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Introduction

Goal. To compute the Stokes traction integral ¥ € R for given
data U,n: T — R3.

uAu = Vp in Q.

V-u = 0 in Q.

u = U onl
up — 0 as|x|] > o0

ov = [M(Vu +Vu') - pl] v surface traction

F= /77 -ov dA  traction integral.
r

Applications. Modeling of diffusion and transport of particles;
molecular separation, mixing techniques; fluid-structure interaction.
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Formulation

Setup. In dimensionless form, the equations are

Au = Vp in

V-u = 0 in Qe

u = U onl
up — 0 as|x|— o0

ov = [VU—}— Vul — pl]u

?z/n-al/dA.
r

Approach. Reformulate problem using classic single- and double-
layer potentials.
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Fundamental solutions

Free-space equations.

Au = Vp+f inR3
Vu = g in R3
up — 0 as |x| — oo.

Classic solutions.

Pt-force (Stokeslet) GY(x,y), GP(x,y) foco(x—y)
Pt-source QY(x,y), QP(x,y) g xd(x—y)

Stresslet HY(x,y), HP(x,y) (linear combo).
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Formulation

Single-layer potentials
Definition. By the single-layer potentials for (u, p, o) with density
¥ : T — R3 we mean

uilx) = [Gﬂ&ﬂ%@ﬁmy
p(x) = /I_Gjp(Xa}/)?bj()/) dA,

mMrzﬁ%MMWHMy

dii  ziz 2z;
Gjlxy) ="+ Gly)=7F
6z;z, z;
izj(xay)sza Z=X=Y, r:|z|.

Note. They satisfy Stokes in €2¢; representation has limited range;
traction ov is weakly-singular on T.
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Double-layer potentials

Definition. By the double-layer potentials for (u, p, o) with
density ¢ : I — R3 we mean

U,'(X) = ‘/FH,-;-I(X,)/)d)j(_)/) dAy

p(x) = /HJP(X,Y)1/)j()’) dAy

r
ou(x) = /r HE, (%, y)i(y) dA,

3ziziz-v 2u;  bzjz-v
H;(va):#7 I-IJP(va):_T;—’— Jr5

20ikv; n 3(0jjzk z-v + jzi z-v + vjzjzk + Vi ZiZ)) _ 30zizizk z-v

[ea

ikj —

r3 rd r’

Note. They satisfy Stokes in €; representation has limited range;
traction ov is hyper-singular on .
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Proposed formulation

Description. For the exterior problem, we propose a mixed-layer
formulation with a parallel surface.

u(x) = A / G (. E)(y(€)) dAc + (1 ) /r HY(x, y)(y) dA,

p(x),o(x) represented similarly
0 < A <1 interpolation parameter

~ parallel surface

0 < ¢ < ¢r offset parameter.

Note. Interpolation leads to a complete range; parallel surface is
convenient for numerics.
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Boundary integral equation

For given data U : I — R3, the density 1/ : I — R3 is determined
by the condition

u(xo) = U(x), Vx eT.
X, € Q°

Equivalently
Sp+HY+cp=U

where
=2m(1l— )

500) = [ Gl OU©) dAe 6.8 =AG"(x.¢)

Tp(x) = /r Hooy)oly) dAy,  Hixy) = (1- \H(x,y).
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Solvability result
Problem. Given U : T — R3, we seek Pl — R3 such that

S +HY +cyp = U.
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Solvability result
Problem. Given U : T — R3, we seek ¢ : [ — R3 such that

S +HY +cyp = U.

Theorem (Hebeker). There exists a unique density v € C° for
any closed, bounded Lyapunov surface I' € C1, offset parameter
® € (0, ¢r), interpolation parameter A € (0,1) and data U € C°.



Formulation

Traction result

Problem. Given any vector field 7 : I — R3, we seek to compute
the traction integral

?:/n-aeydA
r

where
el o
of(x) = Xollr_n> « o(Xo).
Xo € Q°
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Traction result

Problem. Given any vector field 7 : I — R3, we seek to compute
the traction integral

?:/n-aeydA
r

where
el o
of(x) = XOI|Ln> « o(Xo).
Xo € Q°

Theorem. If I € Cb1 oy € CO% and 1y € CO% (a > 0), then T
exists and can be expressed as a weakly-singular integral depending
only pointwise on v and 7, namely

5= [ [ Kirvly) daan,.
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Traction integral kernel

Kn ¥](x.y) = ni(x)Gig(x, y )by )vie(x)
+ 37710,y ) Hagi (6, ) (v, XDy v ()
+37i (%, ¥ ) Hirit (%, y )i ()i (y, X)vk (x)
+370 (%, ¥ ) Hirgr (x, y Y ()i (x) ok (x. v )

G=XG% H=(1-MNH, &(xy)=g(x)—-gl)
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Method

Setup. Given U,n: T — R3, we seek to compute F € R.

Examples

Au = Vp in .

V-u = 0 in Qe

u = U onl
up — 0 as|x|— o0

ov = [VU—}— Vul — pl]u

?z/n-al/dA.
r

Approach. Consider Nystrom-type method on BIE formulation.

Y+ Y+ cp=U,  T= /r /r K ¥](x. y) dAdA, .

[m] = = =
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Surface, kernels
Assumption (A0). I € C™*11 m >0, closed, bdd, Lyapunov.

v X

Assumption (Al). Gy(x) = /G(x,f)@b(y(f))dAg. G class C™1.
v(y) 1¢ !

y =&+ v (&)
v(y) = ().

y

I'=0Q



Method
Surface, kernels

Assumption (A2). Hy(x) = / H(x,y)¢¥(y) dA,. H weakly-
r

singular; class C™! away from diagonal. Moreover

g\x,y
H(x,y) = (oY) Vx#y
x—y
g(x,y) bounded; class C™*! in x; class C™ in y

C
‘ng’,‘D}?g‘S‘Xi Vx #y

— )T

Dy, D, are surface derivatives; o is multi-index.
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Surface, kernels

Assumption (A3). For each x € I we assume

(I) g(X7Y)|y:y(p,9) class CO,l In (107 0)

r
(i) lim g(x,y) = lim = g(x,y)
p—0 p—0
0 fixed 0 + 7 fixed
(i) g(x,y) — lim_ g(x,y) class C%Lin y.
p—0

0(y) fixed
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Mesh

Assumption (A4). We consider a decomposition of I into non-
overlapping quadrature elements ¢, e =1... E. We assume

Ch> < |T¢| < C'h?, Ve, E

h= méax{diam(re)}.
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Quadrature rule

Assumption (A5). In each '® we introduce nodes x; and weights
Wg >0 g=1...Q, such that

/f dAX_Z dAX_ZZf

We assume
Ch? <y W< C'h
< di e ) <
Ch < dist(xg,dr¢) < h Vq,e, E. re
Ch < min |xg —xe|<h

e#e!
q#q’
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Quadrature error

Assumption (A6). We consider quadrature errors defined by

1

T(e,f, h) = e

f(x) dAx Zf xS)WE| .

We assume

max 7(e,f,h) -0 as h—0, Vfe(C°

e

max 7(e, f,h) < Ceh®, Ve CF11
e

£ > 1 is order of quadrature rule.
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Nodal partition of unity functions

Assumption (A7). To each node x,, a = (q, ) we associate
functions (5, (; € C% We assume

G(x),G(x) €10,1], GOx)+G(x)=1, VxerT

Clx — xa|?

PR diam(supp(Za)) < Ch.

Ca(x) <



Introduction Formulation Method Examples

Local polynomials

Definition. In a neighborhood of any given x € [ we can define a
local poly Ry(z) of any given degree.

F &x(2) is projection of z — x onto T,

g Re(z) = G + CoEX(2)

+ P e(2)Elz) + -

Note. R.(z) is well-defined in a neighborhood of x; there is a
uniform bound on the size of this neighborhood.
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Discretized operators

Definition. For any given degree p > 0 we define discretized
operators by

Gnp(x) = D G(x, %) (x6) Wh

Fp(x) = 3 | Co(x)H(x, x5)8(x5) Wi + C () Re(x6)1(x5)

where Ry(z) is a local poly at x of degree p defined such that

for all local polys f

FHpf(x) = FF(x) at x of degree < p.

Assumption (A8). The coeffs of R,(z) are unique and bounded
for all h > 0.
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Discretized equation

Given data U we seek an approximate density v, such that

Grton(x) + Hpon(x) + cp(x) = U(x), VxeT.
Any solution b, can be constructed in two steps

(i) Solve nodal equations

Shon(xa) + Hphn(xa) + cthn(xa) = U(xa), Va.

(i) Interpolate nodal values

1

C

¥n(x) [U(X) — Gnon(x) — Hpn(x)|, VxeT.
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[llustration: method with p =0

Partition of unity. We can choose (,(x) and Za(x) such that

Glw)=1-d . \J . Gale) =60 o S\

Xa Xa

Local polynomial. R,(z) = C; for each x € . Moment condition
gives

JrHOay) dAy = 325 o0 H(x, x6) W

Co=
35 G(x)
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[llustration: method with p =0

Nodal equations. For each node x, we get

ZG Xas Xp)Vh(Xp) Wp + ZH Xa, Xb [wh(xb) ¢h(Xa)] Wy = U(xa).
b#a

Interpolation equation. At any x we have

Un(x) = = | UG) = 3 G, x6)om (x6) W
b

C

—ZCb YH(x, xb)tn(xp) Wb—ZCb ) Cctbn(xb) | -
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Solvability, convergence result

Setup. Consider method with a quad rule of order £ > 1 and a
local poly of degree p > 0. The original and discretized eqgs are

S +Hp+cpy=U (1)
Snon + Hphp + cpp = U. (2)
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Solvability, convergence result

Setup. Consider method with a quad rule of order £ > 1 and a
local poly of degree p > 0. The original and discretized eqs are

S +Hp+cpy=U (1)
Snon + Hphp + cpp = U. (2)

Theorem. Assume (A0)—(A8). If (1) has a unique solution, then
so does (2) for all h > 0 sufficiently small. If I € C™+1! and
€ C™ thenas h— 0

1Y) — ¥nllec — 0 Ve>1,p>0,m>0
[ — Pplloe < CAMNEPM) g > 1 p>1,m> 1.
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Idea of proof

Sketch. Pf is based on theory of collectively cmpct ops on C°.
We show

(i) Snf(x), Hpf(x) equibounded for given f.
(ii) Gnf(x), Hnf(x) equicontinuous for given f.
(i) Gpf — Gf, Hpf — HF in CO for given f.

We estimate

(iv) [|Sf — Snflleo and || Hf — Hpf||oo for given f.

Then by collective compactness we have

1Y — ¥hlloo < CII(G — Gn)t + (FH — Hp)t||o-
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Equiboundedness of .

feCO xeT given.

Formulation Method Examples

Idea of proof

Gx) G(x) oW

Xb Xp

Green patch at x of size O(h); contains finite # quad elements.

J—Chf(x)

1> Gl

green

Y GOOH ) o)W+ D G(x)Ra(x6)F (x6)-
b

| I— | I—
green+red green

Clx —x|* lg(x,y)

| 2
f h* < CJIf]|.
h2 X — x| If(xo)| A~ < CJ[f]|

X Xb (Xb)Wb‘ S

|37 GOIR)F(x6)| < C(C+ Cht--- 4 CHP) [F ()] < CIIF

green
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Formulation

Idea of proof
Equiboundedness of .

‘ZCb

red

DB

red

_Z|

ecred

X Xp f(Xb) Wb
xg)| Wy

L] ||<Z vvé)

C|re|

— x¢|

< Z [I1]

eEred

dAyIIfII < ClIf]l.

I

ecred

Method Examples

cref < fref < re|
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Idea of proof
Estimate of ||Hf — Hf||
feC™l xeTl given.
Quadrature rule of order ¢ given.
TPf local Taylor poly at x of degree p.

H,Hp equal on local polys at x of degree p.

[HF() =FHaf ()] = [H(F = TEE)(x)  — FHu(f = TEA(X)

< Chmintpm), Ve>1,p>1m>1
uniformly in x.

p=0 & anti-podal condition] = [p =1 & O(h) terms]|.
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Method with p = 0, £ = 1: conditioning vs A, ¢

13

7
x
£
o o
1 1

0 02 04 06 08 1
A

3q
’\E 2'5\\\\
)
% 2
. . bE y
A € (0,1) interpolation param 5 10
8 1
¢ € (0, ¢r) offset surface param %31 03 o5 o7 09
A
¢/dr = § (dots), 2 (crosses), 3 (pluses), ..., £ (triangles)

Condition number Zmex < 1015 for (N, ¢/¢r) near (%, %)
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Method with p = 0: traction integral accuracy vs h

28.6

28.55

IFI

28.5

28.45
4 8 12 16 20

1/h

:2\

Traction integral: total force 08

Iogm A F
A

BC: rotation about horizontal

1 1.2 1.4
log 10 1/h

Results for £ = 1,2 and various A, ¢

Convergence is visible; limited by iterative solver; apparent rate is > 1
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Method with p = 0: traction integral accuracy vs h

23

2295 oy
22.

IFI
©

22.85

22.8
4 8 12 16 20

1/h

-2
-3

BC: transverse translation -4

Iog10 |AF|

-5

Traction integral: total force © 08

1 1.2 1.4
log 10 1/h

Results for £ = 1,2 and various A, ¢

Convergence is visible; limited by iterative solver; apparent rate is > 1
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Examples

Method with p = 0: traction integral accuracy vs h

20.75

20.74

IFI

20.73

20.72
10

30 50
1/h

70

BC: translation along z-axis

S\@\%

Traction integral: force along z-axis

-

Results for £ =1,2 and A =1/2, ¢/¢r = 1/2

Convergence is visible; apparent rate is > 1

1.2

14 16
log 10 1/h

18
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Method with p = 0: traction integral accuracy vs h

31.96

31.95

30 50 70 90
1/h

BC: rotation about z-axis

[

Traction integral: torque about z-axis 12 18 2

14 16
Iog10 1/h
Results for £ =1,2 and A =1/2, ¢/¢r = 1/2

Convergence is visible; apparent rate is > 1
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Method with p = 0: traction integral accuracy vs h

18.849558

L 18.849556 X.%A_A ......

18.849554
10

30 50 70 90
1/h

-6
7 &\M
-8

Iog10 |AF|
&

BC: translation

Traction integral: total force T4 16 18 2
Ioglollh

Results for £ =1,2 and A =1/2, ¢/¢r = 1/2

Convergence is visible; apparent rate is > 1
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Examples

Method with p = 0: traction integral accuracy vs h

25.132760

= 25.132745

25.132730
10

30

50 70 9

1/h

BC: rotation

Iog10 AT
)

e,

Traction integral: total torque 2/
Results for £ =1,2 and A =1/2, ¢/¢r = 1/2

Convergence is visible; apparent rate is > 1

14 16
log 10 1/h

18
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Summary
- Mixed-layer formulation is complete for exterior Stokes.
- Traction integral has nice characterization.
- Nystrom w/local polynomial is provably convergent.
- Lowest-order method is extremely simple.

- Open quad rule, anti-podal symmetry seem important.

preprints available at og@math.utexas.edu
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