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BOUNDS ON THE AVERAGE VELOCITY OF A RIGID BODY
IN A STOKES FLUID∗

O. GONZALEZ†

Abstract. Bounds are established for the average velocity per unit force for the motion of a
rigid body in a viscous fluid modeled with the Stokes equations. The translational velocity in the
direction of an imposed force is considered in a fluid that is at rest at infinity, and the average is
taken over all orientations of the force, with the orientations being uniform on the unit sphere. This
average velocity for an arbitrary rigid body is shown to be bounded above and below by two simple,
characteristic inverse distances associated with the surface of the body. Whereas the lower bound is
implied by classic comparison results, the upper bound is of a different character and does not rely
on any notion of an enclosing surface as in classic results, and may be useful in making comparisons
between two bodies when neither can be enclosed by the other. In contrast to previous studies based
on partial differential equations for the primary field variables, the bounds are established using a
boundary integral formulation and an associated constrained extremum principle for the potential
density. The results derived here additionally imply a purely geometric inequality for surfaces that
may be of independent interest.
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1. Introduction. The problem of characterizing the motion of a rigid body in
a viscous fluid is important in many areas of science and engineering. This problem
arises, for example, in the study of the rheology of colloidal suspensions [13, 22], the
study of experimental methods for probing the structure of macromolecules such as
proteins and DNA [5], and the modeling of various devices for the separation and
manipulation of particles in microfluidic systems [23], including the optimal design of
microrobots in connection with targeted drug delivery [20]. In applications such as
these, the Stokes equations provide a first approximation of the more general Navier–
Stokes equations in situations where the flow is nearly steady and slow, and has small
velocity gradients, so that inertial effects can be ignored.

When the motion of a rigid body in a viscous fluid is modeled with the Stokes
equations there is a linear relation between the external force and torque on the body
and its translational and rotational velocities. For instance, when a given reference
point in the body is subject to a unit force, the body will respond with a characteristic
translational and rotational velocity about that point, depending on the orientation
of the force. The component of the translational velocity in the direction of the force
is a natural quantity to consider, and the average of this component over all possible
orientations of the force, referred to as the average velocity per unit force, is of special
interest. This average velocity plays a central role in the convective and diffusive
transport of rigid particles in viscous fluids [1, 2, 3, 4, 10, 11]. Indeed, when suitably
scaled, the average velocity per unit force can be identified with the translational
diffusion coefficient of the particle.
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Here we show that the average velocity per unit force of an arbitrary rigid body
is bounded above and below by two simple, characteristic inverse distances associated
with the surface of the body. Specifically, when suitably scaled, we show that the
average velocity is bounded below by twice the minimum inverse distance and above
by the average inverse distance between pairs of points on the surface. These bounds
are obtained when the centroid of the surface is used as the reference point. Analogous
bounds can be obtained for other choices of reference point at the expense of simplicity.
As a corollary, our bounds imply that, for an arbitrary surface, the average inverse
distance between pairs of points is always at least twice the minimum inverse distance,
with equality achieved in the case of a sphere. This purely geometric inequality gives
rise to a number of natural calculus of variations questions and may be of independent
interest.

The lower bound derived here is consistent with well-known comparison results
pertaining to the viscous energy dissipation and drag on bodies in Stokes flow, when
one body surface can be completely enclosed by another [16, 22]. In contrast, the
upper bound derived here is of a different character; it is not related to any notion of
an enclosing or enclosed surface and does not seem to be well-known. The bounds are
of intrinsic mathematical interest within the theory of slow viscous flow and moreover
may be of use in some applications, for instance, in making comparisons between
two bodies when neither can be enclosed by the other. The bounds also suggest how
certain modifications of a body can ultimately affect its average velocity: decreasing
the average inverse distance between pairs of points on the surface of a body can
be expected to ultimately lower the average velocity, while increasing the minimum
inverse distance between pairs of points can be expected to ultimately raise the average
velocity.

Our proof of the bounds is based entirely on classic potential theory for the
Stokes equations [17, 24, 26, 27]. We assume only that the bounding surface of
the body satisfies the usual Lyapunov conditions of potential theory [12] and work
within the space of continuous density functions on this surface. Using symmetry
and positivity properties of the single-layer potentials, we establish two extremum
principles, one of which leads to the lower bound and the other of which leads to the
upper bound. Although the subject of extremum principles for Stokes flows has been
well-studied from the point of view of partial differential equations [16, 18, 19, 21, 29],
here we consider such principles from the point of view of boundary integral equations
and obtain bounds of a different character than previously reported. Moreover, our
approach leads to a constrained extremum principle for the single-layer potential
which appears to be not well-known and may be useful in other contexts.

2. Statement of main result. Here we outline the Stokes equations and intro-
duce the flow quantities and notation that are needed to state the main result. For
further background, see [13, 22, 24].

2.1. Stokes equations, domain. We consider the slow motion of a body in an
incompressible viscous fluid in three-dimensional space. We denote the body domain
by D− ⊂ R3, the fluid domain by D+ ⊂ R3, and the boundary between them by
Γ ⊂ R3. The Stokes equations that describe the velocity field u+ : D+ → R3 and
pressure field p+ : D+ → R of the fluid flow around the body are, in nondimensional
form,

(2.1)
u+
i,jj(x) = p+

,i (x),
u+
i,i(x) = 0,

or
∆u+(x) = ∇p+(x),
∇ · u+(x) = 0, x ∈ D+.
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Equation (2.1)1 is the local balance law of linear momentum for the fluid in the
absence of an external force field and (2.1)2 is the local incompressibility constraint.
We assume that D− ∪ Γ ∪D+ fills all of three-dimensional space, that D− and D+

are both open and connected, and that D− is bounded. Moreover, we assume that Γ
is closed and bounded and additionally is a Lyapunov surface [12]. The assumption of
connectedness for D− and D+, and hence also Γ , is made for purposes of simplicity;
the results outlined herein could be extended to more general cases.

Unless mentioned otherwise, all vector quantities are referred to a single frame
and indices take values from one to three. Moreover, we use the usual conventions
that a pair of repeated indices implies summation and that indices appearing after a
comma denote partial derivatives. We assume here and throughout that all quantities
have been nondimensionalized using a characteristic length scale ` > 0, velocity scale
ϑ > 0, and force scale µϑ` > 0, where µ is the absolute viscosity of the fluid. The
dimensional quantities corresponding to {x, u+, p+} are {`x, ϑu+, µϑ`−1p+}.

2.2. Boundary, decay conditions. For a given vector field v : Γ → R3 we
consider the Dirichlet boundary conditions

(2.2)
u+
i (x) = vi(x), x ∈ Γ,
u+
i (x), p+(x)→ 0, |x| → ∞.

Equation (2.2)1 is the no-slip condition which states that the fluid and body velocities
coincide at each point of the boundary, and (2.2)2 is an asymptotic condition which
is consistent with the fluid being at rest at infinity.

As will be outlined later, the stated assumptions on D+ and Γ are sufficient to
guarantee that, for any continuous boundary data v, the exterior Stokes system de-
fined by (2.1) and (2.2) has a unique solution (u+, p+) among fields with the following
decay properties [8, 15, 24]:

(2.3) u+
i (x) = O(|x|−1), u+

i,j(x) = O(|x|−2), p+(x) = O(|x|−2) as |x| → ∞.

The solution (u+, p+) is smooth in D+, but may possess only a finite number of
bounded derivatives in D+ ∪ Γ depending on the precise smoothness of Γ and v.
Throughout our developments, we use the notation in (2.2)2 as an abbreviation of the
decay conditions in (2.3).

While we identify the domain D− with an arbitrary material body, we can always
consider an interior Stokes problem for fields (u−, p−) in D− with Dirichlet data v on
Γ . This interior problem is a natural mathematical companion to the exterior problem
and arises in certain discussions, even though it may not be of any direct physical
relevance. Here we note that solutions for the interior problem exist for continuous
data v provided the solvability condition

∫
Γ
v ·ν dAx = 0 is met [24], where ν denotes

the unit outward normal field on Γ and dAx denotes an infinitesimal area element
at x ∈ Γ . In this case, u− is unique whereas p− is unique only up to an additive
constant. We remark that the exterior problem has no such solvability condition.

When the body domain D− is in rigid-body motion, the vector field v in (2.2)1
takes the general form

(2.4) vi(x) = Vi + εijkΩj(xk − ck) or v(x) = V +Ω × (x− c),

where εijk is the standard permutation symbol. Here V ∈ R3 is the linear velocity
of a given reference point c ∈ R3, and Ω ∈ R3 is the angular velocity of the body.
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One choice of reference point that will be of interest is the centroid x of the bounding
surface Γ of D−, defined by

(2.5) x =

∫
Γ
x dAx∫
Γ
dAx

.

2.3. Stress, traction, loads. The stress field associated with a velocity-pressure
pair (u+, p+) is a function σ+ : D+ → R3×3 defined by

(2.6) σ+
ij(x) = −p+(x)δij + u+

i,j(x) + u+
j,i(x),

where δij is the standard Kronecker delta symbol. For each x ∈ D+ the stress tensor
σ+ is symmetric in the sense that σ+

ij = σ+
ji. To highlight the dependence of σ+ on

the pair (u+, p+) we use the notation σ+[u+, p+].
The traction field h+ : Γ → R3 exerted by the exterior fluid on the body surface

(force per unit area) is defined by

(2.7) h+
i (x) = σ+

ij(x)νj(x),

where ν : Γ → R3 denotes the outward unit normal field as before. The resultant
force F ∈ R3 and torque T ∈ R3, about the reference point c, associated with the
traction field are

(2.8) Fi =
∫
Γ

h+
i (x) dAx, Ti =

∫
Γ

εijk(xj − cj)h+
k (x) dAx.

The resultant loads (F, T ) are purely hydrodynamic in the sense that they vanish
when the body velocities (V,Ω) vanish; they are viscous drag loads.

2.4. Resistance, mobility matrices. When the body domain D− is rigid and
hence can only undergo rigid-body motion, we note that the boundary data must
necessarily be of the form (2.4). In this case, linearity of (2.1)–(2.4) and (2.6)–(2.8)
implies the existence of matrices La ∈ R3×3 (a = 1, . . . , 4) such that

(2.9) F = −L1V − L3Ω, T = −L2V − L4Ω.

These matrices are called the hydrodynamic resistance matrices for the body [13, 14,
22]. They in general depend on the shape of the surface Γ and also, with the exception
of L1, the reference point c appearing in (2.4) and (2.8). As will be established later,
the overall resistance matrix L ∈ R6×6 is symmetric and positive-definite, where

(2.10) L =
(
L1 L3
L2 L4

)
.

Throughout our developments we denote the inverse resistance matrix by M ∈ R6×6

so that

(2.11) M =
(
M1 M3
M2 M4

)
=
(
L1 L3
L2 L4

)−1

.

The block entries Ma ∈ R3×3 are called the mobility matrices. Similar to before,
they in general depend on the shape of the surface Γ and also, with the exception
of M4, the reference point c. The overall mobility matrix M is also symmetric and
positive-definite, and in view of (2.9) and (2.11) we have

(2.12) V = −M1F −M3T, Ω = −M2F −M4T.
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2.5. Average velocity. When the body domain D− is rigid and subject to
external resultant loads (F ext, T ext), the slow motion of the body through the fluid is
described by the load balance relations F +F ext = 0 and T +T ext = 0. Specifically, in
the absence of an external torque, the rigid-body velocities generated by an external
force of unit magnitude F ext = n, |n| = 1, are

(2.13) V = M1n, Ω = M2n.

The component of the translational velocity V along the direction n of the force is
given by

(2.14) V · n = n ·M1n.

The above quantity is a measure of the mobility of a body when subject to an external
force; it is the velocity per unit force in the direction of the force. Of special interest
is the average of this velocity over all directions n, given by

(2.15) V = avg
n∈S2

V · n =
1
3

tr(M1),

where the expression in terms of the trace arises from direct integration of (2.14) over
the unit sphere S2. The average velocity V per unit force is an intrinsic property of a
body and plays a central role in the theory of the convective and diffusive transport
of rigid particles in a viscous fluid [1, 2, 3, 4, 10, 11]. For instance, a particle whose
orientation is uniformly randomized due to thermal fluctuations would drift with
average velocity V in response to a unit external force, which may be a body-type
force due to gravity or an electric field, for example, or even an osmotic-type force
due to a concentration gradient. Indeed, when scaled by the Boltzmann constant and
the absolute temperature of the fluid, the average velocity V can be identified with
the translational diffusion coefficient of a particle.

2.6. Main result. The average velocity V per unit force is an implicit function
of the body surface Γ and the reference point c. Its numerical evaluation requires the
construction of the linear map in (2.9) defined via the solution of the Stokes equations
in the exterior domain around the surface, followed by an inversion of this map. Our
main result shows that when the centroid of a surface is taken as the reference point,
the average velocity is bounded above and below by two simple, characteristic inverse
distances associated with the surface.

Theorem 2.1. Let Γ be a closed, bounded Lyapunov surface and let c be its cen-
troid. Then the average velocity V per unit force satisfies

(2.16) 2 min
x,y∈Γ

1
|x− y|

≤ 6πV ≤ avg
x,y∈Γ

1
|x− y|

.

Thus the average velocity, up to a factor of 6π, is bounded below by twice the
minimum inverse distance and above by the average inverse distance between pairs
of points on the surface. The minimum inverse distance is simply the inverse of the
diameter of the surface; it is achieved at the two most widely separated points. The
average inverse distance is defined via averaging in the usual way, namely,

(2.17) avg
x,y∈Γ

1
|x− y|

=

∫
Γ

∫
Γ

1
|x−y| dAxdAy∫

Γ

∫
Γ
dAxdAy

.

From the above result we deduce that there is always a pair of distinct points x∗, y∗ ∈
Γ for which 6πV = 1/|x∗ − y∗|. Hence the average velocity is inversely proportional
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to a certain characteristic size of the body. Note that the bounds in the above result
are intrinsic in that they refer only to the surface Γ itself; no direct references are
made to a second surface that encloses or is enclosed by Γ .

The lower bound in the above result is consistent with a classic comparison result
[16, 22] pertaining to drag forces on rigid bodies in Stokes flow, when one body
surface can be enclosed by another. Specifically, the lower bound given above is
consistent with the classic result in the sense that Γ can always be enclosed by a
sphere of the same diameter as Γ . Indeed, the proof given here for the lower bound
establishes and exploits such a comparison principle for exterior Stokes flow around
arbitrary Lyapunov surfaces. In contrast, the upper bound is of a significantly different
character and does not seem to be well-known. Specifically, the upper bound is not
directly related to any notion of an enclosing or enclosed surface, but is instead related
to certain potential theoretic aspects of Stokes flow.

The elegant form of the bounds is a consequence of using the centroid as the
reference point. As discussed in the proof, a more general form of the upper bound can
be obtained for arbitrary choices of the reference point, but the resulting expression is
rather complicated and its physical interpretation is less straightforward. The proof
also reveals that an improved lower bound holds, namely,

(2.18)
2
d
≤ 2
d

+
4|δ|2

d3 ≤ 6πV,

where d is the diameter of Γ , and δ is the vector from the center of the bounding
sphere to the centroid of Γ . For simplicity, we state our main result using the lower
bound that is independent of the center of the bounding sphere, at the expense of some
sharpness. The proof of the result also suggests that tighter bounds could naturally
be obtained, but such bounds would not be as explicit.

Although motivated by hydrodynamic considerations, the above result implies
a purely geometric inequality about surfaces. Specifically, for any closed, bounded
Lyapunov surface Γ we have

(2.19) 2 min
x,y∈Γ

1
|x− y|

≤ avg
x,y∈Γ

1
|x− y|

,

which states that the average inverse distance is always at least twice the minimum
inverse distance. While it is immediately evident that the average must be bounded
below by the minimum, the factor of two is interesting. We remark that equality is
achieved in the case of a sphere; the two sides of the inequality are both given by the
inverse of the radius of the sphere. It is an open question about what other surfaces
if any might also achieve equality, and also under what minimal assumptions the
inequality would remain valid. It would also be of interest to consider surfaces which
are extremals for the average inverse distance functional, subject to various constraints
on diameter, enclosed volume, or surface area. Another sharper but perhaps less
elegant geometric inequality can be obtained by combining (2.16) and (2.18).

Figure 1 presents bounds for four example surfaces. In addition to the bounds
themselves, which depend on the overall size of a surface, we consider the scale in-
variant ratio of the upper to lower bound denoted by

(2.20) ζ =
(

avgx,y∈Γ
1
|x−y|

)
/
(

2 minx,y∈Γ 1
|x−y|

)
and also the actual average velocity V. The average velocity is computed from a
numerical boundary element technique described elsewhere [9, 25], whereas the upper
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ζ = 1.220 ζ = 1.533
1.000 ≤ 1.209 ≤ 1.220 1.000 ≤ 1.521 ≤ 1.533

ζ = 1.323 ζ = 1.295
0.750 ≤ 0.966 ≤ 0.992 0.712 ≤ 0.892 ≤ 0.921

Fig. 1. Numerically computed bounds for four example surfaces: oblate spheroid, prolate
spheroid, torus, and helical tube. Shown for each surface is the bound ratio ζ and the triplet
2 minx,y∈Γ 1

|x−y| ≤ 6πV ≤ avgx,y∈Γ
1

|x−y| .

bound is computed from a discretization of the double surface integral using a Gaus-
sian quadrature rule with a Duffy-type transformation [7] to treat the weakly singular
integrand. All quantities are dimensionless as described earlier. The four surfaces we
consider are an oblate spheroid with radii (ρ1, ρ2, ρ3) = ( 1

2 , 1, 1); a prolate spheroid
with radii (ρ1, ρ2, ρ3) = (1

2 ,
1
2 , 1); a torus with circular axial curve of radius ρ = 1 and

circular cross sections of radius r = 1
3 ; and a tube with helical axial curve of radius

ρ = 1, pitch λ = 3
2 , arclength ` = 2π, and circular cross sections of radius r = 1

3 ,
with hemispherical endcaps. Although all four surfaces have similar overall sizes, the
examples show that ζ can vary significantly depending on the shape of the surface.
Moreover, here we observe that the average velocity is closer to the upper bound
rather than the lower, presumably due to the fact that the upper bound contains
more specific information about the surface.

3. Proof. Here we provide a proof of Theorem 2.1. We begin with some neces-
sary facts about the Stokes single-layer potentials and then outline a series of lemmas
which lead to the main result. As in the previous section, we omit indices on vec-
tor and tensor quantities whenever there is no cause for confusion. Our most basic
assumption will be that the surface Γ is closed and bounded and additionally is a
Lyapunov surface [12], which briefly stated means that it has no self-intersections, is
differentiable, and has a Hölder continuous outward unit normal field. Consistent with
the assumptions on D− and D+, we assume that Γ is connected and hence consists
of a single component.

3.1. Preliminaries. Let ψ : Γ → R3 be a continuous function. Then by the
Stokes single-layer velocity and pressure potentials on Γ with density ψ we mean

(3.1)
Ui[Γ, ψ](x) =

∫
Γ

Eij(x, y)ψj(y) dAy,

P [Γ, ψ](x) =
∫
Γ

Πj(x, y)ψj(y) dAy.
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Here (Eij , Πj) is a fundamental solution of the Stokes equations referred to as a
stokeslet; it is a solution of the free-space equations with a singular (Dirac) force at
the point y [9, 28]. Using the notation z = x − y and r = |z|, an explicit expression
for this solution is

Eij(x, y) =
δij
r

+
zizj
r3

, Πj(x, y) =
2zj
r3
.(3.2)

We remark that, due to the linearity of the free-space equations, the above solution
is defined up to an arbitrary choice of normalization. The choice of normalization
naturally affects various constants in the developments that follow but is not crucial
in any way; the choice adopted here is taken from [9].

For any continuous density ψ, the potentials (U [Γ, ψ], P [Γ, ψ]) are smooth at each
x /∈ Γ . Moreover, by virtue of their definitions as a linear combination of stokeslets,
they satisfy the Stokes equations (2.1) at each x /∈ Γ . While we consider the Stokes
potentials with a density in the space of continuous functions, they could also be
considered on various Sobolev spaces [17], but such generality will not be exploited
here.

The velocity potential U [Γ, ψ] is finite for all x ∈ D− ∪ Γ ∪ D+. In the special
case when x ∈ Γ , the corresponding integral is only weakly singular and hence exists
as an improper integral in the usual sense [12] provided that Γ is a Lyapunov surface.
The restriction of U [ψ, Γ ] to Γ is denoted by U [ψ, Γ ]. This restriction is a continuous
function on Γ ; moreover, for any x0 ∈ Γ , the following pointwise limit relations
hold [24]:

lim
x→x0
x∈D+

U [Γ, ψ](x) = U [Γ, ψ](x0),(3.3)

lim
x→x0
x∈D−

U [Γ, ψ](x) = U [Γ, ψ](x0).(3.4)

Standard arguments [12] can be used to show that both of the above limits are ap-
proached uniformly in x0 ∈ Γ . In contrast, the pressure potential P [Γ, ψ] is not as
simple. This potential is finite for all x ∈ D− ∪D+, but when x ∈ Γ , the correspond-
ing integral is singular and hence does not exist as an improper integral in the usual
sense. Nevertheless, when the density ψ and surface Γ are sufficiently regular, the
potential P [Γ, ψ] has pointwise limits as x approaches Γ [24, 27, 30]. Notice that the
existence of such limits is intimately connected with regularity up to the boundary of
solutions of the Stokes equations.

The single-layer stress potential associated with (U [Γ, ψ], P [Γ, ψ]) is

Σik[Γ, ψ](x) =
∫
Γ

Ξikj(x, y)ψj(y) dAy,(3.5)

where Ξikj is the stress field corresponding to the stokeslet solution in (3.2). In
particular, we have [9, 28]

Ξikj(x, y) = −6zizkzj
r5

.(3.6)

The limiting traction field on Γ associated with Σ[Γ, ψ] is also of interest. To char-
acterize it, we consider a neighborhood of Γ , with points parameterized as xτ =
x0 + τν(x0), where x0 ∈ Γ and τ ∈ [−ε, ε] for some ε > 0 sufficiently small, and we
extend the normal field such that ν(xτ ) = ν(x0). In this neighborhood, we have the
traction potential

(3.7) Hi[Γ, ψ](xτ ) = Σik[Γ, ψ](xτ )νk(xτ ).
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For any continuous density ψ, the stress potential Σ[Γ, ψ] is smooth at each
x /∈ Γ . At any such point, this potential provides an explicit expression for the stress
associated with the velocity-pressure pair (U [Γ, ψ], P [Γ, ψ]). Moreover, for any fixed
τ 6= 0, the set of points xτ define a surface Γτ that is parallel to Γ and has the same
normal field, and the traction potential H[Γ, ψ] provides an explicit expression for the
associated traction on this surface.

The traction potential H[Γ, ψ] is finite for all x0 ∈ Γ and τ ∈ [−ε, ε]. When τ = 0,
the corresponding integral is only weakly singular and hence exists as an improper
integral provided that Γ is a Lyapunov surface. The restriction of H[Γ, ψ] to Γ (τ = 0)
is denoted by H[Γ, ψ]. This restriction is a continuous function on Γ ; moreover, for
any x0 ∈ Γ , the following pointwise limit relations hold [24, 27]:

lim
τ→0+

H[Γ, ψ](xτ ) = −4πψ(x0) +H[Γ, ψ](x0),(3.8)

lim
τ→0−

H[Γ, ψ](xτ ) = 4πψ(x0) +H[Γ, ψ](x0).(3.9)

Similar to before, standard arguments [12] can be used to show that both of the
above limits are approached uniformly in x0 ∈ Γ . Notice that, by continuity of ψ and
H[Γ, ψ], the one-sided limits in (3.8) and (3.9) are themselves continuous functions
on Γ .

3.2. Lemmata. We begin by summarizing a classic result on the solvability of
the exterior Stokes system. We omit the proof but note that the result follows from the
Fredholm theorems for integral equations with compact operators by considering ap-
propriate potential representations of the fields (u+, p+); for details, see [9, 17, 24, 27].

Lemma 3.1. Let Γ be a closed, bounded Lyapunov surface. Then the exterior
Stokes system (2.1)–(2.3) has a unique solution (u+, p+) for any continuous data v.
The fields (u+, p+) are smooth at each point in the open domain D+, and the velocity
u+ is continuous up to the boundary Γ .

The next result that we summarize is also classic. It states that for rigid-body
boundary data, the unique solution of the exterior Stokes system can be represented
with only single-layer potentials. In this case, the density in the representation is
proportional to the traction field on the surface, up to a multiple of the unit normal
field. Moreover, when the unit normal field is extended to a neighborhood of the
surface by being constant along normal lines, the traction field in this neighborhood
has the structure of a double-layer potential and is well-behaved up to the surface as
outlined in (3.5)–(3.9). For brevity we omit the proofs; for details, see [17, 24, 28].

Lemma 3.2. In addition to the conditions of Lemma 3.1, assume that the data v is
of the rigid-body form (2.4) with a given reference point c. Then the Stokes solution
(u+, p+) can be represented by single-layer potentials with a continuous density ψ,
namely,

(3.10) u+(x) = U [Γ, ψ](x), p+(x) = P [Γ, ψ](x), x ∈ D+.

The density ψ in this representation is unique up to an element of span{ν}, which
corresponds to the nullspace of the single-layer velocity potential restricted to Γ . More-
over, the traction σ+[u+, p+]ν is continuous up to the boundary Γ and we have∫

Γ

σ+[u+, p+](x)ν(x) dAx = −8π
∫
Γ

ψ(x) dAx,(3.11) ∫
Γ

(x− c)× σ+[u+, p+](x)ν(x) dAx = −8π
∫
Γ

(x− c)× ψ(x) dAx.(3.12)
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The next result establishes some important properties of the restriction of the
single-layer velocity potential to the surface Γ . In addition to being symmetric,
the fact that the potential is semi-positive-definite and strictly positive up to a one-
dimensional subspace will play a key role in our developments. We state the result
only for continuous vector fields and note that stronger results, for example, coercivity
up to a one-dimensional subspace, can be established in more general function spaces
[6, 17]. Here and throughout we use C(Γ ) to denote the space of continuous vector
fields on Γ . Also, for any square matrix Q we use the notation Q : Q = QijQij = |Q|2
and sym(Q) = (Q+QT )/2.

Lemma 3.3. Let Γ be a closed, bounded Lyapunov surface. Then the single-layer
velocity potential U [Γ, ψ] on Γ is symmetric and semi-positive-definite on the space
C(Γ ) in the sense that∫

Γ

ϕ(x) · U [Γ, ψ](x) dAx =
∫
Γ

ψ(x) · U [Γ, ϕ](x) dAx ∀ψ,ϕ ∈ C(Γ ),(3.13) ∫
Γ

ψ(x) · U [Γ, ψ](x) dAx ≥ 0 ∀ψ ∈ C(Γ ),(3.14) ∫
Γ

ψ(x) · U [Γ, ψ](x) dAx = 0 iff U [Γ, ψ] ≡ 0 iff ψ ∈ span{ν}.(3.15)

Proof. Symmetry follows directly from (3.1) and (3.2) and the fact that Eij(x, y)
is symmetric in the indices i, j and the points x, y. To establish semipositivity, let
ψ ∈ C(Γ ) be arbitrary, and let (u−, p−) and (u+, p+) be the Stokes fields in D− and
D+ generated by the single-layer velocity and pressure potentials on Γ with density
ψ. The pair (u−, p−) has an associated stress field σ− in D− and traction field h− on
Γ , and similarly (u+, p+) has an associated stress field σ+ in D+ and traction field
h+ on Γ . The tractions h− and h+ are both defined using the outward unit normal
field ν on Γ . In view of the limit relations in (3.3)–(3.4) and (3.8)–(3.9) we have, for
any x0 ∈ Γ ,

u+(x0) = U [Γ, ψ](x0), u−(x0) = U [Γ, ψ](x0),(3.16)

h+(x0) = −4πψ(x0) +H[Γ, ψ](x0), h−(x0) = 4πψ(x0) +H[Γ, ψ](x0),(3.17)

from which we deduce that 8πψ(x0) = h−(x0) − h+(x0). Using these observations,
together with the divergence theorem in each ofD− andD+, and the fact that (u−, p−)
and (u+, p+) satisfy (2.1) in the domains D− and D+, with (u+, p+) satisfying the
decay conditions (2.3) at infinity, and the fact that ν points into D+, we get∫

Γ

ψ · U [Γ, ψ] dAx =
1

8π

∫
Γ

[h−i − h
+
i ]U i[Γ, ψ] dAx

=
1

8π

∫
Γ

h−i u
−
i dAx −

1
8π

∫
Γ

h+
i u

+
i dAx

=
1

8π

∫
Γ

u−i σ
−
ijνj dAx −

1
8π

∫
Γ

u+
i σ

+
ijνj dAx

=
1

8π

∫
D−

(u−i σ
−
ij),j dVx +

1
8π

∫
D+

(u+
i σ

+
ij),j dVx

=
1

4π

∫
D−
| sym(∇u−)|2 dVx +

1
4π

∫
D+
| sym(∇u+)|2 dVx.

(3.18)

Hence
∫
Γ
ψ ·U [Γ, ψ] dAx ≥ 0 for arbitrary ψ ∈ C(Γ ). Moreover,

∫
Γ
ψ ·U [Γ, ψ] dAx = 0

implies that sym(∇u+) ≡ 0 in D+, which implies that u+ is a rigid-body velocity field
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in D+. Moreover, since u+ → 0 as |x| → ∞, we deduce that u+ ≡ 0 in D+ and also
on Γ . Thus U [Γ, ψ] ≡ 0 on Γ and hence ψ is in the nullspace, which is known
to be span{ν}. Conversely, if ψ is in span{ν}, then U [Γ, ψ] ≡ 0 on Γ and hence∫
Γ
ψ · U [Γ, ψ] dAx = 0.

The next result establishes some important properties of the matrices L and M
associated with the exterior Stokes system when the boundary data is restricted to the
six-dimensional space of rigid-body vector fields on Γ . The symmetry and positive-
definite properties of L, and consequently also of M = L−1, are closely related to the
properties outlined above for the single-layer velocity potential.

Lemma 3.4. Let Γ be a closed, bounded Lyapunov surface, and let c be an ar-
bitrary reference point. Then the resistance matrix L ∈ R6×6 introduced in (2.9) is
symmetric and positive-definite. Specifically, for any V ∈ R3 and Ω ∈ R3 such that
(V,Ω) 6= (0, 0), we have

(3.19) (V,Ω) · L(V,Ω) =
∫
D+

2| sym(∇u+(x))|2 dVx > 0,

where (u+, p+) is the unique solution of the exterior Stokes system (2.1)–(2.3) with
data of the rigid-body form (2.4).

Proof. To establish symmetry, let two arbitrary sets of rigid-body velocities (V,Ω)
and (V̂ , Ω̂) be given, with the same reference point c. Let (u+, p+) and (û+, p̂+) be
the corresponding solutions of the exterior Stokes system in D+. The pair (u+, p+)
has an associated stress field σ+, and traction field h+ and load resultants (F, T ) on
Γ . Similarly, the pair (û+, p̂+) has an associated stress field σ̂+, and traction field ĥ+

and load resultants (F̂ , T̂ ) on Γ . By Lemma 3.2, the pairs (u+, p+) and (û+, p̂+) can
be represented by single-layer potentials with densities ψ and ψ̂ on Γ . Moreover, by
definition of L, we have (F, T ) = −L(V,Ω) and (F̂ , T̂ ) = −L(V̂ , Ω̂). Making direct
use of (3.11) and (3.12) from Lemma 3.2, along with (2.8), (2.4), and (2.2)1, we get

(V̂ , Ω̂) · L(V,Ω) = −V̂ · F − Ω̂ · T

= 8π
∫
Γ

V̂ · ψ + Ω̂ · ((x− c)× ψ) dAx

= 8π
∫
Γ

û+ · ψ dAx

= 8π
∫
Γ

ψ · U [Γ, ψ̂] dAx.

(3.20)

The symmetry of L then follows from the symmetry of the single-layer velocity po-
tential established in Lemma 3.3.

To establish positivity, we consider (3.20) with (V̂ , Ω̂) = (V,Ω) to obtain

(3.21) (V,Ω) · L(V,Ω) = 8π
∫
Γ

ψ · U [Γ, ψ] dAx.

From Lemma 3.3 we then deduce that (V,Ω) · L(V,Ω) ≥ 0, with equality occurring
only when ψ ∈ span{ν}, which implies that on Γ we have u+ = U [Γ, ψ] ≡ 0 and hence
that (V,Ω) = (0, 0). To establish the final result we note from (3.21) and (3.18) that

(3.22) (V,Ω) · L(V,Ω) =
∫
D−

2| sym(∇u−)|2 dVx +
∫
D+

2| sym(∇u+)|2 dVx.
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By uniqueness for the interior Stokes system, the field u− in D− is a rigid-body
velocity field determined by the boundary data, and hence sym(∇u−) ≡ 0 in D−,
which establishes the result in (3.19).

The next result establishes the unique solvability of a Neumann-type problem for
the exterior Stokes system; it is often referred to as a rigid-body mobility problem
[22]. We omit the proof, but note that it is a straightforward consequence of the
definition and invertibility of the matrices L and M . Here and throughout we use
R(Γ ) to denote the six-dimensional space of rigid-body vector fields on Γ .

Lemma 3.5. Let Γ be a closed, bounded Lyapunov surface and let c be an arbitrary
reference point. Then for any given F ∈ R3 and T ∈ R3 the Stokes system

∆u+ = ∇p+, x ∈ D+,
∇ · u+ = 0, x ∈ D+,
u+, p+ → 0, |x| → ∞,

(3.23)

u+|Γ ∈ R(Γ ),
∫
Γ

σ+[u+, p+]ν dAx = F,

∫
Γ

(x− c)× σ+[u+, p+]ν dAx = T

(3.24)

has a unique solution (u+, p+). Specifically, there are unique V ∈ R3 and Ω ∈ R3

such that

(3.25) u+(x) = V +Ω × (x− c), x ∈ Γ.

The following result shows that the flow field (u+, p+) in Lemma 3.5 minimizes
the so-called dissipation integral among all exterior flow fields (v+, q+) with the same
resultant force and torque about the same reference point c, which can be interpreted
as a weak type of Neumann data. Various such extremum principles have been de-
scribed for Stokes flow [16, 18, 19, 21, 29]. Here we outline one such principle in a
form that is convenient for our purposes. This result will be crucial in establishing
the lower bound in Theorem 2.1.

Lemma 3.6. Let Γ be a closed, bounded Lyapunov surface and let c be an arbitrary
reference point. For any given F ∈ R3 and T ∈ R3, let (u+, p+) be the unique solution
of (3.23)–(3.24), and let (v+, q+) be any smooth fields in D+, with v+ and σ+[v+, q+]ν
continuous up to Γ , satisfying

∆v+ = ∇q+, x ∈ D+,
∇ · v+ = 0, x ∈ D+,
v+, q+ → 0, |x| → ∞,

(3.26)

v+|Γ ∈ C(Γ ),
∫
Γ

σ+[v+, q+]ν dAx = F,

∫
Γ

(x− c)× σ+[v+, q+]ν dAx = T.

(3.27)

Then

(3.28)
∫
D+
| sym(∇u+(x))|2 dVx ≤

∫
D+
| sym(∇v+(x))|2 dVx.

Proof. Let w+ = v+ − u+ and η+ = q+ − p+. Then by employing the conditions
in (3.23)–(3.24) and (3.26)–(3.27), together with the divergence theorem and the fact
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that ν points into D+, and the result in (3.25), we obtain∫
D+

2 sym(∇w+) : sym(∇u+) dVx

=
∫
D+

σ+[w+, η+] : ∇u+ dVx

= −
∫
Γ

u+ · σ+[w+, η+]ν dAx

= −
∫
Γ

(V +Ω × (x− c)) · σ+[w+, η+]ν dAx = 0,

(3.29)

where the last equality follows from the fact that the traction σ+[w+, η+]ν has zero
resultant force and torque on Γ when the same reference point c is chosen in (3.24)
and (3.27), that is,

∫
Γ
σ+[w+, η+]ν dAx = 0 and

∫
Γ

(x − c) × σ+[w+, η+]ν dAx = 0.
Using the orthogonality condition in (3.29) we find∫

D+
| sym(∇v+)|2 − | sym(∇u+)|2 dVx

=
∫
D+

sym(∇w+) : sym(∇v+ +∇u+) dVx

=
∫
D+

sym(∇w+) : sym(∇v+ −∇u+) dVx

=
∫
D+
| sym(∇w+)|2 dVx ≥ 0,

(3.30)

which establishes the desired result.

The following result shows that the density ψ in the single-layer representation
of the flow field (u+, p+) of Lemma 3.5 also satisfies an extremum principle. For
given loads (F, T ), we note that the associated velocities (V,Ω) arise as Lagrange
multipliers. This constrained extremum principle appears to be not well-known and
will play a key role in establishing the upper bound in Theorem 2.1. To state the
result, we consider two linear functionals on C(Γ ) defined by

(3.31) F[ψ] = −8π
∫
Γ

ψ(x) dAx, T[ψ] = −8π
∫
Γ

(x− c)× ψ(x) dAx.

Lemma 3.7. Let Γ be a closed, bounded Lyapunov surface and let c be an arbitrary
reference point. For any given loads F ∈ R3 and T ∈ R3, let (u+, p+) be the unique
solution of (3.23)–(3.24). Then u+ and p+ have the single-layer representation

(3.32) u+(x) = U [Γ, ψ∗](x), p+(x) = P [Γ, ψ∗](x), x ∈ D+,

where ψ∗ is a continuous density satisfying

(3.33) ψ∗ = argmin
ψ∈C(Γ )

F[ψ]=F,T[ψ]=T

[∫
Γ

ψ(x) · U [Γ, ψ](x) dAx

]
.

The optimality conditions for the density ψ∗ are

(3.34) U [Γ, ψ∗](x) = V +Ω × (x− c), x ∈ Γ,

where V ∈ R3 and Ω ∈ R3 are the rigid-body velocities associated with (u+, p+).



BOUNDS ON THE AVERAGE VELOCITY OF A RIGID BODY 1917

Proof. Given (F, T ) and c, let (u+, p+) be the unique solution of (3.23)–(3.24). In
view of (3.25) and Lemma 3.2, the fields u+ and p+ have the single-layer representation
(3.32) for some continuous ψ∗. Moreover, combining (3.25) with (3.3), we deduce that
ψ∗ must satisfy (3.34).

We next show directly that ψ∗ must be a minimizer of (3.33). First, we note that,
by (3.24) and Lemma 3.2, we have F[ψ∗] = F and T[ψ∗] = T . Next, for any ψ ∈ C(Γ )
such that F[ψ] = F and T[ψ] = T , we note that

(3.35)
∫
Γ

(ψ − ψ∗) · U [Γ, ψ∗] dAx =
∫
Γ

(ψ − ψ∗) · (V +Ω × (x− c)) dAx = 0,

where the last equality follows from the fact that F[ψ − ψ∗] = 0 and T[ψ − ψ∗] = 0.
Using the orthogonality condition in (3.35), and the symmetry and semipositivity
properties from Lemma 3.3, we find∫

Γ

ψ · U [Γ, ψ]− ψ∗ · U [Γ, ψ∗] dAx =
∫
Γ

(ψ − ψ∗) · U [Γ, ψ + ψ∗] dAx

=
∫
Γ

(ψ − ψ∗) · U [Γ, ψ − ψ∗] dAx ≥ 0,
(3.36)

which shows that ψ∗ is a minimizer. Moreover, we note that the conditions in (3.34)
can be interpreted as the first-order necessary conditions for the minimization in
(3.33), with V andΩ playing the roles of multipliers for the linear constraints F[ψ] = F
and T[ψ] = T . Finally, by Lemma 3.2, we remark that minimizers are only determined
to within an element of span{ν}.

3.3. Proof of Theorem 2.1. The main result can now be proved. We consider
the upper and lower bounds separately.

Upper bound. For given (F, T ) and c, let (u+, p+) be the unique solution of (3.23)–
(3.24) with associated velocities (V,Ω), so that (V,Ω) = −M(F, T ) and (F, T ) =
−L(V,Ω), and let ψ∗ be a density as in Lemma 3.7. Using the facts that F[ψ∗] = F
and T[ψ∗] = T , together with (3.34), we find

(3.37)

(F, T ) ·M(F, T ) = −F · V − T ·Ω
= −F[ψ∗] · V − T[ψ∗] ·Ω

= 8π
∫
Γ

ψ∗ · V dAx + 8π
∫
Γ

ψ∗ · (Ω × (x− c)) dAx

= 8π
∫
Γ

ψ∗ · U [Γ, ψ∗] dAx,

which by the extremum properties of ψ∗ established in Lemma 3.7 implies

(3.38) (F, T ) ·M(F, T ) ≤ 8π
∫
Γ

ψ · U [Γ, ψ] dAx ∀ψ ∈ C(Γ ) : F[ψ] = F, T[ψ] = T.

An explicit upper bound can be obtained by making explicit choices for ψ and c and
using the integral expression for U [Γ, ψ]. Specifically, let c be the centroid of Γ , let
F = n be a unit vector, and let T = 0. Then the constant density ψ(x) ≡ −n/(8π|Γ |),
where |Γ | denotes the area of Γ , satisfies F[ψ] = n and T[ψ] = 0, and from (3.38) we
obtain

(3.39) (n, 0) ·M(n, 0) ≤ 1
8π|Γ |2

∫
Γ

n · U [Γ, n] dAx.
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Using the block structure of M in (2.11) and the explicit expression for the single-layer
potential U obtained from (3.1) and (3.2), we get

(3.40) n ·M1n ≤
1

8π|Γ |2

∫
Γ

∫
Γ

[
1
r

+
(z · n)2

r3

]
dAy dAx,

where z = x−y and r = |z|. Replacing n by each of the standard unit vectors ei, and
summing the results, using the fact that |z|2 =

∑
i(z · ei)2, we obtain

(3.41)
1
3

tr(M1) ≤ 1
6π|Γ |2

∫
Γ

∫
Γ

1
r
dAy dAx,

which in view of (2.15) establishes the upper bound in Theorem 2.1.
We remark that if c was chosen to be some point other than the centroid, then the

conditions F[ψ] = n and T[ψ] = 0 would no longer be satisfied with a constant density
as above; T[ψ] = 0 would not hold. In this case, we could consider a more general
density of the linear form ψ(x) = a+ b× (x− c), where a and b are constant vectors
that can be uniquely chosen to satisfy the conditions F[ψ] = F and T[ψ] = T for any
F and T . Such a density could then be used as above to obtain an upper bound,
but the resulting expression is rather complicated and its physical interpretation is
less straightforward. Sharper bounds could be obtained by considering more general
choices of ψ, and optimizing over free parameters, but at the expense of simplicity
and ease of interpretation of the results.

Lower bound. Consider a fictitious second body domain D̂− with associated
exterior domain D̂+ and bounding surface Γ̂ . We assume that D− ⊂ D̂− so that Γ is
enclosed by Γ̂ , and moreover D̂+ ⊂ D+. Furthermore, let c and ĉ be reference points
for Γ and Γ̂ . We will require that ĉ = c and assume as above that c is the centroid of
Γ . However, we note that the results below actually hold for arbitrary choices of c.

For given (F, T ) and c, let (u+, p+) be the unique solution of (3.23)–(3.24) with
associated velocities (V,Ω), so that (V,Ω) = −M(F, T ) and (F, T ) = −L(V,Ω).
Also, for the same given (F, T ) and for ĉ = c, let (û+, p̂+) be the unique solution of
(3.23)–(3.24) for the surface Γ̂ , with associated velocities (V̂ , Ω̂) satisfying (V̂ , Ω̂) =
−M̂(F, T ) and (F, T ) = −L̂(V̂ , Ω̂), where L̂ and M̂ are the resistance and mobility
matrices associated with Γ̂ . Moreover, notice that (u+, p+) are fields satisfying (3.26)–
(3.27) for the surface Γ̂ and domain D̂+. Then by Lemma 3.4, the inclusion D̂+ ⊂ D+,
and Lemma 3.6, we have

(3.42)

(F, T ) ·M(F, T ) = (V,Ω) · L(V,Ω)

=
∫
D+

2| sym(∇u+)|2 dVx

≥
∫
D̂+

2| sym(∇u+)|2 dVx

≥
∫
D̂+

2| sym(∇û+)|2 dVx

= (V̂ , Ω̂) · L̂(V̂ , Ω̂) = (F, T ) · M̂(F, T ).

An explicit lower bound can be obtained by considering an enclosing surface Γ̂ for
which the matrix M̂ is known explicitly. Specifically, let Γ̂ be a sphere of diameter
d̂, where d̂ = maxx,y∈Γ |x − y| is also the diameter of Γ , and let ĉ 0 be the center
of the sphere, and notice that in general ĉ 0 6= ĉ . Using classic results for Stokes
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flow around a sphere [13, 22], the mobility matrix M̂0 with respect to ĉ 0 is diagonal,
with diagonal blocks M̂0

1 = (3πd̂)−1I and M̂0
4 = (πd̂3)−1I, where I denotes the 3× 3

identity matrix. Moreover, by well-known translation formulae for the mobility matrix
[11, 14], the corresponding matrix M̂ with respect to the point ĉ can be obtained,
and focusing on the submatrix M̂1 we have

(3.43) M̂1 = (3πd̂)−1I + (πd̂3)−1[|δ|2I − δ ⊗ δ],

where δ = ĉ − ĉ 0 and ⊗ denotes an outer product. Considering (3.42), setting T = 0,
and taking F to be each of the standard unit vectors ei, and summing results, leads to

(3.44)
1
3

tr(M1) ≥ 1

3πd̂
+

2|δ|2

3πd̂3
≥ 1

3πd̂
=

1
3πmaxx,y∈Γ |x− y|

,

which in view of (2.15) establishes the lower bound in Theorem 2.1. We remark that
other bounds could be obtained by making different choices for the enclosing surface
Γ̂ , for instance, an ellipsoid, but at the expense of simplicity and explicitness.
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