψ], PV [Γ, ψ]) are

FV [Γ, ψ] =
∫

S

ΣV [Γ, ψ](x)n(x) dAx = −8π
∫

Γ

ψ(y) dAy,(4.12)

TV [Γ, ψ] =
∫

S

(x − c) ×ΣV [Γ, ψ](x)n(x) dAx = −8π
∫

Γ

(y − c) × ψ(y) dAy,(4.13)

QV [Γ, ψ] =
∫

S

V [Γ, ψ](x) · n(x) dAx = 0.(4.14)

These results follow from the definitions of the single-layer stress and velocity fields
in (4.7) and (4.1) and the properties of the point-force solution in (3.6) and (3.7) with
gi replaced by ψi. Because the above results are independent of S with Γ ⊂ Sint, we
can pass to the limit and conclude that the resultant force, torque, and volume flow
rate associated with Γ and the exterior single-layer flow are also given by the above
results.

Similar calculations can be performed in the double-layer case. For arbitrary ψ
the resultant force FW [Γ, ψ], torque TW [Γ, ψ] about an arbitrary point c, and volume
flow rate QW [Γ, ψ] associated with S and the double-layer flow (W [Γ, ψ], PW [Γ, ψ])
are

FW [Γ, ψ] =
∫

S

ΣW [Γ, ψ](x)n(x) dAx = 0,(4.15)

TW [Γ, ψ] =
∫

S

(x− c) ×ΣW [Γ, ψ](x)n(x) dAx = 0,(4.16)

QW [Γ, ψ] =
∫

S

W [Γ, ψ](x) · n(x) dAx = 4π
∫

Γ

ψ(y) · ν(y) dAy .(4.17)

These results follow from the definitions of the double-layer stress and velocity fields
in (4.8) and (4.2) and the properties of the stresslet solution in (3.10) and (3.11) with
hjl replaced by ψjνl. As before, because the above results are independent of S with
Γ ⊂ Sint, we can pass to the limit and conclude that the resultant force, torque, and
volume flow rate associated with Γ and the exterior double-layer flow are also given
by the above results.

5. Hebeker formulation. In this section we outline the boundary integral for-
mulation of (2.1) introduced by Hebeker [14] and highlight several of its properties for
comparison. In what follows Γ is an arbitrary closed, bounded surface with interior
domain B and exterior domain Be, as described in section 2.

5.1. Formulation. Given an arbitrary density ψ : Γ → R
3 and number θ ∈

[0, 1], define u : Be → R
3 and p : Be → R by

(5.1) u = θV [Γ, ψ] + (1 − θ)W [Γ, ψ], p = θPV [Γ, ψ] + (1 − θ)PW [Γ, ψ].

By properties of the single- and double-layer potentials, the fields (u, p) are smooth
at each x ∈ Be and satisfy the Stokes equations (2.1)1,2,4 at each x ∈ Be. The stress
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field σ : Be → R
3×3 associated with (u, p) is given by

(5.2) σ = θΣV [Γ, ψ] + (1 − θ)ΣW [Γ, ψ],

and the resultant force F , torque T about an arbitrary point c, and volume flow rate
Q associated with Γ are

(5.3) F = θFV [Γ, ψ], T = θTV [Γ, ψ], Q = (1 − θ)QW [Γ, ψ].

Here we have used linearity and the flow properties of the single- and double-layer
potentials outlined in section 4.4.

In order for (u, p) to provide the unique solution of the exterior Stokes boundary-
value problem (2.1), the boundary condition (2.1)3 must be satisfied. In particular,
given v : Γ → R

3, we require

(5.4) lim
x→x0
x∈Be

u(x) = v(x0) ∀x0 ∈ Γ.

Substituting for u from (5.1) and using the limit relations in (4.3) and (4.5), we obtain
a boundary integral equation for the unknown density ψ:

(5.5) θV [Γ, ψ](x0) + (1 − θ)W [Γ, ψ](x0) + (1 − θ)αψ(x0) = v(x0) ∀x0 ∈ Γ.

From this we can deduce that (u, p) defined in (5.1) will be the unique solution of
(2.1) if and only if ψ satisfies (5.5). This equation can be written in the standard
form

(5.6)
∫

Γ

Kθ(x, y)ψ(y) dAy + cθψ(x) = v(x) ∀x ∈ Γ,

where x0 has been replaced by x for convenience, cθ = (1 − θ)α, and

(5.7) Kij
θ (x, y) = θUPF

ij (x, y) + (1 − θ)USTR
ijl (x, y)νl(y).

Remarks 5.1.

1. Assuming Γ is a Lyapunov surface the kernel function Kθ(x, y) can be shown
to be weakly singular. Thus the solvability of the linear integral equation
(5.6) can be assessed via the Fredholm theory [19, 23]. Notice that cθ = 0
when θ = 1, and cθ �= 0 when θ ∈ [0, 1). Thus (5.6) is a Fredholm equation
of the first kind when θ = 1 and of the second kind when θ ∈ [0, 1).

2. The case θ = 0 in (5.1) corresponds to a classic double-layer representation of
(u, p). It is well known that this representation is incomplete in the sense that
it can represent only those flows for which the resultant force and torque on
Γ vanish, that is, F = 0 and T = 0 [20, 26, 29, 30]. Equivalently, the range of
the linear operator in (5.6) is deficient, leading to solvability conditions and
nonuniqueness for ψ.

3. The case θ = 1 in (5.1) corresponds to a classic single-layer representation of
(u, p). It is well known that this representation is also incomplete in the sense
that it can represent only those flows for which the volumetric expansion rate
of Γ vanishes, that is, Q = 0 [20, 26, 29, 30]. Equivalently, the range of the
linear operator in (5.6) is again deficient, leading to solvability conditions and
nonuniqueness for ψ.
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4. The main idea in Hebeker [14] was to consider a mixed representation cor-
responding to θ ∈ (0, 1). The intuitive motivation is that, by considering
a linear combination, each potential can make up for the deficiencies of the
other. As outlined below, such a representation is complete in the sense that
it can represent arbitrary flows and stable in the sense that the density ψ
depends continuously on the boundary data v.

5.2. Solvability result. The following is a slight generalization of the solvability
result given in Hebeker [14].

Theorem 5.1 (see [14]). Assume Γ is a closed, bounded Lyapunov surface. If
θ ∈ (0, 1), then (5.6) possesses a unique continuous solution ψ for any continuous
boundary data v.

Thus arbitrary solutions of the exterior Stokes boundary-value problem (2.1) can
be represented in the form (5.1) with a unique density ψ for each θ ∈ (0, 1). The pres-
ence of the double-layer potential in (5.1) ensures that the representation is stable. In
particular, because (5.6) is a uniquely solvable Fredholm equation of the second kind,
the linear operator in (5.6) has a finite condition number and the density ψ depends
continuously on the data v. The presence of the single-layer potential in (5.1) ensures
that the representation is complete. In particular, the single-layer potential com-
pletes the deficient range associated with the double-layer potential. The smoothness
properties of the density ψ depend on those of the surface Γ and the data v.

Remarks 5.2.

1. Aside from the restriction of solvability, the parameter θ is arbitrary and can
be exploited. For example, θ ∈ (0, 1) might be chosen by some means to
optimize the conditioning of the linear operator in (5.6).

2. Numerical methods for (5.6), Nyström methods in particular, must deal with
the singularities in the kernels of the single- and double-layer potentials. The
singularity in the kernel of the double-layer potential can be removed in a
simple, standard way by employing a well-known integral identity [11, 28, 30,
31] (see section 8). However, there seems to be no similar removal technique
for the singularity in the kernel of the single-layer potential.

3. In general numerical treatments, the singularity in the kernel of the single-
layer potential can be dealt with by employing a kernel-adapted product
quadrature rule [3, 19], together with a local coordinate transformation such
as a Duffy transformation [3, 8, 30], or a floating polar transformation [33].
The same techniques can also be applied to the double-layer potential. In view
of the inconvenience associated with the single-layer potential, we investigate
alternative formulations.

6. Power and Miranda formulation. In this section we outline the bound-
ary integral formulation of (2.1) introduced by Power and Miranda [28] and highlight
several of its properties for comparison. In what follows Γ is an arbitrary closed,
bounded surface with interior domain B and exterior domain Be, as described in sec-
tion 2. For simplicity, in this section we assume that B consists of only one connected
component. All the results outlined generalize in a straightforward way to the case
when B has a finite number of disjoint components [29].

6.1. Formulation. Given an arbitrary density ψ : Γ → R
3, number θ ∈ [0, 1],

and point x∗ ∈ B, define u : Be → R
3 and p : Be → R by

(6.1) u = θY [Γ, ψ] + (1 − θ)W [Γ, ψ], p = θPY [Γ, ψ] + (1 − θ)PW [Γ, ψ],
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where Y [Γ, ψ] and PY [Γ, ψ] are fields defined in terms of the point-force (stokeslet)
and rotlet solutions as

(6.2)
Yi[Γ, ψ](x) =

∫
Γ

(
UPF

ij (x, x∗) + UROT
il (x, x∗)εlpj(yp − x∗p)

)
ψj(y) dAy,

PY [Γ, ψ](x) =
∫

Γ

(
ΠPF

j (x, x∗) +ΠROT
l (x, x∗)εlpj(yp − x∗p)

)
ψj(y) dAy .

By properties of the point-force and rotlet solutions and the double-layer potentials,
the fields (u, p) are smooth at each x ∈ Be and satisfy the Stokes equations (2.1)1,2,4

at each x ∈ Be. The stress field σ : Be → R
3×3 associated with (u, p) is given by

(6.3) σ = θΣY [Γ, ψ] + (1 − θ)ΣW [Γ, ψ],

where ΣY [Γ, ψ] is the stress field associated with the flow (Y [Γ, ψ], PY [Γ, ψ]), namely,

(6.4) Σik
Y [Γ, ψ](x) =

∫
Γ

(
ΞPF

ikj (x, x∗) +ΞROT
ikl (x, x∗)εlpj(yp − x∗p)

)
ψj(y) dAy.

The resultant force F , torque T about an arbitrary point c, and volume flow rate Q
associated with Γ are

(6.5) F = θFY [Γ, ψ], T = θTY [Γ, ψ], Q = θQY [Γ, ψ] + (1 − θ)QW [Γ, ψ],

where FY [Γ, ψ], TY [Γ, ψ], and QY [Γ, ψ] are the resultant force, torque, and volume
flow rate associated with the flow (Y [Γ, ψ], PY [Γ, ψ]). From the properties of the
point-force and rotlet solutions given in (3.7) and (3.13), we deduce that QY [Γ, ψ] = 0
and

(6.6) FY [Γ, ψ] = −8π
∫

Γ

ψ(y) dAy, TY [Γ, ψ] = −8π
∫

Γ

(y − c) × ψ(y) dAy .

In order for (u, p) to provide the unique solution of the exterior Stokes boundary-
value problem (2.1), the boundary condition (2.1)3 must be satisfied. In particular,
given v : Γ → R

3, we require

(6.7) lim
x→x0
x∈Be

u(x) = v(x0) ∀x0 ∈ Γ.

Substituting for u from (6.1) and using the limit relation in (4.5), we obtain a boundary
integral equation for the unknown density ψ:

(6.8) θY [Γ, ψ](x0) + (1 − θ)W [Γ, ψ](x0) + (1 − θ)αψ(x0) = v(x0) ∀x0 ∈ Γ.

From this we can deduce that (u, p) defined in (6.1) will be the unique solution of
(2.1) if and only if ψ satisfies (6.8). This equation can be written in the standard
form

(6.9)
∫

Γ

Kθ(x, y)ψ(y) dAy + cθψ(x) = v(x) ∀x ∈ Γ,

where x0 has been replaced by x for convenience, cθ = (1 − θ)α, and

(6.10)
Kij

θ (x, y) = θUPF
ij (x, x∗) + θUROT

il (x, x∗)εlpj(yp − x∗p)

+ (1 − θ)USTR
ijl (x, y)νl(y).
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Remarks 6.1.

1. As before, assuming Γ is a Lyapunov surface, the kernel function Kθ(x, y)
can be shown to be weakly singular. Thus the solvability of the linear integral
equation (6.9) can be assessed via the Fredholm theory [19, 23]. Notice that
cθ = 0 when θ = 1, and cθ �= 0 when θ ∈ [0, 1). Thus (6.9) is a Fredholm
equation of the first kind when θ = 1 and of the second kind when θ ∈ [0, 1).

2. The main idea in Power and Miranda [28] can be described intuitively as
follows. A double-layer potential is deficient in the sense that it can only
produce flows with zero resultant force and torque on Γ . Thus, in view of
the flow properties outlined in (3.7) and (3.13), the enhancement of a double-
layer potential with point-force and rotlet solutions should produce flows with
arbitrary resultant force and torque on Γ .

3. The intuitive arguments above are made rigorous by the results outlined
below. They show that the representation in (6.1) with θ ∈ (0, 1) is complete
in the sense that it can represent arbitrary flows and stable in the sense that
the density ψ depends continuously on the boundary data v.

6.2. Solvability result. The following is a slight generalization of the solvability
result given in Power and Miranda [28].

Theorem 6.1 (see [28]). Assume Γ is a closed, bounded Lyapunov surface, and
let x∗ ∈ B be arbitrary. If θ ∈ (0, 1), then (6.9) possesses a unique continuous solution
ψ for any continuous boundary data v.

Thus arbitrary solutions of the exterior Stokes boundary-value problem (2.1) can
be represented in the form (6.1) with a unique density ψ for each x∗ ∈ B and θ ∈ (0, 1).
The presence of the double-layer potential in (6.1) ensures that the representation is
stable. In particular, because (6.9) is a uniquely solvable Fredholm equation of the
second kind, the linear operator in (6.9) has a finite condition number and the density
ψ depends continuously on the data v. The presence of the point-force and rotlet
functions in (6.1) ensures that the representation is complete. In particular, these
two singular solutions complete the deficient range associated with the double-layer
potential. The smoothness properties of the density ψ depend on those of the surface
Γ and the data v.

Remarks 6.2.

1. Aside from the restriction of solvability, the parameters θ and x∗ are arbitrary
and can be exploited. For example, θ ∈ (0, 1) and x∗ ∈ B might be chosen
by some means to optimize the conditioning of the linear operator in (6.9).

2. The boundary integral equation in (6.9) can be described as being singularity-
free. The singularity in the point-force and rotlet contributions is avoided
because their poles are contained in the body domain B. Moreover, the
singularity in the kernel of the double-layer potential can be removed in a
simple, standard way by employing a well-known integral identity [11, 28, 30,
31] (see section 8).

3. The above results hold for bodies of arbitrary shape. For certain types of
bodies, for example convex or star-shaped bodies, there are various reasonable
choices for the point x∗ ∈ B. The center of volume is one obvious choice. In
contrast, for other types of bodies, for example, toroidal or knotted tubular
bodies, there seems to be no natural choice for the point x∗ ∈ B. Motivated
by this latter class of bodies, we investigate an alternative formulation.

7. A new formulation. Here we introduce a new boundary integral formulation
of (2.1) which combines the strengths of the Power and Miranda and the Hebeker
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formulations. The new formulation is stable, complete, singularity-free, and natural
for bodies of complicated shape and topology. In what follows Γ is an arbitrary
closed, bounded surface with interior domain B and exterior domain Be, as described
in section 2.

7.1. Formulation. Let γ be a surface parallel to Γ offset towardB by a distance
φ ≥ 0. In particular, γ is the image of the map ξ = ζ(y) : Γ → R

3 defined by

(7.1)
ξ γ

Γ

ν(y)
y

ξ = y − φν(y).

By virtue of the fact that Γ is a Lyapunov surface, it follows that the map ζ : Γ → γ is
continuous and one-to-one for all φ ∈ [0, φΓ ), where φΓ is a positive constant. In the
absence of any global obstructions, we have φΓ = 1/κΓ , where κΓ is the maximum
of the signed principal curvatures of Γ [27]. Here we use the convention that the
curvature is positive when Γ curves away from its outward unit normal ν. As a
consequence, the principal curvatures are the eigenvalues of the gradient of ν (not
−ν) restricted to the tangent plane. From the geometry of parallel surfaces we have
the following relations for all y ∈ Γ , ξ = ζ(y) ∈ γ, and φ ∈ [0, φΓ ) [27]:

(7.2) n(ξ) = ν(y), dAξ = Jφ(y) dAy , Jφ(y) = 1 − 2φκm(y) + φ2κg(y).

Here n is the outward unit normal on γ, dAξ and dAy are area elements on γ and Γ ,
and κm and κg are the mean and Gaussian curvatures of Γ . For φ ∈ [0, φΓ ) we denote
the inverse of ξ = ζ(y) by y = ϕ(ξ). In view of (7.1) and (7.2)1 we have y = ξ+φn(ξ).

Given an arbitrary density ψ : Γ → R
3 and number θ ∈ [0, 1], define u : Be → R

3

and p : Be → R by

(7.3) u = θV [γ, ψ ◦ ϕ] + (1 − θ)W [Γ, ψ], p = θPV [γ, ψ ◦ ϕ] + (1 − θ)PW [Γ, ψ].

Notice that the double-layer potentials are defined on the surface Γ with density ψ,
while the single-layer potentials are defined on the parallel surface γ with density
ψ ◦ ϕ. In particular, the two types of potentials are defined on different surfaces but
involve only one arbitrary density.

By properties of the single- and double-layer potentials, the fields (u, p) are smooth
at each x ∈ Be and satisfy the Stokes equations (2.1)1,2,4 at each x ∈ Be. The stress
field σ : Be → R

3×3 associated with (u, p) is given by

(7.4) σ = θΣV [γ, ψ ◦ ϕ] + (1 − θ)ΣW [Γ, ψ],

and the resultant force F , torque T about an arbitrary point c, and volume flow rate
Q associated with Γ are

(7.5) F = θFV [γ, ψ ◦ ϕ], T = θTV [γ, ψ ◦ ϕ], Q = (1 − θ)QW [Γ, ψ].

Here we have used linearity and the flow properties of the single- and double-layer
potentials outlined in section 4.4.

In order for (u, p) to provide the unique solution of the exterior Stokes boundary-
value problem (2.1), the boundary condition (2.1)3 must be satisfied. In particular,
given v : Γ → R

3, we require

(7.6) lim
x→x0
x∈Be

u(x) = v(x0) ∀x0 ∈ Γ.
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Substituting for u from (7.3) and using the limit relation in (4.5), we obtain a boundary
integral equation for the unknown density ψ:

(7.7) θV [γ, ψ ◦ ϕ](x0) + (1 − θ)W [Γ, ψ](x0) + (1 − θ)αψ(x0) = v(x0) ∀x0 ∈ Γ.

From this we can deduce that (u, p) defined in (7.3) will be the unique solution of (2.1)
if and only if ψ satisfies (7.7). By definition of the single- and double-layer potentials,
this equation can be written in integral form as

(7.8)
θ

∫
γ

UPF
ij (x, ξ)ψj(ϕ(ξ)) dAξ

+ (1 − θ)
∫

Γ

USTR
ijl (x, y)ψj(y)νl(y) dAy + cθψi(x) = vi(x) ∀x ∈ Γ,

where x0 has been replaced by x for convenience and cθ = (1− θ)α. By performing a
change of variable in the first integral, this equation can then be put into the standard
form

(7.9)
∫

Γ

Kθ(x, y)ψ(y) dAy + cθψ(x) = v(x) ∀x ∈ Γ,

where

(7.10) Kij
θ (x, y) = θJφ(y)UPF

ij (x, ζ(y)) + (1 − θ)USTR
ijl (x, y)νl(y).

Remarks 7.1.

1. In all three formulations the kernel function Kθ(x, y) can be described as the
positive linear combination of a double-layer kernel and a range completion
term. In the Hebeker formulation (5.7), the completion term is an unbounded
single-layer kernel. In the Power and Miranda formulation (6.10), the com-
pletion term is the sum of a point-force and a rotlet kernel, both of which are
bounded and dependent on a point x∗ ∈ B. In the new formulation (7.10),
the completion term can be interpreted as a regularized single-layer kernel,
where φ ≥ 0 is the regularization parameter. The regularized single-layer
kernel is bounded when φ > 0 and unbounded exactly as in the Hebeker
formulation when φ = 0.

2. Assuming Γ is a Lyapunov surface, the kernel function Kθ(x, y) in (7.10) can
be shown to be weakly singular. Thus the solvability of the linear integral
equation (7.9) can be assessed via the Fredholm theory [19, 23]. Notice that
cθ = 0 when θ = 1 and cθ �= 0 when θ ∈ [0, 1). Thus (7.9) is a Fredholm
equation of the first kind when θ = 1 and of the second kind when θ ∈ [0, 1).

3. As outlined below, the representation in (7.3) with θ ∈ (0, 1) is complete in
the sense that it can represent arbitrary flows and stable in the sense that
the density ψ depends continuously on the boundary data v.

7.2. Solvability result. The following result establishes the solvability of the
integral equation (7.9), or, equivalently, (7.7). Its proof is given in section 7.3 below.

Theorem 7.1. Assume Γ is a closed, bounded Lyapunov surface, and let γ be
a surface parallel to Γ offset toward B by a distance φ ∈ [0, φΓ ). If θ ∈ (0, 1), then
(7.9) possesses a unique continuous solution ψ for any continuous boundary data v.

Thus arbitrary solutions of the exterior Stokes boundary-value problem (2.1) can
be represented in the form (7.3) with a unique density ψ for each θ ∈ (0, 1) and
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φ ∈ [0, φΓ ). The presence of the double-layer potential in (7.3) ensures that the
representation is stable. In particular, because (7.9) is a uniquely solvable Fredholm
equation of the second kind, the linear operator in (7.9) has a finite condition number,
and the density ψ depends continuously on the data v. The presence of the single-
layer potential in (7.3) ensures that the representation is complete. In particular, the
single-layer potential on the parallel surface γ completes the deficient range associated
with the double-layer potential on the surface Γ . The smoothness properties of the
density ψ depend on those of the surface Γ and the data v.

Remarks 7.2.

1. Aside from the restriction of solvability, the parameters θ and φ are arbitrary
and can be exploited. For example, θ ∈ (0, 1) and φ ∈ [0, φΓ ) might be chosen
by some means to optimize the conditioning of the linear operator in (7.9).

2. Just like the Power and Miranda formulation, the current boundary integral
equation in (7.9) is singularity-free in the case when φ > 0. The singularity
in the single-layer potential is removed by virtue of the parallel surface. The
singularity in the kernel of the double-layer potential can be removed in a
simple, standard way by employing a well-known integral identity [11, 28, 30,
31] (see section 8).

3. Just like the Hebeker formulation, the current boundary integral formulation
is natural for bodies of arbitrary shape. It seems particularly well suited for
long, uniform, tubular bodies with complicated topology. In this case, the
maximum offset distance φΓ can be explicitly identified as the tube radius,
and Γ and γ would be parallel tubular surfaces of different radii centered on
the same axial curve. In general, however, an explicit characterization of φΓ

is not necessary, and the formulation is valid for any type of body.
4. All three formulations can be viewed as extensions to Stokes flow of ideas

developed in classic potential theory. The idea of taking a linear combi-
nation of single- and double-layer potentials was considered in the work of
Günter [13], and the idea of moving the single-layer potential to an inner
surface, or limit thereof, was suggested in the work of Mikhlin [23]. (Mikhlin
explicitly considered an inner point-source, which can be interpreted as the
limit of a single-layer potential as the inner surface is squeezed to a point.)
Other generalized formulations could also be considered. For example, the
Power and Miranda formulation can be generalized by using a continuous
distribution of stokeslet and rotlet singularities over an inner surface.

7.3. Proof of Theorem 7.1. Assume θ ∈ (0, 1) and consider the homogeneous
version of (7.7). Replacing ψ by ψh for notational convenience, we have

(7.11) θV [γ, ψh ◦ ϕ](x0) + (1 − θ)W [Γ, ψh](x0) + (1 − θ)αψh(x0) = 0 ∀x0 ∈ Γ.

According to the Fredholm theory [19, 23], if (7.11) possesses only the trivial solution
ψh = 0, then (7.7) possesses a unique continuous solution ψ for any continuous data
v. To show that ψh = 0 is the only solution of (7.11), we proceed in four steps.

(1) Let ψh be an arbitrary solution of (7.11), and introduce fields (u(1), p(1)) and
(u(2), p(2)) by

(7.12)
u(1) = (1 − θ)W [Γ, ψh], p(1) = (1 − θ)PW [Γ, ψh],

u(2) = −θV [γ, ψh ◦ ϕ], p(2) = −θPV [γ, ψh ◦ ϕ].

Then (u(1), p(1)) and (u(2), p(2)) satisfy the homogeneous Stokes equations (2.1)1,2,4
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in Be. Moreover, from (7.11) and the limit relation for W [Γ, ψh] in (4.5), we have

(7.13) lim
x→x0
x∈Be

u(1)(x) − u(2)(x) = 0 ∀x0 ∈ Γ.

Thus u(1) = u(2) on Γ , and by uniqueness of solutions of the boundary-value problem
(2.1), we have (u(1), p(1)) = (u(2), p(2)) in Be. Furthermore, by properties of the single-
and double-layer potentials defined in (4.1) and (4.2), we have u(1) = O(|x|−2) and
u(2) = O(|x|−1) as |x| → ∞, and p(1) = O(|x|−3) and p(2) = O(|x|−2). Thus we
deduce

(7.14) u(1) = u(2) = 0 and p(1) = p(2) = 0 ∀x ∈ Be.

(2) Since u(1) = 0 in Be and 1 − θ �= 0, we deduce from (7.12) that W [Γ, ψh] = 0
in Be, which implies

(7.15) lim
x→x0
x∈Be

W [Γ, ψh](x) = 0 ∀x0 ∈ Γ.

Using the limit relation in (4.5), we get

(7.16) W [Γ, ψh](x0) + αψh(x0) = 0 ∀x0 ∈ Γ.

By well-known properties of the double-layer potential [20, 26], the above equation
possesses exactly six independent eigenfunctions ψh,(1), . . . , ψh,(6) defined for x ∈ Γ
by

(7.17)
ψ

h,(a)
i (x) = δia, a = 1, 2, 3,

ψ
h,(a)
i (x) = εij(a−3)xj , a = 4, 5, 6.

Thus every solution ψh of (7.11) satisfies (7.16) and must necessarily be of the form

(7.18) ψh(x) =
6∑

a=1

caψ
h,(a)(x),

where c1, . . . , c6 are arbitrary constants.
(3) Since u(2) = 0 and p(2) = 0 in Be and θ �= 0, we deduce from (7.12)

that V [γ, ψh ◦ ϕ] = 0 and PV [γ, ψh ◦ ϕ] = 0 in Be. Thus the resultant force and
torque, about an arbitrary point q, exerted on Γ by the exterior single-layer flow
(V [γ, ψh ◦ ϕ], PV [γ, ψh ◦ ϕ]) must vanish. By properties of the single-layer potentials
outlined in section 4.4, and considering that γ ⊂ Γint when φ > 0 and γ = Γ when
φ = 0, we find in both cases that

(7.19)
FV [γ, ψh ◦ ϕ] = −8π

∫
γ

ψh(ϕ(ξ)) dAξ = 0,

TV [γ, ψh ◦ ϕ] = −8π
∫

γ

(ξ − q) × ψh(ϕ(ξ)) dAξ = 0.

Dividing by −8π and substituting for ψh using (7.18) and (7.17), we find that the
above equations yield a linear system for c = (c1, . . . , c6) of the form

(7.20)
[
A B
C D

]
c = 0,
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where A,B,C,D ∈ R
3×3 are defined by

(7.21)
Aij =

∫
γ

δij dAξ, Bik =
∫

γ

εijkϕj(ξ) dAξ,

Cij =
∫

γ

εipj(ξp − qp) dAξ, Dik =
∫

γ

εiplεljk(ξp − qp)ϕj(ξ) dAξ.

(4) For convenience, let the torque reference point q be the centroid of γ, and
assume without loss of generality that q = 0. Then Cij = 0 and (7.20) will possess
only the trivial solution provided that the matrix Dik is invertible. Notice that the
matrix Aij is always invertible since γ has positive measure. With q = 0 we have

(7.22) Dik =
∫

γ

εiplεljkξpϕj(ξ) dAξ.

Substituting ϕ(ξ) = ξ + φn(ξ), where n is the outward unit normal field on γ
(see section 7.1), and using the standard permutation symbol identity εiplεljk =
δijδpk − δikδpj , we obtain

(7.23) Dik =
∫

γ

ξiξk − δikξjξj dAξ + φ

∫
γ

ξkni dAξ − φδik

∫
γ

ξjnj dAξ.

Applying the divergence theorem to the last two integrals in the above equation, we
get, after straightforward simplification,

(7.24) Dik = −[Gik + 2φ vol(γint)δik].

Here vol(γint) > 0 is the volume of the interior domain enclosed by γ and Gik =∫
γ
δik|ξ|2 − ξiξk dAξ is the symmetric, positive-definite, second moment tensor associ-

ated with γ. Since Dik is invertible for any φ ≥ 0, we deduce that (7.20) admits only
the trivial solution c = 0. Combining this with (7.18), we deduce that (7.11) admits
only the trivial solution ψh = 0. This completes the proof of Theorem 7.1.

8. Nyström approximation. In this section we describe a numerical method
for the formulation presented in section 7. We outline a singularity-free formula-
tion of the boundary integral equation for the unknown density, discretize it using
a straightforward Nyström method with an arbitrary quadrature rule, and introduce
corresponding discretizations for various flow quantities of interest.

8.1. Singularity-free formulation. Given arbitrary parameters θ ∈ (0, 1) and
φ ∈ (0, φΓ ), the integral equation (7.9) can be written in the convenient form

(8.1)
θ

∫
Γ

G(x, y)ψ(y) dAy + (1 − θ)
∫

Γ

H(x, y)ψ(y) dAy

+ (1 − θ)αψ(x) = v(x) ∀x ∈ Γ,

where Gij(x, y) = Jφ(y)UPF
ij (x, ζ(y)) is the regularized, bounded, single-layer kernel

and Hij(x, y) = USTR
ijl (x, y)νl(y) is the standard, weakly-singular, double-layer kernel.

The singularity in H(x, y) can be avoided in a simple way by exploiting the double-
layer identity [11, 28, 30, 31]

(8.2)
∫

Γ

Hij(x, y) dAy = −αδij ∀x ∈ Γ.
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In particular, substitution of (8.2) into (8.1) gives

(8.3)
θ

∫
Γ

G(x, y)ψ(y) dAy

+ (1 − θ)
∫

Γ

H(x, y)[ψ(y) − ψ(x)] dAy = v(x) ∀x ∈ Γ.

Assuming ν and ψ are Lipschitz continuous and Γ is a Lyapunov surface, it can be
shown that the functions G(x, y)ψ(y) and H(x, y)[ψ(y)−ψ(x)] are uniformly bounded
for all x and y on Γ . Thus (8.3) is singularity-free and can be discretized by Nyström
methods.

Remarks 8.1.

1. Following standard practice [28, 30, 31], we define H(x, y)[ψ(y)−ψ(x)] to be
zero when y = x. This modification does not alter the value of the integral and
is necessary to obtain a well-defined Nyström discretization, which requires
a value for this function for arbitrary x and y. The results in [31] show
that Nyström methods defined using this practice are, in general, convergent.
However, there is generally an upper bound on the order of convergence of
these methods because of the above modification.

2. There is some freedom in the treatment of the first term in (8.3). When
written as an integral over Γ as above, the kernel function G(x, y) contains
the factor Jφ(y), which depends on the curvature of Γ (see section 7.1). By
a change of variable, this term could also be written as an integral over the
parallel surface γ. In this case, the curvature factor disappears, but an explicit
parameterization of γ becomes necessary.

8.2. Approximation of integral equation. We suppose Γ can be decomposed
into a union of nonoverlapping patches Γp, p = 1, . . . ,Mp, where each patch is the
image of a smooth map y = χp(s, t) : Dp → R

3, and each Dp is a domain in R
2.

By subdividing each domain Dp into nonoverlapping subdomains De
p, e = 1, . . . ,Me,

we decompose each patch Γp into curved, nonoverlapping patch elements Γ e
p . In each

patch element we introduce quadrature points yp,e,q and weightsWp,e,q, q = 1, . . . ,Mq,
such that

(8.4)
∫

Γ e
p

f(y) dAy =
∫

De
p

f(χp(s, t))Jp(s, t) ds dt ≈
Mq∑
q=1

f(yp,e,q)Wp,e,q.

Here Jp is the Jacobian associated with the patch parameterization χp, which is
assumed to be included in the weights Wp,e,q.

Let ψp,e,q be an approximation to ψ(yp,e,q), and for convenience let a and b denote
values of the multi-index (p, e, q). Then a Nyström discretization of (8.3) is

(8.5) θ
∑

b

GabψbWb + (1 − θ)
∑
b�=a

Hab[ψb − ψa]Wb = va ∀a,

where Gab = G(xa, yb), Hab = H(xa, yb), and va = v(xa). Here the product Hab[ψb −
ψa] has been set equal to zero when b = a. The above equation can be written in the
standard form

(8.6)
∑

b

Aabψb = va ∀a,



952 O. GONZALEZ

where Aab ∈ R
3×3 are defined by

(8.7) Aab =

{
θGabWb + (1 − θ)HabWb, a �= b,

θGaaWa − (1 − θ)
∑

c �=aHacWc, a = b.

Equation (8.6) is a linear system of algebraic equations for the approximate density
values ψb at the quadrature points yb. This system is dense and nonsymmetric and
can be solved using any suitable numerical technique.

8.3. Approximation of flow quantities. Various flow quantities of interest
take the form of an integral of ψ over Γ . For example, from (7.5), the resultant force
and torque on Γ about an arbitrary point c are given by

(8.8) F = −8πθ
∫

γ

ψ(ϕ(ξ)) dAξ , T = −8πθ
∫

γ

(ξ − c) × ψ(ϕ(ξ)) dAξ .

After a change of variable (see section 7.1), these integrals can be transformed from
the parallel surface γ to the body surface Γ to obtain

(8.9) F = −8πθ
∫

Γ

Jφ(y)ψ(y) dAy , T = −8πθ
∫

Γ

Jφ(y)(ζ(y) − c) × ψ(y) dAy.

By discretizing these integrals using the same quadrature points and weights as before,
we get the approximations

(8.10) F approx = −8πθ
∑

b

Jφ
b ψbWb, T approx = −8πθ

∑
b

Jφ
b (ζb − c) × ψbWb.

An approximation to the volume flow rate Q associated with Γ can be obtained in a
similar manner.

9. Numerical experiments. Here we present results from numerical experi-
ments on three different bodies: a sphere, torus, and helical tube with hemispherical
endcaps. For one or more prescribed motions of each body, we computed the resul-
tant force and torque about the origin of a body-fixed frame and examined various
measures of convergence.

9.1. Methods. Following the general procedure outlined above, we decomposed
the surface of each body into nonoverlapping patches Γp, each parameterized over a
rectangular domainDp. We subdivided each patch into curved, quadrilateral elements
Γ e

p , and in each element we used an m×m tensor product Gauss–Legendre quadrature
rule, with order of accuracy rabs = 2m on absolute errors. For the sphere we employed
six patches based on stereographic projection from the faces of a bounding cube. For
the torus we employed a single patch based on an explicit parameterization of the
axial curve. For the helical tube we employed multiple patches based on explicit
parameterizations of the axial curve and endcaps.

The resultant force F and torque T on each body were computed by solving the
linear algebraic system (8.6) of size (3MpMeMq)×(3MpMeMq). Because this system is
nonsymmetric and was observed to be well conditioned, we used the GMRES iterative
solver implemented in MATLAB with no preconditioning and a residual tolerance of
10−12. Using the solution of (8.6), we computed approximations to F and T according
to (8.10). The total number of quadrature points, MpMeMq, was varied up to a
maximum value of 4000 to 8000 depending on the example. All computations were
performed with the parameter values θ = 1/2 and φ/φΓ = 1/2, where φΓ is the
maximum offset distance for the parallel surface associated with Γ .
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Fig. 9.1. Convergence results for resultant force F and torque T on a sphere. Computations
were performed with a sequence of meshes with element sizes hk. (a) Sample mesh. (b),(c) Plots of
|Fhk

| and |Thk
| versus 1/hk for the translational and rotational motion, respectively. The dotted

horizontal lines indicate exact values. (d),(e) Plots of log10 |Fhk
− Fhk−1 | and log10 |Thk

− Thk−1 |
versus log10(1/hk) for the translational and rotational motion, respectively. In all plots, triangles
denote results for the 1 × 1 quadrature rule, and circles denote results for the 2 × 2 rule.

9.2. Results. Figure 9.1 shows convergence results for the resultant force and
torque about the origin on a sphere obtained with the 1 × 1 and 2 × 2 quadrature
rules. The sphere had a radius r = 1 and was centered at the origin. For this surface,
the maximum signed curvature is κΓ = 1/r, which gives a maximum offset distance
of φΓ = r. Results are given for two independent boundary conditions—translation
along the x-axis with unit velocity, and rotation about the same axis with unit angular
velocity. In these cases, exact values are known: F = (−6π, 0, 0) and T = (0, 0, 0)
for the translational motion, and F = (0, 0, 0) and T = (−8π, 0, 0) for the rotational
motion.

Plot (a) of Figure 9.1 illustrates the geometry and a sample mesh. In our com-
putations, a sequence of five increasingly refined meshes were considered for each
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quadrature rule, with each mesh being relatively uniform. The meshes were chosen
such that, at each stage in the sequence, the linear algebraic systems for the 1×1 and
2 × 2 quadrature rules were approximately the same size. The mesh shown in (a) is
the coarsest used with the 1× 1 rule. Plot (b) shows convergence results for the mag-
nitude of F in the translational motion as a function of the element size parameter
h, defined by MpMeh

2 = 1, where MpMe is the total number of elements in a mesh.
In particular, h is proportional to the average element size. Plot (c) shows similar
convergence results for the magnitude of T in the rotational motion. In all computa-
tions, the appropriate entries in both F and T were found to be zero within machine
precision for each type of motion. Thus the errors illustrated can be attributed to the
appropriate nonzero components.

Plot (d) of Figure 9.1 shows the difference in the computed values of F between
successive meshes as a function of h for the translational motion. Although an exact
solution is available, we consider solution differences rather than absolute errors for
purposes of later comparison. Plot (e) shows similar results for the difference in the
computed values of T for the rotational motion. For an m × m Gauss–Legendre
quadrature rule, the convergence rate rdiff for solution differences is expected to be
2m+1, which is one order higher than the standard convergence rate rabs for absolute
errors. The plots show that the observed convergence rate for solution differences was
significantly higher than expected. Considering both F and T , we have 5 ≤ rdiff ≤ 6
for m = 1 and 19 ≤ rdiff ≤ 20 for m = 2. On the finest two meshes used with the
2 × 2 rule, the relative change in F for the translational motion was of order 10−13,
and the relative change in T for the rotational motion was of order 10−12.

Figure 9.2 shows convergence results for the resultant force and torque about
the origin on a torus. The axial curve of the torus was a circle of radius ρ = 1
centered at the origin in the xy-plane, and the tube section was a circle of radius
r = ρ(1− η)/(1+ η), where η = tanh2(1). This value of the tube radius was chosen to
compare results against an exact solution from [34]. For this surface, the maximum
signed curvature is κΓ = 1/r, which gives a maximum offset distance of φΓ = r.
Results are given for two independent boundary conditions—translation along the
z-axis with unit velocity, and rotation about the same axis with unit angular velocity.
Symmetry implies that the force and torque have the form F = (0, 0, Fz) and T =
(0, 0, 0) for the translational motion and F = (0, 0, 0) and T = (0, 0, Tz) for the
rotational motion. For the translational motion, the force Fz has been characterized,
and its approximate numerical value is Fz = −20.7379 [34]. For the rotational motion,
the torque Tz has also been characterized [16], but its approximate numerical value
does not appear to be well known.

Plots (a) through (e) of Figure 9.2 are analogous to the previous example. In our
computations, we again found that the appropriate entries in both F and T were zero
within machine precision for each type of motion. Moreover, the observed convergence
rate for solution differences was again higher than expected. Considering both F and
T , we have 9 ≤ rdiff ≤ 16 for m = 1 and 6 ≤ rdiff ≤ 8 for m = 2. Interestingly, for
the range of meshes considered here, the 1 × 1 rule performed better than the 2 × 2
rule. On the finest two meshes used with the 1 × 1 rule, the relative change in F
for the translational motion was of order 10−9, and the relative change in T for the
rotational motion was of order 10−6.

Figure 9.3 shows convergence results for the resultant force and torque about
the origin on a helical tube. The axial curve of the tube was a helical curve about
the z-axis with radius ρ = 2, pitch λ = 3, and arclength l = 2π. The tube had
uniform, circular cross-sections of radius r = 0.2 and hemispherical endcaps of the
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Fig. 9.2. Convergence results for resultant force F and torque T on a torus. Computations were
performed with a sequence of meshes with element sizes hk. (a) Sample mesh. (b),(c) Plots of |Fhk

|
and |Thk

| versus 1/hk for the translational and rotational motion, respectively. The dotted horizon-
tal line in (b) indicates an exact value. (d),(e) Plots of log10 |Fhk

−Fhk−1 | and log10 |Thk
−Thk−1 |

versus log10(1/hk) for the translational and rotational motion, respectively. In all plots, triangles
denote results for the 1 × 1 quadrature rule, and circles denote results for the 2 × 2 rule.

same radius. These geometrical parameters were chosen so as to produce a tubular
body of moderately high curvature. As with the torus, the maximum signed curvature
is κΓ = 1/r, which gives a maximum offset distance of φΓ = r. In contrast to the
previous two examples, results are given for a single boundary condition—rotation
about the x-axis with unit angular velocity. In this case, the resultant force and
torque are not known exactly and are not known to have any special form.

Plots (a) through (e) of Figure 9.3 are analogous to the previous two examples,
with the exception that only one type of motion is considered. For this single motion
the force and torque were each found to possess three nonzero components, in contrast
to the previous examples. The observed convergence rate for solution differences was
again higher than expected. Considering both F and T , we have 3 ≤ rdiff ≤ 6 for
m = 1 and 8 ≤ rdiff ≤ 10 for m = 2. For T we notice that the results from the 2 × 2
rule converge to a limiting value monotonically from below, whereas the results from
the 1× 1 rule converge nonmonotonically from above. On the finest two meshes used
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Fig. 9.3. Convergence results for resultant force F and torque T on a helical tube. Computations
were performed with a sequence of meshes with element sizes hk. (a) Sample mesh. (b),(c) Plots of
|Fhk

| and |Thk
| versus 1/hk. (d),(e) Plots of log10 |Fhk

− Fhk−1 | and log10 |Thk
− Thk−1 | versus

log10(1/hk). In all plots, triangles denote results for the 1 × 1 quadrature rule, and circles denote
results for the 2 × 2 rule.

with the 2×2 rule, the relative change in F was of order 10−6, and the relative change
in T was of order 10−7.

9.3. Discussion. The examples outlined above suggest that the singularity-free
boundary integral formulation introduced here leads to a viable numerical scheme for
exterior Stokes flow problems. Issues associated with weakly singular integrals are
avoided in a simple and efficient way without the need for product integration rules
or specialized coordinate transformations and projections. In all three examples, the
schemes exhibited convergence rates that were higher than expected and produced
reasonably accurate results with reasonable meshes. For meshes of comparable size,
the results for the torus and helical tube examples were less accurate than those for
the sphere example. This is likely due to the relatively high curvature and more
complicated shapes of the torus and helical tube. As can be expected, finer meshes
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are needed in these cases to achieve a level of accuracy similar to that for the sphere.
The role of the parameters θ and φ in the conditioning and performance of these
schemes for different classes of bodies will be investigated in a separate work.
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