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A THEOREM ON THE SURFACE TRACTION FIELD IN
POTENTIAL REPRESENTATIONS OF STOKES FLOW∗

O. GONZALEZ†

Abstract. A characterization theorem for moments of the Stokes traction field on the bounding
surface of a three-dimensional flow domain is stated and proved. Whereas the single-layer Stokes
potentials lead to a weakly singular representation of the traction field on the boundary, the double-
layer potentials lead to a hyper-singular representation, which is less convenient for analysis and
numerics. However, in various applications, pointwise values of the traction field up to the boundary
are not of direct interest, but rather moments of the traction with respect to given weighting functions.
It is shown that such moments can be characterized in terms of weakly singular integrals for both the
single- and double-layer potentials, and moreover, the characterization does not involve derivatives of
the potential densities or the moment weighting functions. The result for the double-layer potentials
can be viewed as a generalization and enhancement of the classic Lyapunov–Tauber theorem and may
make these potentials easier to use. An example application to the modeling of immersed flexible
bodies is discussed.
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1. Introduction. The hydromechanics of slow viscous flow modeled by the
Stokes equations plays an important role in many different areas of science and engi-
neering. Classic applications range from the study of the rheology of colloidal suspen-
sions [9, 18] and lubrication theory [33], to the study of the locomotion and swimming
of microorganisms [22]. Modern applications range from the study of structural prop-
erties of macromolecules such as proteins and DNA in biophysical chemistry [2], to
the modeling of various devices for the separation and manipulation of particles in
micro-fluidic systems [19]. In such applications, the Stokes equations provide a first
approximation of the more general Navier–Stokes equations in regimes where the flow
is nearly steady and slow, with small velocity gradients. The Stokes equations can
be used to approximate a variety of different flow quantities, ranging from velocity
streamlines and pressure gradients to drag forces and torques on immersed bodies,
and more general fluid-structure interactions.

Different approaches are available for the formulation and study of Stokes flow
problems in three dimensions. One approach is to consider a boundary value problem
in the form of partial differential equations for the fluid velocity and pressure fields in
a domain of interest [20]. Another approach is to reduce the boundary value problem
to an integral equation on the bounding surface of the domain [11, 29, 31]. The
unknown velocity and pressure fields throughout the domain are represented in terms
of one or more integral potentials which depend on an unknown surface density. The
integral potentials are usually defined in terms of the classic point-force and point-
source fundamental solutions of the Stokes equations and combinations of derivatives
thereof, referred to as stokeslets, stresslets, and rotlets [29, 31]. Moreover, in variants
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of the standard approach, the unknown density in the integral potential need not be
supported on the bounding surface of the domain, but instead may be supported on a
related curve as considered in the slender-body method [1, 13, 17], or supported on an
arbitrary set of points as considered in more general singularity methods [3, 4, 5, 31].

Here we study properties of the classic single- and double-layer Stokes potentials.
These potentials are defined in terms of the fundamental stokeslet and stresslet so-
lutions, and together they form the basis for a variety of boundary integral methods
for the analytical [11, 20, 26] and numerical [7, 10, 28, 29, 31] treatment of the Stokes
equations. We are specifically interested in the traction field on the boundary, which
corresponds to the fluid force per unit area, generated by these potentials. Whereas
the single-layer potentials lead to a weakly singular representation of the traction field
on the boundary, the double-layer potentials lead to a hyper-singular representation,
which is less convenient for analysis and numerics. However, rather than focus atten-
tion on pointwise values of the traction field up to the boundary, which indeed may
or may not exist at all points depending on the regularity of the boundary surface
and data, we instead focus attention on moments of the traction field with respect to
arbitrary weighting functions. Such moments arise naturally in a variety of contexts,
for example, the determination of drag forces and torques associated with the trans-
lational and rotational dynamics, and more general hydrodynamic loads associated
with the shape dynamics, of rigid and flexible bodies.

We show that general traction moments, for both the single- and double-layer
potentials, can be characterized in terms of weakly singular integrals depending only
pointwise on the potential density and moment weight functions. The results for
the double-layer case are obtained without any explicit application of Stokes theorem
or integration by parts, as have been considered in other contexts [11, 25], which
would generally lead to expressions involving surface derivatives of the density and
weight. Our results in this case can be viewed as a generalization and enhancement
of the Lyapunov–Tauber theorem of classic potential theory [8] and its analogue for
the Stokes equations [29]. This theorem asserts that the one-sided pointwise limits
of the double-layer traction field as the boundary is approached from either side
either exist and are equal or else do not exist; sufficient conditions for the existence
and hence equality of the limits are known, but the common limiting value itself
is not explicitly characterized. In contrast, here we show that the one-sided limits
of arbitrary moments of the double-layer traction field exist and are equal under a
weaker set of sufficient conditions, and we additionally provide a novel expression for
the common limiting value of the moments. For completeness, we also provide a result
for the single-layer traction field.

Our results are applicable to general boundary integral formulations of Stokes
flow problems in which the classic single- and double-layer potentials are employed.
As an example, we outline a model for the Stokesian dynamics of an immersed flexi-
ble body with an elastic internal energy function and an arbitrary but finite number
of internal degrees of freedom. Such a body may not only translate and rotate but
also bend, twist, stretch, and otherwise deform as allowed by its parameterization.
The hydrodynamic properties of such a body are encapsulated in a Stokes resis-
tance operator defined by moments of the traction field with respect to appropriate
weighting functions, and our results provide a convenient characterization of these mo-
ments. The Stokes resistance operator for filaments, membranes, and more general
bodies, both rigid and flexible, is of interest in a variety of problems, ranging from
the study of swimming motions of microorganisms to the optimal design of micro-
robots with potential applications such as targeted drug delivery; see, for example,
[6, 12, 16, 21, 23, 24, 30, 32, 34] and the references therein.
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The presentation is structured as follows. In section 2 we outline the Stokes
equations for a fluid in a given domain. In section 3 we establish notation and outline
the properties of the classic surface potentials for the Stokes equations that will be
needed throughout our developments. In section 4 we state our main result, and in
section 5 we describe an application of our result to the modeling of immersed flexible
bodies. In section 6 we provide a proof of our result.

2. The Stokes equations. Here we outline the Stokes equations and introduce
the flow quantities that will be the focus of our analysis. For further details on
these equations, related boundary value problems, and associated potential theory,
see [11, 20, 26, 29].

2.1. Domain, velocity, and pressure. We consider the steady motion of an
incompressible viscous fluid at low Reynolds number in a given three-dimensional
domain. We denote the domain of interest by D+ ⊂ R

3, the complementary domain
by D− ⊂ R

3, and the boundary between them by Γ ⊂ R
3. The Stokes equations

for the fluid velocity field u : D+ → R
3 and pressure field p : D+ → R are, in

nondimensional form,

(2.1)
Δu(x) = ∇p(x),
∇ · u(x) = 0,

or
ui,jj(x) = p,i(x),
ui,i(x) = 0,

x ∈ D+.

We assume that D− ∪ Γ ∪ D+ fills all of three-dimensional space, that D− and D+

are open, and that D+ is connected. Moreover, we assume that Γ consists of a finite
number of disjoint, closed, bounded, and orientable components, each of which is a
Lyapunov surface [8]. Under these conditions, various boundary value problems can
be formulated and studied using potential theoretic techniques. While D+ could be
either an interior or an exterior domain, we assume here and throughout that D+ is
the exterior and D− is the interior domain with respect to Γ .

Unless mentioned otherwise, all vector quantities are referred to a single basis
and indices take values from one to three. Moreover, we use the usual conventions
that a pair of repeated indices implies summation and that indices appearing after a
comma denote partial derivatives. We assume here and throughout that all quantities
have been nondimensionalized using a characteristic length scale � > 0, velocity scale
ϑ > 0, and force scale μϑ� > 0, where μ is the absolute viscosity of the fluid. The
dimensional quantities corresponding to {x, u, p} are {�x, ϑu, μϑ�−1p}.

2.2. Stress, traction, and moments. The stress field associated with a
velocity-pressure pair (u, p) is a function σ : D+ → R

3×3 defined by

(2.2) σij(x) = −p(x)δij + ui,j(x) + uj,i(x),

where δij is the standard Kronecker delta symbol. For each x ∈ D+ the stress tensor
σ is symmetric in the sense that σij = σji. The traction field f : S → R

3 exerted by
the fluid on a given oriented surface S ⊂ D+ is defined by

(2.3) fi(x) = σij(x)νj(x),

where ν : S → R
3 is a given unit normal field. The traction is the force per unit

area exerted on S by the fluid on the positive side of S as determined by the normal.
The resultant force F ∈ R

3 and torque T ∈ R
3, about an arbitrary point γ ∈ R

3,
associated with the traction field are

(2.4) Fi =

∫
S
fi(x) dAx, Ti =

∫
S
εijk(xj − γj)fk(x) dAx,
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where εijk is the standard permutation symbol and dAx denotes an infinitesimal area
element at x ∈ S.

More generally, given an oriented surface S and a vector field η : S → R
3, we

may define a stress or traction moment L ∈ R by

(2.5) L =

∫
S
ηi(x)fi(x) dAx.

By inspection, we see that specific choices for η lead to the force and torque expressions
outlined above. The characterization of the traction moment L for a given velocity-
pressure pair (u, p), surface S, and moment function η is our main problem of interest;
we will be specifically interested in the case when S is closed and bounded and tends
to Γ in an appropriate sense.

3. The Stokes potentials. Here we outline the classic single- and double-layer
potentials which play a central role in the potential theory for the Stokes equations.
We use ν to denote the outward unit normal field on Γ , and as before, D− and D+

denote the interior and exterior domains.

3.1. Velocity, pressure potentials. Let ψ : Γ → R
3 be a continuous function.

Then by the Stokes single-layer velocity and pressure potentials on Γ with density ψ
we mean

(3.1)

Vi[Γ, ψ](x) =

∫
Γ
Eij

V (x, y)ψj(y) dAy ,

PV [Γ, ψ](x) =

∫
Γ
Πj

V (x, y)ψj(y) dAy,

and by the Stokes double-layer velocity and pressure potentials on Γ with density ψ
we mean

(3.2)

Wi[Γ, ψ](x) =

∫
Γ
Eijl

W (x, y)ψj(y)νl(y) dAy ,

PW [Γ, ψ](x) =

∫
Γ
Πjl

W (x, y)ψj(y)νl(y) dAy .

Here (Eij
V , Π

j
V ) and (Eijl

W , Πjl
W ) are fundamental-type solutions of the Stokes equations

called the stokeslet and stresslet, respectively; they are solutions of the free-space
Stokes equations with different types of singular forcing at the point y [7, 31]. Using
the notation z = x− y and r = |z|, explicit expressions for these solutions are

Eij
V (x, y) =

δij
r

+
zizj
r3

, Πj
V (x, y) =

2zj
r3
,(3.3)

Eijl
W (x, y) =

3zizjzl
r5

, Πjl
W (x, y) = −2δjl

r3
+

6zjzl
r5

.(3.4)

We remark that, due to the linearity of the free-space equations, the above solutions
are defined up to an arbitrary choice of normalization. The choice of normalization
naturally affects various constants in the developments that follow but is not crucial
in any way; the choice adopted here is taken from [7]. While we only consider the
Stokes potentials with densities in the classic spaces of continuous functions, they
could also be considered on various Sobolev spaces [11].
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3.2. Properties of velocity, pressure potentials. For any continuous density
ψ, the potentials (V [Γ, ψ], PV [Γ, ψ]) and (W [Γ, ψ], PW [Γ, ψ]) are smooth at each x /∈
Γ . Moreover, by virtue of their definitions as linear combinations of stokeslets and
stresslets, they satisfy the Stokes equations (2.1) at each x /∈ Γ . Because of this
property, a given boundary value problem for the Stokes equations can be reduced to
finding a density ψ that will produce given data on Γ ; hence an understanding of the
behavior of these and related potentials for points on and near Γ is essential.

The velocity potentials V [Γ, ψ] and W [Γ, ψ] are finite for all x ∈ D−∪Γ ∪D+. In
the special case when x ∈ Γ , both corresponding integrals are only weakly singular and
hence exist as improper integrals in the usual sense [8] provided that Γ is a Lyapunov
surface. The restrictions of V [ψ, Γ ] and W [ψ, Γ ] to Γ are denoted by V [ψ, Γ ] and
W [ψ, Γ ]. These restrictions are continuous functions on Γ ; moreover, for any x0 ∈ Γ ,
the following pointwise limit relations hold [20]:

lim
x→x0
x∈D+

V [Γ, ψ](x) = V [Γ, ψ](x0),(3.5)

lim
x→x0
x∈D−

V [Γ, ψ](x) = V [Γ, ψ](x0),(3.6)

lim
x→x0
x∈D+

W [Γ, ψ](x) = 2πψ(x0) +W [Γ, ψ](x0),(3.7)

lim
x→x0
x∈D−

W [Γ, ψ](x) = −2πψ(x0) +W [Γ, ψ](x0).(3.8)

Notice that, by continuity of ψ and W [Γ, ψ], the one-sided limits in (3.7) and (3.8)
are themselves continuous functions on Γ . Standard arguments [8] can be used to
show that all four of the above limits are approached uniformly in x0 ∈ Γ .

In contrast, the pressure potentials PV [Γ, ψ] and PW [Γ, ψ] are not as simple.
These potentials are finite for all x ∈ D− ∪ D+, but when x ∈ Γ , the correspond-
ing integrals are singular and hyper-singular, respectively, and hence do not exist as
improper integrals in the usual sense. Nevertheless, when the density ψ and surface
Γ are sufficiently regular, the potentials PV [Γ, ψ] and PW [Γ, ψ] have pointwise limits
as x approaches Γ [20, 29, 35]. Notice that the existence of such limits is intimately
connected with regularity up to the boundary of solutions of the Stokes equations.

3.3. Stress, traction potentials. The single- and double-layer stress potentials
associated with (V [Γ, ψ], PV [Γ, ψ]) and (W [Γ, ψ], PW [Γ, ψ]), respectively, are

Σik
V [Γ, ψ](x) =

∫
Γ
Ξikj

V (x, y)ψj(y) dAy,(3.9)

Σik
W [Γ, ψ](x) =

∫
Γ
Ξikjl

W (x, y)ψj(y)νl(y) dAy,(3.10)

where Ξikj
V and Ξikjl

W are the stress fields corresponding to the stokeslet and stresslet
solutions in (3.3) and (3.4). In particular, we have [7, 31]

Ξikj
V (x, y) = −6zizkzj

r5
,(3.11)

Ξikjl
W (x, y) =

2δikδjl
r3

+
3(δijzkzl + δilzjzk + δjkzizl + δlkzizj)

r5
− 30zizjzkzl

r7
.(3.12)

The limiting traction fields on Γ associated with ΣV [Γ, ψ] and ΣW [Γ, ψ] are of par-
ticular interest. To study these, we consider a neighborhood of Γ , with points param-
eterized as xτ = x0 + τν(x0), where x0 ∈ Γ and τ ∈ [−c, c] for some c > 0 sufficiently
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small, and we extend the normal field such that ν(xτ ) = ν(x0). In this neighborhood,
we have the traction potentials

(3.13) f i
V [Γ, ψ](xτ ) = Σik

V [Γ, ψ](xτ )νk(xτ ), f i
W [Γ, ψ](xτ ) = Σik

W [Γ, ψ](xτ )νk(xτ ).

3.4. Properties of stress, traction potentials. For any continuous density
ψ, the stress potentials ΣV [Γ, ψ] and ΣW [Γ, ψ] are smooth at each x /∈ Γ . At any such
point, these potentials provide an explicit expression for the stresses associated with
the velocity-pressure pairs (V [Γ, ψ], PV [Γ, ψ]) and (W [Γ, ψ], PW [Γ, ψ]). Moreover, for
any fixed τ �= 0, the set of points xτ define a surface Γτ that is parallel to Γ and
has the same normal field, and the traction potentials fV [Γ, ψ] and fW [Γ, ψ] provide
explicit expressions for the associated tractions on this surface.

The single-layer traction potential fV [Γ, ψ] is finite for all x0 ∈ Γ and τ ∈ [−c, c].
Indeed, in view of (3.11) and (3.4), we see that the single-layer traction potential
is closely related to the double-layer velocity potential and consequently has similar
properties. Specifically, when τ = 0, the corresponding integral is only weakly singular
and hence exists as an improper integral provided that Γ is a Lyapunov surface. The
restriction of fV [Γ, ψ] to Γ (τ = 0) is denoted by fV [Γ, ψ]. This restriction is a
continuous function on Γ ; moreover, for any x0 ∈ Γ , the following pointwise limit
relations hold [20, 29]:

lim
τ→0+

fV [Γ, ψ](xτ ) = −4πψ(x0) + fV [Γ, ψ](x0),(3.14)

lim
τ→0−

fV [Γ, ψ](xτ ) = 4πψ(x0) + fV [Γ, ψ](x0).(3.15)

Similar to before, standard arguments [8] can be used to show that both of the above
limits are approached uniformly in x0 ∈ Γ .

In contrast, the double-layer traction potential fW [Γ, ψ] is not as simple. This
potential is finite for all x0 ∈ Γ and τ ∈ [−c, 0) ∪ (0, c], but when τ = 0, the corre-
sponding integral is hyper-singular and hence does not exist as an improper integral
in the usual sense. Nevertheless, when the density ψ and surface Γ are sufficiently
regular, the potential fW [Γ, ψ] has pointwise limits as τ → 0±, and moreover, for each
x0 ∈ Γ , the following equality holds [29]:

lim
τ→0+

fW [Γ, ψ](xτ ) = lim
τ→0−

fW [Γ, ψ](xτ ).(3.16)

The above result is commonly referred to as the Lyapunov–Tauber theorem. Although
elegant, this result does not provide an explicit or easily computable expression for
the limiting double-layer traction field. Sufficient conditions for the existence and
hence equality of the above pointwise limits are that ψ ∈ C1,γ(Γ,R3) for some 0 <
γ ≤ 1, which means that the density is a differentiable function from Γ into R

3 with
Hölder continuous derivatives, and that Γ ∈ C2,γ , which means that the surface,
when considered locally as a graph in Cartesian coordinates, is twice differentiable
with Hölder continuous second derivatives [29].

4. Main result. Consider a neighborhood of Γ , with points parameterized as
xτ = x0 + τν(x0), where x0 ∈ Γ and τ ∈ [−c, c] as before. Let fV [Γ, ψ] and fW [Γ, ψ]
be the single- and double-layer traction potentials, and given any vector field η on
Γ , consider an extension into the neighborhood defined by η(xτ ) = η(x0). Moreover,
for any fixed τ , let Γτ be the surface parallel to Γ defined by the points xτ , and for
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any function g(x), let ĝ(x, y) = g(x) − g(y). In view of (2.5), consider the traction
moments

Lτ
V =

∫
Γτ

ηi(xτ )f
i
V [Γ, ψ](xτ ) dAxτ ,(4.1)

Lτ
W =

∫
Γτ

ηi(xτ )f
i
W [Γ, ψ](xτ ) dAxτ .(4.2)

Theorem 4.1. Let Γ be a closed, bounded Lyapunov surface with outward unit
normal field ν. If Γ ∈ C1,1, ψ ∈ C0,1(Γ,R3), and η ∈ C0,γ(Γ,R3) for 0 < γ ≤ 1, then
the limiting values of Lτ

V and Lτ
W exist and

lim
τ→0+

Lτ
V = −4π

∫
Γ
ηi(x)ψi(x) dAx +

∫
Γ

∫
Γ
KV [η, ψ](x, y) dAxdAy,(4.3)

lim
τ→0−

Lτ
V = 4π

∫
Γ
ηi(x)ψi(x) dAx +

∫
Γ

∫
Γ
KV [η, ψ](x, y) dAxdAy,(4.4)

lim
τ→0+

Lτ
W =

∫
Γ

∫
Γ
KW [η, ψ](x, y) dAxdAy = lim

τ→0−
Lτ

W ,(4.5)

where

(4.6) KV [η, ψ](x, y) = ηi(x)Ξ
ikj
V (x, y)ψj(y)νk(x)

and

KW [η, ψ](x, y) =
1

2
η̂i(x, y)Ξ

ikjl
W (x, y)

[
ψ̂j(y, x)νl(y)νk(x)

+ ψj(x)ν̂l(y, x)νk(x) + ψj(x)νl(x)ν̂k(x, y)
]
.

(4.7)

Thus, under appropriate assumptions, the limiting values of the single- and double-
layer traction moments Lτ

V and Lτ
W exist and can be expressed as weakly singular

integrals depending only pointwise on the density ψ and weight η. The fact that the
integral for the double-layer case in (4.5) is only weakly singular is a consequence of the
factors η̂, ψ̂, and, ν̂ in (4.7). The results for the single-layer moments are essentially
local; they do not rely on the closedness of Γ and are based on the explicit pointwise
limit relations in (3.14) and (3.15). These results are straightforward and are included
only for completeness and purposes of comparison. In contrast, the results for the
double-layer moments are essentially nonlocal; they rely on the closedness of Γ and
are not based on explicit pointwise limit relations. Notice that, since the results hold
for arbitrary weighting functions, we may consider those with localized support and
thereby obtain localized information on the double-layer traction field.

We point out that the results for the double-layer moments are obtained without
any explicit application of Stokes theorem or integration by parts, as have been con-
sidered in other contexts [11, 25], which would generally lead to expressions involving
surface derivatives of ψ or η. Moreover, while the double-layer results are consistent
with the Lyapunov–Tauber theorem in (3.16) regarding the equality of pointwise lim-
its, the results are not implied by this relation but instead are of a different nature and
contain important additional information. Specifically, the above results state that
the one-sided limits of the double-layer moments exist and are equal, and additionally
they provide a straightforward, explicit expression for the common limiting value of
the moments. Moreover, as compared to the Lyapunov–Tauber theorem, the above
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results hold under milder regularity conditions on the density and surface. These
milder conditions seem rather sharp for the technique of proof and classic function
spaces employed here; whether or not the results would hold under weaker conditions
is an open question.

All the above results have application to general boundary integral formulations
of Stokes flow problems in which the classic single- and double-layer potentials are em-
ployed. One application would be the determination of generalized forces associated
with the coupled translational, rotational, and shape dynamics of immersed flexible
bodies. In this case, a number of different boundary integral formulations could be
used to represent the flow and, independent of the interpretation of the density, the
above results would provide the generalized forces. The case of immersed rigid bodies
is simpler and can be approached in various ways [7, 14, 15, 28].

5. Application to flexible bodies. Here we briefly illustrate how the results
in Theorem 4.1 arise in the modeling of immersed flexible bodies. As before, we
use Γ to denote a bounded surface with associated interior domain D− and exterior
domain D+.

5.1. Kinematics. We consider a body with current configuration D− and ref-
erence configuration D0 and suppose points x ∈ D− are in bijective correspondence
with points x ∈ D0 via a parameterized map of the form

(5.1) x = Φ(x; γ,G, q) = γ + φi(x, q)gi,

where γ ∈ R
3 is a vector that defines the position of a body origin, G = (g1, g2, g3) ∈

R
3×3 is an orthonormal matrix with column vectors gi ∈ R

3 (i = 1, 2, 3) that define the
orientation of a body frame, q ∈ R

m is a vector of shape parameters, and φ(x, q) ∈ R
3

is a given function which defines the shape of the body in the body frame. For
example, D0 may be a straight cylinder, and D− may be a curved cylinder, where the
curvature and torsion of the axial curve, along with other features such as the radius
and twist of the cylinder about its axial curve, are defined by the parameters in q.
Alternatively, and more directly, the parameters in q could be the positions of a set of
nodes which together with an interpolation rule define the axial curve of the cylinder.
For simplicity we restrict our attention to bodies whose shapes have a finite number
of degrees of freedom in this sense.

A motion of the body is a one-parameter family of configurations defined by
x = Φ(x; γ(t), G(t), q(t)). For each fixed t ≥ 0, the velocity of the body is described
by a vector field u : D− → R

3 of the form

(5.2) u(x) = v + ω × (x− γ) + ηα(x)ϑα,

where v ∈ R
3 and ω ∈ R

3 are the linear and angular velocities of the body frame, ϑ =
q̇ ∈ R

m is the rate of change of the shape parameters, and ηα(x) = (∂φi/∂qα)(x, q)gi ∈
R

3 (α = 1, . . . ,m) are vector fields which form a natural basis for the shape dynamics.
Here we exploit the fact that any function of x ∈ D0 can be considered as a function
of x ∈ D− and conversely; as before, we employ the summation convention on pairs
of repeated indices, where the range of the sum is determined by the context. Thus
the configuration of the body is parameterized by (γ,G, q) and its velocity field by
(v, ω, ϑ).

5.2. Load balance. For each fixed t ≥ 0, we suppose that the body is subject
to a set of external forces f (β) ∈ R

3 at specified material points x(β) = Φ(x(β); γ,G, q)
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(β = 1, . . . , n) and an external hydrodynamic traction field per unit area f : Γ → R
3;

the velocity and natural basis vector at each x(β) are denoted by u(β) and η
(β)
α . We

also suppose that the body is elastic, with an internal energy function E(q) ∈ R. For
quasi-static motions in which the kinetic energy of the body can be neglected, the
power expended by the external loads is balanced by the rate of change of internal
energy, namely,

(5.3)
∑
β

f (β) · u(β) +
∫
Γ

f · u dA =
d

dt
E(q).

An external body force field per unit mass could also be included in the above balance;
to do so would require the consideration of hydrostatic effects since the traction we
consider is purely hydrodynamic, and also the mass density and volumetric rate of
strain fields within the body, but we do not pursue that here.

Substitution of (5.2) into (5.3), together with the fact that (5.3) must hold for
motions with arbitrary values of (v, ω, ϑ), leads to the load balance relations

(5.4)
F ext + F hyd = 0, T ext + T hyd = 0,

Hext
α +Hhyd

α = H int
α , α = 1, . . . ,m.

The first two equations above are the usual balance of force and torque relations that
arise in the case of rigid bodies, where the reference point for the torque is the body
origin. The third equation is a balance of generalized forces relation that arises in the
case of a flexible body as considered here. Specifically, we have

H int
α =

∂E

∂qα
,(5.5)

F ext =
∑
β

f (β), T ext =
∑
β

(x(β) − γ)× f (β), Hext
α =

∑
β

η(β)α · f (β),(5.6)

F hyd =

∫
Γ

f dA, T hyd =

∫
Γ

(x − γ)× f dA, Hhyd
α =

∫
Γ

ηα · f dA.(5.7)

5.3. Hydrodynamics. For each fixed t ≥ 0, we suppose the body is immersed
in an incompressible viscous fluid at rest at infinity, and we model the hydrodynamic
traction field f : Γ → R

3 using the Stokes system (2.1) in the exterior domain D+,
with no-slip data of the form (5.2) on the boundary Γ , together with conditions of
vanishing velocity and pressure at infinity. Linearity of (2.1)–(2.3), together with (5.2)
and (5.7), implies the existence of a linear map from (v, ω, ϑ) to (F hyd, T hyd, Hhyd),
where Hhyd = (Hhyd

α ) ∈ R
m is the generalized force vector. We denote this map or

operator by −R ∈ R
(6+m)×(6+m) so that

(5.8) (F hyd, T hyd, Hhyd) = −R(v, ω, ϑ).
The evaluation of the entries of R requires the evaluation of the hydrodynamic

traction moments (F hyd, T hyd, Hhyd) in (5.7) for independent choices of the velocities
(v, ω, ϑ) in (5.2). The results contained in Theorem 4.1 provide a basic tool for this
purpose; the results are especially useful for the evaluation of the components Hhyd

α

of the generalized force. For example, for given (v, ω, ϑ), the Stokes boundary value
problem could be solved using any combination of single- and double-layer potentials
on Γ with density ψ. Once ψ is obtained, the traction moments for different weighting



A THEOREM ON THE TRACTION FIELD IN STOKES FLOW 1587

functions ηα are then obtained from the theorem: the contribution from the single-
layer potential is given by (4.3), which is the limiting value of (4.1) (the limit from the
exterior domain is appropriate), and the contribution from the double-layer potential
is given by (4.5), which is the limiting value of (4.2).

5.4. Equations of motion. Combining the kinematic, load balance, and hy-
drodynamic relations leads to the following equations for the quasi-static motion of
an immersed flexible body:

(5.9)
γ̇ = v, ġi = ω × gi, q̇ = ϑ,

R(v, ω, ϑ) = (F ext, T ext, Hext −H int).

Here H int and (F ext, T ext, Hext) are loads as defined in (5.5) and (5.6), and R is the
Stokes resistance operator defined by the Stokes equations in the domain exterior to
the body; the loads and resistance operator are generally configuration dependent.
Notice that velocities can be determined from specified loads, and more generally,
various mixed subsets of velocity and load components can be determined from spec-
ified values of the remaining components. The above equations can be used to model
the coupled motions of a body that may translate and rotate, and also bend, twist,
stretch, and otherwise deform as allowed by its parameterization. Such motions may
be of interest in the study of the sedimentation and transport of particles and the
propulsion of microorganisms and micro-robots in a number of applications where
the assumption of rigidity may not be appropriate or desirable; see, for example,
[6, 12, 16, 21, 23, 24, 30, 32, 34].

6. Proof. In this section we provide a proof of Theorem 4.1. We use the same
notation and conventions as in previous sections. Moreover, we use C to denote a
generic positive constant whose value may change from one appearance to the next,
and we use | · | to denote a Euclidean norm or measure of a surface, as determined by
the context. Furthermore, we omit indices on vector and tensor quantities whenever
there is no cause for confusion. With the exception of intervals on the real line, the
delimiters [ · ] and ( · ) are used interchangeably; there is no implication of a jump
operator or otherwise.

6.1. Preliminaries. By assumption, Γ ⊂ R
3 consists of a finite number of

disjoint, closed, bounded, and orientable components, each of which is a Lyapunov
surface [8]. Thus,

(L1) there exists an outward unit normal ν(x) and tangent plane TxΓ at every
x ∈ Γ ,

(L2) there exists constants C > 0 and 0 < λ ≤ 1 such that θ(ν(x), ν(y)) ≤ C|x−y|λ
for all x, y ∈ Γ , where θ(ν(x), ν(y)) is the angle between ν(x) and ν(y),

(L3) there exists a constant d > 0 such that, for every x ∈ Γ , the subset Γ∩B(x, d)
is a graph over TxΓ , where B(x, d) is the closed ball of radius d with center
at x.

We refer to λ and d as a Lyapunov exponent and radius associated with Γ , and for
any x ∈ Γ we refer to B(x, d) as a Lyapunov ball at x. Notice that if (L2) and (L3)
hold for some values of λ and d, then they also hold for all smaller values. We assume
that values for λ and d are fixed once and for all and assume specifically that λ = 1.

For any x ∈ Γ , we use Γx,d to denote the portion of Γ within the Lyapunov ball
at x, and we use Ωx,d to denote the image of Γx,d on TxΓ under projection parallel
to ν(x). We refer to Γx,d as the Lyapunov patch at x. Without loss of generality,
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we identify Ωx,d with a subset of R2 and identify x with the origin. We reserve the
notation TxΓ to indicate the tangent plane considered as a subspace of R

3. The
Lyapunov condition (L3) implies that the map

(6.1) y = ϕx(ζ), y ∈ Γx,d, ζ ∈ Ωx,d,

defined by projection parallel to ν(x), is a bijection. We refer to y = ϕx(ζ) with
inverse ζ = ϕ−1

x (y) as a local Cartesian parameterization of Γ at x. Notice that, for
any x ∈ Γ , the local Cartesian coordinates are uniquely defined up to the choice of
orthonormal basis in TxΓ .

We say that Γ is of class C1,1, and use the notation Γ ∈ C1,1, if the local Cartesian
map ϕx and its inverse ϕ−1

x are of class C1,1 in their respective domains for each x
and additionally have Lipschitz constants that are uniform in x. We will also have
need to consider a local polar parameterization of Γ at x of the form

(6.2) y = ϕpolar
x (ρ, θ), y ∈ Γx,d, (ρ, θ) ∈ Ωpolar

x,d ,

where Ωpolar
x,d is a subset of R+ × [0, 2π). For a given choice of orthonormal basis in

TxΓ , the polar parameterization is defined from the Cartesian one using the relation
ζ = (ρ cos θ, ρ sin θ). The inverse map (ρ, θ) = ϕpolar,−1

x (y) is defined for all y ∈ Γx,d,
y �= x. The relation between an area element dAy at y ∈ Γx,d and the corresponding
element dAζ at ζ = ϕ−1

x (y) ∈ Ωx,d is given by

(6.3) dAy = jx(ζ) dAζ = jx(ρ cos θ, ρ sin θ) ρ dρ dθ,

where jx is the Jacobian associated with the coordinate map ϕx. When the Lyapunov
radius d is chosen sufficiently small, the condition in (L2) implies the following uniform
bounds for all x ∈ Γ and y = ϕx(ζ) ∈ Γx,d and some fixed constant C:

(6.4) 1 ≤ jx(ζ) ≤ 1 + Cρ ≤ 2, ρ ≤ |x− y| ≤ ρ+ Cρ3 ≤ 2ρ.

Throughout our analysis, we consider a neighborhood of Γ , with points parame-
terized by the map

(6.5) ξ = ϑτ (x) := x+ τν(x), x ∈ Γ, τ ∈ [−c, c].
Provided the constant c > 0 is sufficiently small, the image Γτ = ϑτ (Γ ) is a surface
parallel to Γ for each fixed τ and is also Lyapunov and of class C1,1. From the
geometry of parallel surfaces, for any τ ∈ [−c, c], x ∈ Γ , and ξ = ϑτ (x) ∈ Γτ we have
the following classic result (see, for example, [27]):

(6.6) ν(ξ) = ν(x), dAξ = Jτ (x) dAx, Jτ (x) = 1 + 2τκm(x) + τ2κg(x).

Here ν(ξ) and ν(x) are the outward unit normals on Γτ and Γ , dAξ and dAx are area
elements on Γτ and Γ , and κm and κg are the mean and Gaussian curvatures of Γ .
Here we use the convention that curvature is positive when Γ curves away from its
outward unit normal. We denote the inverse of ξ = ϑτ (x) by x = ϑ−1

τ (ξ). In view of
(6.5) and (6.6)1 we have x = ξ−τν(ξ). The assumption that Γ ∈ C1,1 implies that the
curvatures κm and κg are defined almost everywhere and are uniformly bounded on
Γ . Moreover, when the Lyapunov radius d is chosen sufficiently small, the condition
in (L2) implies the following uniform bounds for all x ∈ Γ , y ∈ Γx,d, and τ ∈ [−c, c],
where r = |x− y|:

(6.7) r2+τ2

2 ≤ |y − ϑτ (x)|2 ≤ 3(r2+τ2)
2 , r2+τ2

2 ≤ |ϑτ (y)− x|2 ≤ 3(r2+τ2)
2 .
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6.2. Lemmata. We begin with a collection of estimates regarding certain types
of integrals that will arise in our analysis. The results in (6.8) are simple general-
izations of standard estimates for weakly singular integrals. The results in (6.9) are
more delicate and their validity depends crucially on the translation parameter τ .
The results follow from straightforward calculus; the details are omitted for brevity.

Lemma 6.1. Let Γ ∈ C1,1 and α > 0 be given, and let d > 0 be the Lyapunov
radius of Γ . Then there exists constants d∗ ∈ (0, d] and C > 0 such that for all x ∈ Γ ,
τ ∈ [−c, c]\{0}, and a ∈ (0, d∗] we have∫

Γx,a

1

(r2 + τ2)(2−α)/2
dAy ≤ Caα,

∫
Γx,a

r1+α

(r2 + τ2)3/2
dAy ≤ Caα,(6.8)

∫
Γx,a

rα|τ |
(r2 + τ2)3/2

dAy ≤ Caα,

∫
Γx,a

|τ |
(r2 + τ2)3/2

dAy ≤ C.(6.9)

Our next result establishes an important identity for the double-layer stress po-
tential defined in (3.10). Let τ ∈ [−c, c] and functions ψ, η : Γ → R

3 be given,
and consider corresponding functions ψ, η : Γτ → R

3 defined by ψ(ξ) = ψ(x) and
η(ξ) = η(x), where ξ = ϑτ (x). Moreover, let ΣW [Γ, ψ] be the double-layer stress
potential with density ψ on Γ , and let ΣW [Γτ , ψ] be the corresponding potential with
density ψ on Γτ . For τ �= 0, notice that ΣW [Γ, ψ] is finite at all points of Γτ and
ΣW [Γτ , ψ] is finite at all points of Γ , since Γτ ∩ Γ = ∅, and consider the moments
defined by

M τ [η, ψ] =

∫
Γτ

ηi(ξ)Σ
ik
W [Γ, ψ](ξ)νk(ξ) dAξ,(6.10)

N τ [η, ψ] =

∫
Γ
ηi(y)Σ

ik
W [Γτ , ψ](y)νk(y) dAy .(6.11)

Moreover, let KW [η, ψ] be the kernel defined in (4.7), and for τ �= 0 notice that
KW [η, ψ](ξ, y) is finite for all ξ ∈ Γτ and y ∈ Γ .

Lemma 6.2. Let Γ ∈ C1,1, ψ ∈ C0(Γ,R3), and η ∈ C0(Γ,R3) be given. Then for
every τ ∈ [−c, c]\{0} we have

(6.12) M τ [η, ψ] +N τ [η, ψ] = 2

∫
Γτ

∫
Γ
KW [η, ψ](ξ, y) dAydAξ.

Proof. Let A(x), B(x), C(x), and D(x) be arbitrary functions and consider the
convenient notation Aξ = A(ξ), By = B(y), and so on. Then the following identity
holds:

AξByCyDξ +AyBξCξDy

= (Aξ −Ay)
[
(By −Bξ)CyDξ +Bξ(Cy − Cξ)Dξ +BξCξ(Dξ −Dy)

]
+AyByCyDξ +AξBξCξDy.

(6.13)

Considering the above identity with A = ηi, B = ψj , C = νl, and D = νk, and

contracting it with Ξikjl
W , and using the definition of KW [η, ψ] in (4.7), we get

ηi(ξ)Ξ
ikjl
W (ξ, y)ψj(y)νl(y)νk(ξ) + ηi(y)Ξ

ikjl
W (ξ, y)ψj(ξ)νl(ξ)νk(y)

= 2KW [η, ψ](ξ, y) + ηi(y)Ξ
ikjl
W (ξ, y)ψj(y)νl(y)νk(ξ)

+ ηi(ξ)Ξ
ikjl
W (ξ, y)ψj(ξ)νl(ξ)νk(y).

(6.14)
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The above expression is finite for any τ �= 0 and can be integrated over ξ ∈ Γτ and
y ∈ Γ . Performing the integration, and using (3.10), together with the symmetry

property Ξikjl
W (ξ, y) = Ξikjl

W (y, ξ) implied by (3.12), and using also (6.10) and (6.11),
we find

M τ [η, ψ] +N τ [η, ψ] = 2

∫
Γτ

∫
Γ
KW [η, ψ](ξ, y) dAydAξ

+

∫
Γ
ηi(y)ψj(y)νl(y)

[∫
Γτ

Ξikjl
W (y, ξ)νk(ξ) dAξ

]
dAy

+

∫
Γτ

ηi(ξ)ψj(ξ)νl(ξ)

[∫
Γ
Ξikjl

W (ξ, y)νk(y) dAy

]
dAξ.

(6.15)

The desired result follows from the fact that each of the two integrals in brackets
on the right-hand side of the above expression vanishes. Indeed, the first integral in
brackets is the resultant force on the closed surface Γτ generated by the fundamental
stresslet solution (Eijl

W , Πjl
W ) with pole at y /∈ Γτ , which vanishes by properties of the

stresslet solution; see, for example, [7]. Similarly, the second integral in brackets is
the resultant force on the closed surface Γ generated by the fundamental stresslet
solution with pole at ξ /∈ Γ , which vanishes by the same properties.

The next result shows that the one-sided limits of the sum M τ [η, ψ] +N τ [η, ψ],
as τ → 0±, exist and are equal under additional Hölder conditions on the functions ψ
and η. Moreover, the common value of the one-sided limits is given by the two-fold
integral of the kernel KW [η, ψ], which is weakly singular on Γ under the additional
Hölder conditions.

Lemma 6.3. Let Γ ∈ C1,1, ψ ∈ C0,α(Γ,R3), and η ∈ C0,γ(Γ,R3) be given, where
α > 0 and γ > 0 such that α+ γ > 1. Then

(6.16) lim
τ→0±

[
M τ [η, ψ] +N τ [η, ψ]

]
= 2

∫
Γ

∫
Γ
KW [η, ψ](x, y) dAydAx.

Proof. For any y ∈ Γ and τ ∈ [−c, c]\{0} let

U(y) =

∫
Γ
KW [η, ψ](x, y) dAx,(6.17)

U(y, τ) =

∫
Γτ

KW [η, ψ](ξ, y) dAξ =

∫
Γ
KW [η, ψ](ϑτ (x), y)Jτ (x) dAx.(6.18)

We first seek to show that U(y, τ) → U(y) as τ → 0± uniformly in y everywhere on
Γ . To this end, notice that U(y, τ) is finite for all y ∈ Γ and τ ∈ [−c, c]\{0} since
Γτ ∩ Γ = ∅. Moreover, from the conditions that ν ∈ C0,1, ψ ∈ C0,α, and η ∈ C0,γ

on Γ , and the fact that these functions are constant in the normal direction, and the
inequality |y−x| ≤ √

2|y−ϑτ(x)| which follows from (6.7), we find that the quantities

(6.19)
|ν(y)− ν(ξ)|

|y − ξ| ,
|ψ(y)− ψ(ξ)|

|y − ξ|α ,
|η(y)− η(ξ)|

|y − ξ|γ

are uniformly bounded for all x, y ∈ Γ , τ ∈ [−c, c], and ξ = ϑτ (x) such that y �= ξ.
Combining (6.19) with (4.7) and (3.12), we obtain the decomposition

(6.20) KW [η, ψ](ξ, y) =
A(ξ, y)

|y − ξ|3−α−γ
+

B(ξ, y)

|y − ξ|2−γ
,
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where A(ξ, y) and B(ξ, y) are uniformly bounded functions defined for all x, y ∈ Γ ,
τ ∈ [−c, c], and ξ = ϑτ (x) such that y �= ξ. From this decomposition with τ = 0
(ξ = x), together with the conditions γ > 0 and α+γ > 1, we see that KW [η, ψ](x, y)
is weakly singular for x, y ∈ Γ and hence U(y) is finite for all y ∈ Γ .

Next, let g(y, τ) = U(y, τ) − U(y) and consider any a ∈ (0, d∗] as in Lemma 6.1.
For any y ∈ Γ we have Γ = (Γ\Γy,a) ∪ Γy,a and hence

g(y, τ) =

∫
Γ\Γy,a

[
KW [η, ψ](ϑτ (x), y)Jτ (x) −KW [η, ψ](x, y)

]
dAx

+

∫
Γy,a

KW [η, ψ](ϑτ (x), y)Jτ (x) dAx −
∫
Γy,a

KW [η, ψ](x, y) dAx.

(6.21)

For the second integral in (6.21) we have, using (6.4), (6.7), and (6.20), and the
boundedness of the Jacobian and Lemma 6.1,∣∣∣∣∣

∫
Γy,a

KW [η, ψ](ϑτ (x), y)Jτ (x) dAx

∣∣∣∣∣
≤

∫
Γy,a

C

|y − ϑτ (x)|3−α−γ
+

C

|y − ϑτ (x)|2−γ
dAx

≤
∫
Γy,a

C

(r2 + τ2)(3−α−γ)/2
+

C

(r2 + τ2)(2−γ)/2
dAx

≤ Caα+γ−1 + Caγ ,

(6.22)

where C is a constant independent of x, y, and τ . A bound of exactly the same form
also holds for the third integral in (6.21). Moreover, from (6.6), we notice that the
Jacobian can be written in the form Jτ (x) = 1 + τω(x, τ), where ω(x, τ) is uniformly
bounded. Using the above results in (6.21), we obtain the following for all y ∈ Γ ,
τ ∈ [−c, c]\{0}, and a ∈ (0, d∗]:

|g(y, τ)| ≤
∫
Γ\Γy,a

∣∣∣KW [η, ψ](ϑτ (x), y)−KW [η, ψ](x, y)
∣∣∣ dAx

+

∫
Γ\Γy,a

∣∣∣τKW [η, ψ](ϑτ (x), y)ω(x, τ)
∣∣∣ dAx + Caα+γ−1 + Caγ .

(6.23)

To establish the limit relation for g(y, τ), let ε > 0 be given and fix a ∈ (0, d∗]
such that Caα+γ−1 + Caγ ≤ ε/3. Then since the function KW [η, ψ](ϑτ (x), y) −
KW [η, ψ](x, y) is uniformly continuous on the compact set defined by x, y ∈ Γ , |y −
x| ≥ a, τ ∈ [−c, c], and this function vanishes when τ = 0, and moreover the function
KW [η, ψ](ϑτ (x), y)ω(x, τ) is uniformly bounded on the above compact set, we find
there exists a δ > 0 such that

(6.24)∣∣∣KW [η, ψ](ϑτ (x), y)−KW [η, ψ](x, y)
∣∣∣ ≤ ε/(3|Γ |)∣∣∣τKW [η, ψ](ϑτ (x), y)ω(x, τ)

∣∣∣ ≤ ε/(3|Γ |)

{ ∀x, y ∈ Γ, |y − x| ≥ a,
∀τ ∈ [−c, c], |τ | ≤ δ.

Using (6.24) in (6.23) we find that |g(y, τ)| ≤ ε for all y ∈ Γ whenever 0 < |τ | ≤ δ,
which shows that g(y, τ) → 0 as τ → 0± uniformly in y everywhere on Γ .
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The announced property for the sum M τ [η, ψ] +N τ [η, ψ] follows from the obser-
vation that, for any τ ∈ [−c, c]\{0}, we have, in view of Lemma 6.2,

(6.25) M τ [η, ψ] +N τ [η, ψ] = 2

∫
Γ
U(y) + g(y, τ) dAy,

and hence

lim
τ→0±

[
M τ [η, ψ] +N τ [η, ψ]

]
= 2

∫
Γ
U(y) dAy = 2

∫
Γ

∫
Γ
KW [η, ψ](x, y) dAxdAy ,

(6.26)

which is the desired result.
The next result shows that the one-sided limits of the difference M τ [η, ψ] −

N τ [η, ψ], as τ → 0±, both vanish under a stricter Hölder condition on the func-
tion ψ. The proof of this result for the difference is significantly more involved and
delicate than that for the sum and suggests that this stricter Hölder condition may
be rather sharp.

Lemma 6.4. Let Γ ∈ C1,1, ψ ∈ C0,1(Γ,R3), and η ∈ C0,γ(Γ,R3) be given, where
γ > 0. Then

(6.27) lim
τ→0±

[
M τ [η, ψ]−N τ [η, ψ]

]
= 0.

Proof. From (6.5) and (6.6), together with (6.10) and (6.11), and the fact that η
and ν are constant in the normal direction, we obtain

M τ [η, ψ]−N τ [η, ψ]

=

∫
Γτ

ηi(ξ)Σ
ik
W [Γ, ψ](ξ)νk(ξ) dAξ −

∫
Γ
ηi(y)Σ

ik
W [Γτ , ψ](y)νk(y) dAy

=

∫
Γ
ηi(y)g

i(y, τ) dAy ,

(6.28)

where for any y ∈ Γ and τ ∈ [−c, c]\{0} we have

gi(y, τ) = Σik
W [Γ, ψ](ϑτ (y))νk(y)Jτ (y)−Σik

W [Γτ , ψ](y)νk(y).(6.29)

To establish the announced property for the differenceM τ [η, ψ]−N τ [η, ψ], we seek to
show that g(y, τ) → 0 as τ → 0± for almost every y on Γ and moreover that g(y, τ) is
bounded by an integrable function on Γ , so that the dominated convergence theorem
may be applied.

To study the limiting behavior of g(y, τ), we first rewrite (6.29) in a more useful
form. To this end, we use (3.10) and the fact that the two bracketed integrals in

(6.15) vanish, together with symmetry properties of Ξikjl
W implied by (3.12), and the

fact that ψ and ν are constant in the normal direction, to get

Σik
W [Γ, ψ](ϑτ (y)) =

∫
Γ
Ξikjl

W (ϑτ (y), x)ψj(x)νl(x) dAx

=

∫
Γ
Ξikjl

W (ϑτ (y), x)ψ̂j(x, y)νl(x) dAx,

(6.30)
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and similarly,

Σik
W [Γτ , ψ](y) =

∫
Γτ

Ξikjl
W (y, ξ)ψj(ξ)νl(ξ) dAξ

=

∫
Γτ

Ξikjl
W (y, ξ)ψ̂j(ξ, y)νl(ξ) dAξ

=

∫
Γ
Ξikjl

W (y, ϑτ (x))ψ̂j(x, y)νl(x)Jτ (x) dAx.

(6.31)

Substituting (6.30) and (6.31) into (6.29) we get

gi(y, τ)

=

∫
Γ

[
Ξikjl

W (ϑτ (y), x)Jτ (y)− Ξikjl
W (y, ϑτ (x))Jτ (x)

]
ψ̂j(x, y)νl(x)νk(y) dAx.

(6.32)

It will be convenient to decompose the integral in (6.32) into a telescoping-type
sum, which will be helpful in isolating delicate terms. To this end, let d∗ be the
constant in Lemma 6.1 and consider any fixed b ∈ (0, d∗]. For any y ∈ Γ , let Γy,b

be the Lyapunov patch of radius b at y, and consider a local polar coordinate map
for Γy,b\{y} of the form x = ϕpolar

y (ρ, θ) with inverse (ρ, θ) = ϕpolar,−1
y (x), which

for brevity we denote by xρ,θ and (ρx, θx). As in the proof of Lemma 6.3, we write
the Jacobian in (6.6) in the form Jτ (x) = 1 + τω(x, τ), where ω(x, τ) is uniformly
bounded. With these considerations in mind, we decompose the integral in (6.32) as

(6.33) g(y, τ) = SA(y, τ) + SB(y, τ) + SC(y, τ) + SD(y, τ) + SE(y, τ),

where for any y ∈ Γ and τ ∈ [−c, c]\{0} we have

SA(y, τ) =

∫
Γ
[G1(x, y, τ) −G2(x, y, τ)]− [F1(x, y, τ) − F2(x, y, τ)] dAx,(6.34)

SB(y, τ) =

∫
Γ\Γy,b

[F1(x, y, τ) − F2(x, y, τ)] dAx,(6.35)

SC(y, τ) =

∫
Γy,b

[F1(x, y, τ)− F2(x, y, τ)] − F3(x, y, τ) dAx,(6.36)

SD(y, τ) =

∫
Γy,b

F3(x, y, τ) dAx,(6.37)

SE(y, τ) =

∫
Γ
τ [G1(x, y, τ)ω(y, τ) −G2(x, y, τ)ω(x, τ)] dAx.(6.38)

In the above, G1(x, y, τ) and G2(x, y, τ) are functions arising directly in (6.32) after
substituting for the two Jacobians, namely,

(6.39)
Gi

1(x, y, τ) = Ξikjl
W (ϑτ (y), x)ψ̂j(x, y)νl(x)νk(y),

Gi
2(x, y, τ) = Ξikjl

W (y, ϑτ (x))ψ̂j(x, y)νl(x)νk(y),

F1(x, y, τ) and F2(x, y, τ) are auxiliary functions introduced to simplify the analysis
of G1(x, y, τ) and G2(x, y, τ), specifically

(6.40)
F i
1(x, y, τ) = Hikjl(ϑτ (y), x)ψ̂j(x, y)νl(x)νk(y),

F i
2(x, y, τ) = Hikjl(y, ϑτ (x))ψ̂j(x, y)νl(x)νk(y),
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where Hikjl(y, x) = 6δlkzizj/r
5 − 30zizjzkzl/r

7, z = x− y, r = |z|, and F3(x, y, τ) is
an auxiliary function introduced to simplify the analysis of F1(x, y, τ) and F2(x, y, τ),
specifically

(6.41) F i
3(x, y, τ) =

(r2 + τ2)7/2

|x− ϑτ (y)|7|ϑτ (x) − y|7 (48τ
3r2 − 12τr4)F i

0(θx, y),

where F0(θ, y) and a related function Fρ(θ, y) are defined in Γy,b\{y} as

F i
0(θ, y) = lim sup

ρ↓0
F i
ρ(θ, y),

F i
ρ(θ, y) =

ψ̂j(xρ,θ , y)

|xρ,θ − y|
[
(xρ,θ − y)i νj(y)

|xρ,θ − y| +
(xρ,θ − y)j νi(y)

|xρ,θ − y|
]
.

(6.42)

We next show that each of the integrals in (6.34)–(6.38) vanishes as τ → 0± either
uniformly for every y on Γ or else for almost every y while being uniformly bounded
by an integrable function on Γ . For the integral SA(y, τ) in (6.34), we use (3.12),
(6.39), and (6.40), together with (6.5) and (6.7), to arrive at the bound for all y ∈ Γ ,
x ∈ Γy,b\{y} and τ ∈ [−c, c]\{0},

(6.43)
∣∣∣[G1(x, y, τ) −G2(x, y, τ)] − [F1(x, y, τ) − F2(x, y, τ)]

∣∣∣ ≤ C r |ψ̂(x, y)|
|x− ϑτ (y)|3 ,

where C is a constant independent of x, y, and τ , and we note that |ψ̂(x, y)| ≤ C|x−y|α
since ψ ∈ C0,α on Γ ; by assumption α = 1, but any α > 0 would suffice at this stage.
Next, for any y ∈ Γ and a ∈ (0, b] consider the decomposition Γ = (Γ\Γy,a) ∪ Γy,a.
Using this decomposition in (6.34), and employing (6.43) along with (6.7) and Lemma
6.1 for the portion over Γy,a, we get

|SA(y, τ)|
≤

∫
Γ\Γy,a

∣∣∣[G1(x, y, τ) −G2(x, y, τ)]− [F1(x, y, τ) − F2(x, y, τ)]
∣∣∣ dAx + Caα.

(6.44)

To establish the limit result, let ε > 0 be given and fix a ∈ (0, b] such that Caα ≤ ε/2.
Then since the integrand in (6.44) is uniformly continuous on the compact set defined
by x, y ∈ Γ , |y − x| ≥ a, τ ∈ [−c, c], and this integrand vanishes when τ = 0, we
find there exists a δ > 0 such that |SA(y, τ)| ≤ ε for all y ∈ Γ whenever 0 < |τ | ≤ δ,
which shows that SA(y, τ) → 0 as τ → 0± uniformly in y everywhere on Γ . We
remark that the role of the auxiliary functions F1(x, y, τ) and F2(x, y, τ) in (6.34) is
to cancel corresponding terms in G1(x, y, τ) and G2(x, y, τ). This cancellation leads
to the factor of r in the numerator in (6.43), which together with the Hölder estimate
on ψ gives a bound that is only weakly singular on Γ , which leads to the limit result.
Without the auxiliary functions, the bound in (6.43) would be more singular.

For convenience, we next consider the integrals SB(y, τ) and SE(y, τ) in (6.35)
and (6.38). For SB(y, τ) we notice that, since b ∈ (0, d∗] is fixed, the integrand is
uniformly continuous on the compact set defined by x, y ∈ Γ , |y− x| ≥ b, τ ∈ [−c, c],
and this integrand vanishes when τ = 0. Hence as above we find that SB(y, τ) → 0
as τ → 0± uniformly in y everywhere on Γ . For SE(y, τ), we use (3.12) and (6.39) to
arrive at the following bounds for all y ∈ Γ , x ∈ Γy,b\{y} and τ ∈ [−c, c]\{0}:

(6.45)
∣∣∣τG1(x, y, τ)ω(y, τ)

∣∣∣, ∣∣∣τG2(x, y, τ)ω(x, τ)
∣∣∣ ≤ C|τ ||ψ̂(x, y)|

|x− ϑτ (y)|3 ,
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where C is a constant independent of x, y, and τ , and also |ψ̂(x, y)| ≤ C|x − y|α
since ψ ∈ C0,α on Γ . For any y ∈ Γ and a ∈ (0, b], we consider the decomposition
Γ = (Γ\Γy,a)∪Γy,a and argue as above using (6.45), (6.7), and Lemma 6.1 for integrals
over Γy,a, and using the boundedness of G1(x, y, τ)ω(y, τ) and G2(x, y, τ)ω(x, τ) for
integrals over Γ\Γy,a, to conclude that SE(y, τ) → 0 as τ → 0± uniformly in y
everywhere on Γ .

For the integral SC(y, τ) in (6.36), we use (6.40), (6.41), and (6.42) to arrive at
the following decomposition for all y ∈ Γ , x ∈ Γy,b\{y}, and τ ∈ [−c, c]\{0}:

F1(x, y, τ)− F2(x, y, τ) − F3(x, y, τ)

=
B(x, y, τ) r |ψ̂(x, y)|

|x− ϑτ (y)|3 +
(r2 + τ2)7/2(48τ3r2 − 12τr4)

|x− ϑτ (y)|7|ϑτ (x)− y|7 [Fρx(θx, y)− F0(θx, y)],

(6.46)

where B(x, y, τ) is a function that is bounded uniformly in x, y, and τ . Next, for
y ∈ Γ and x ∈ Γy,b\{y} let Δy(x) = Fρx(θx, y) − F0(θx, y). Notice that Δy(x) is
bounded uniformly in x and y since ψ ∈ C0,1. Moreover, for almost every y, Δy(x)
is continuous in x and satisfies lim|x−y|↓0Δy(x) = 0 due to the almost everywhere
differentiability of ψ ∈ C0,1. For any τ ∈ [−c, c]\{0} and a ∈ (0, b], we consider the
decomposition Γy,b = (Γy,b\Γy,a) ∪ Γy,a, and with the aid of (6.7), and the facts that
r ≤ (r2 + τ2)1/2 and |τ | ≤ (r2 + τ2)1/2, and Lemma 6.1, we obtain∣∣∣∣∣

∫
Γy,a

(r2 + τ2)7/2(48τ3r2 − 12τr4)Δy(x)

|x− ϑτ (y)|7|ϑτ (x)− y|7 dAx

∣∣∣∣∣
≤ C sup

0<|x−y|<a

|Δy(x)|
∫
Γy,a

|τ |3r2 + |τ |r4
(r2 + τ2)7/2

dAx

≤ C sup
0<|x−y|<a

|Δy(x)|
∫
Γy,a

|τ |
(r2 + τ2)3/2

dAx

≤ C sup
0<|x−y|<a

|Δy(x)|.

(6.47)

Moreover, since B is bounded and ψ ∈ C0,1, we find, again using (6.7) and Lemma 6.1,

(6.48)

∣∣∣∣∣
∫
Γy,a

B(x, y, τ) r |ψ̂(x, y)|
|x− ϑτ (y)|3 dAx

∣∣∣∣∣ ≤
∫
Γy,a

Cr2

(r2 + τ2)3/2
dAx ≤ Ca.

Applying the decomposition Γy,b = (Γy,b\Γy,a) ∪ Γy,a to the integral in (6.36), and
using (6.46), (6.47), and (6.48) for the portion over Γy,a, we get the following bound
for all y ∈ Γ and τ ∈ [−c, c]\{0}, where 0 < a ≤ b are fixed:

|SC(y, τ)| ≤
∫
Γy,b\Γy,a

|F1(x, y, τ) − F2(x, y, τ)− F3(x, y, τ)| dAx

+ C sup
0<|x−y|<a

|Δy(x)|+ Ca.
(6.49)

To establish a limit result, we notice first that SC(y, τ) is uniformly bounded. Next, for
almost every y, we recall that Δy(x) is continuous in x and satisfies lim|x−y|↓0Δy(x) =
0, and hence for any given ε > 0 we can choose a ∈ (0, b], depending on y, such that
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C sup0<|x−y|<a |Δy(x)| + Ca ≤ ε/2. Then, since F1(x, y, τ) − F2(x, y, τ) is uniformly
continuous on the compact set defined by x, y ∈ Γ , a ≤ |y − x| ≤ b, τ ∈ [−c, c], and
vanishes when τ = 0, and |F3(x, y, τ)| ≤ C|τ | on this compact set, we find there exists
a δ > 0 such that |SC(y, τ)| ≤ ε whenever 0 < |τ | ≤ δ, which shows that SC(y, τ) → 0
as τ → 0± for almost every y. Hence, by the dominated convergence theorem, we
conclude that SC(y, τ) → 0 in the L1-norm on Γ as τ → 0±.

The final integral we consider is SD(y, τ) in (6.37). In this case, we use (6.41) and
(6.42), together with (6.4) and (6.7), to arrive at the following decomposition for all
y ∈ Γ , x ∈ Γy,b\{y}, and τ ∈ [−c, c]\{0}:

F3(x, y, τ) =

[
(48τ3ρ2x − 12τρ4x)

(ρ2x + τ2)7/2
+

D(x, y, τ)

(ρ2x + τ2)1/2

]
F0(θx, y),(6.50)

where (ρx, θx) are the polar coordinates of x, and D(x, y, τ) is a function that is
bounded uniformly in x, y, and τ . Moreover, by (6.42) and the fact that ψ ∈ C0,1,
the function F0(θx, y) is also bounded uniformly in x and y. For sufficiently small
a > 0, we note that Γ 0

y,a = {x ∈ Γ | 0 ≤ ρx ≤ a, 0 ≤ θx < 2π} is contained in
Γy,b and we consider the decomposition Γy,b = (Γy,b\Γ 0

y,a) ∪ Γ 0
y,a. Using the bound

1 ≤ jy(ζx) ≤ 1 + Cρx from (6.4), we obtain

∣∣∣∣∣
∫
Γ 0
y,a

F3(x, y, τ) dAx

∣∣∣∣∣
≤

∣∣∣∣
∫ 2π

0

∫ a

0

(48τ3ρ2 − 12τρ4)ρ

(ρ2 + τ2)7/2
F0(θ, y) dρ dθ

∣∣∣∣ +
∫ 2π

0

∫ a

0

Cρ

(ρ2 + τ2)1/2
dρ dθ

≤
∣∣∣∣
[∫ 2π

0

F0(θ, y) dθ

] [∫ a

0

(48τ3ρ2 − 12τρ4)ρ

(ρ2 + τ2)7/2
dρ

]∣∣∣∣+ Ca

≤
∣∣∣∣
[∫ 2π

0

F0(θ, y) dθ

] [
12a4τ

(a2 + τ2)5/2

]∣∣∣∣+ Ca

≤ Ca4|τ |
(a2 + τ2)5/2

+ Ca.

(6.51)

Applying the decomposition Γy,b = (Γy,b\Γ 0
y,a) ∪ Γ 0

y,a to the integral in (6.37), and
using (6.51) for the portion over Γ 0

y,a, we get the following bound for all y ∈ Γ and
τ ∈ [−c, c]\{0}:

(6.52) |SD(y, τ)| ≤
∫
Γy,b\Γ 0

y,a

|F3(x, y, τ)| dAx +
Ca4|τ |

(a2 + τ2)5/2
+ Ca.

To establish the limit result, let ε > 0 be given and fix a ∈ (0, b] such that Ca ≤
ε/3. Then, in view of (6.41) we have |F3(x, y, τ)| ≤ C|τ | for all y ∈ Γ and x ∈
Γy,b\Γ 0

y,a, and we find that there exists a δ > 0 such that |SD(y, τ)| ≤ ε for all y ∈ Γ
whenever 0 < |τ | ≤ δ. Hence SD(y, τ) → 0 as τ → 0± uniformly in y everywhere
on Γ .

The announced property for the differenceM τ [η, ψ]−N τ [η, ψ] follows from (6.28)
and (6.33). Specifically, the above results show that g(y, τ) → 0 in the L1-norm on Γ
as τ → 0±; all terms in (6.33) converge in the C0-norm, with the exception of SC(y, τ),
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which was only shown to converge in the L1-norm. Hence, by the boundedness of η,
we get

lim
τ→0±

[
M τ [η, ψ]−N τ [η, ψ]

]
= lim

τ→0±

∫
Γ
ηi(y)g

i(y, τ) dAy =

∫
Γ

lim
τ→0±

[ηi(y)g
i(y, τ)] dAy = 0,

(6.53)

which is the desired result.

6.3. Proof of main result. Here we combine the results in Lemmas 6.3 and
6.4 to establish our main results in Theorem 4.1. Specifically, let Γ ∈ C1,1, ψ ∈
C0,1(Γ,R3), and η ∈ C0,γ(Γ,R3) be given, where γ > 0. For any τ ∈ [−c, c]\{0} we
have

(6.54) 2M τ [η, ψ] =
[
M τ [η, ψ] +N τ [η, ψ]

]
+
[
M τ [η, ψ]−N τ [η, ψ]

]
.

In view of Lemmas 6.3 and 6.4, we see that the momentM τ [η, ψ] has one-sided limits
as τ → 0±, and moreover

(6.55) lim
τ→0±

M τ [η, ψ] =

∫
Γ

∫
Γ
KW [η, ψ](x, y) dAydAx.

The results in Theorem 4.1 for the double-layer traction moment Lτ
W follow from the

observation that Lτ
W = M τ [η, ψ]. The results for the single-layer traction moment

Lτ
V are straightforward consequences of the limit relations in (3.14) and (3.15) and

the uniformity of these limits in the surface point. The details are omitted for brevity.
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