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General problem

e optimize energy of a curve

e Insist that curve be centerline of a solid tube

example energy constraints
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Motivation

DNA packing in bacteriophages
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Encapsidated Conformation of
Bacteriophage T7 DNA

Fig. 5 Schematic representation of various models discussed in
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Figure 1. Cryo-electron Micrograph and Computer-Processed Images of T7 Heads from the Complete Tail-Deletion Mutant

(a) Cryo-electron micrograph of a field of bacteriophage T7 heads from the complete tail-deletion mutant. Empty capsids appear as thin-
walled particles. Full capsids exhibit the characteristic 2.5 nm spacing of densely packed DNA duplexes in motifs that vary according to
viewing direction (see Results). The concentric ring motif (e.g., particle indexed with a closed circle) is the view along the axis through the

connector-core vertex and the center of the particle. Particles paired via their connector vertices present side views perpendicular to this
axis (e.g., particles indexed with double closed circles). Bar = 50 nm.

(b) Two examples of axial views, at higher magnification. Bar = 25 nm.

(c and d) Images obtained by averaging 21 and 77 particles, respectively. The closed triangle (c) marks the location of the discontinuity
between the second and third DNA-associated rings. Also shown in (d) is a scan obtained by azimuthally averaging the accompanying image:
it exhibits an outer dense ring (S) corresponding to the protein shell, then at least nine equally spaced DNA-associated rings.



Curves and tubular neighborhoods

Curves v € Q

Q={vyeC'(S,R% | |¥(s)|=1, sc§ (unit circ)}

Y (s)
Tubular neighborhood Tj(v) V()

To(v) = {x € R?| dist(zx,~) < 6}

vyE€Q = Tph(7y) = union of disks

disk w/radius 6




Curve thickness

For each curve ~ there is a maximum radius 6.

Given ~ what is thickness 6.7



Characterization of thickness

Circumradius function r: vy x v xv— R

|yl —z|y— 2|

)= 1A(z, y, z)

Global (radius of) curvature pg:~ — R

pe(x) = min r(z,y, z)
Y,z€y

Thickness functional A: Q — R

Aly] = min pe (x)



Fundamental result

A[PY] '= min pG(CU) = Hmax
ey

ALy



Example

pc(x) = min r(x,y, z)
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Example

Aly] = min pc(x)
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Ideal knots

Intuitive definition

maximize radius

fix radius, knot type fix length, knot type
or
minimize length




Ideal knots

Variational definition

Consider curves with knot type specified by a given curve k € Q

Qe={v€Q| vk, ~(0)=0}.

A curve v, € Qy is an ideal shape if

Aly.] = sup Alyl.

v EQk

!



Results for ideal knots

Alv] = sup Afy]

&Lk

Existence/regularity

There is an ideal shape ~, € Q. for any given simple curve k € Q.
Every ideal shape is in the class C11(S, R®).

Necessary condition

A smooth curve ~, € Q. can be ideal only if

where a > 0 is curve thickness.
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Outline of existence/regularity proof

Alv.] = sup, g, A[Y]
A : Q) — R bounded.

Ay >M = diam(y) > 2M.

oo supA < oo.
Qr

Maximizing sequence {~,} C Qy equicont/bdd in C*.

[Yn(8) = m(o)| < |s = o

Ay, >260>0 = B
{ [ (8) = (o) < |s — o0

oo Vg = P @

A : Qp — R upper semi-cont wrt/C' convergence.

Alyn,] — sup A < Afy.].
Qk

o.o A["}’*] = sSup A.
Qk



Outline of necessary condition proof

For contradiction suppose

o Y EQpideal & Aly] =sup,o AN

e pc|v« not constant

o a=minpgly., d=maxpg[vi].

F={se§|palrl(s) > c}

E={s €S| pelr(s) < b}

Then
e curve shorten in F:' v, — Yuu,  L[vis] < L[]
e ‘isolation” of B Alvy..] = Al
e rescale length to get .. € Qr and Alv..] > Alv,]
e contradiction since Aly.] = sup, ¢, Al7]

Note

e curve shortening possible only if 47 £ 0 in F.



Ideal K31 Knot

V. Katritch et. al., Nature 384 (1996) 142 — 145
original Monte Carlo data
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Ideal K31 Knot

smoothened data
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Ideal Composite P31P31 Knot

V. Katritch et. al., Nature 388 (1997) 148 — 151
original Monte Carlo data
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Ideal Composite P31P31 Knot

smoothened data
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Local curvature on ideal knots

Alv,] = sup Aly]
¥ EQ)

At each x € ~, let

X
C, = all centers ¢ associated with pg(x)
K = positive cone defined by C,.
Then a smooth curve ~, € Q. can be ideal only if
pol®) = a,  Al@) € Kf, = Va:ivl(z)#0
pa(x) = a, Va vl (x) =0
Pl Vel

Proven for C'' case by F. Schuricht and H. von der Mosel (2004)



Local curvature on ideal knots

K31

P31P31




Optimal packing

Intuitive definitions
e fix tube radius, length, knot type

e minimize “packing energy”

S| — B8

e fix length, knot type, “box”

e maximize tube radius

Z__.




Optimal packing problems

Variational definition

Consider
e packing functional G[y] = diam(v), rad_of gyration(vy), ...
e knot representative ke Q
e admissibleset Qr.,={v€Q|G[v]<a, v=~k, v(0)=0}.

A curve v, € Q.. is an optimally packed shape if

Alvi] = sup Aly].

’YEQk,a
2

Existence/regularity

If G[] is lower semi-continuous in C!, then there is an optimally

packed shape v. € Q. for any given simple curve k € ). Every
such shape is in the class C11(S, R®).



Outline of existence/regularity proof

Alyi] = sup, ¢q, , Al

A : Qo — R bounded.

AN >M = diam(y) > 2M.

sup A < 0.
Qk,a

Maximizing sequence {v,} C Q.. equicont/bdd in C*.

Al >60>0 = {

|7n<5) - 7n(0)| = |8 ~— O’
1 (s) — (o) < |s — o]0

Yo; = ¥« C.

G : Q — R lower semi-cont wrt/C* convergence.

Glv«] < a.

A: Q. — R upper semi-cont wrt/C"' convergence.

Alyp;] — sup A < Aly,].

Qk,a

Alv] = sup A.
Qk,a



Optimal packing problems

Variational definition

Consider
e packing functional  G[y] = diam(v), rad_of gyration(y),...
e knot representative k€ Q
o admissible set Qr.={y€Q|A[y]>a, v =k, v(0)=0}.

A curve v, € Q.. is an optimally packed shape if

Glv] = inf G[y|.

Y EQk,a

> — B8

Existence/regularity

If G[v] is lower semi-continuous in C!, then there is an optimally

packed shape v, € Q. for any given simple curve k € Q. Every
such shape is in the class C(S, R?).



Outline of existence/regularity proof

Glve] = infyeq,, Gh

Suppose G : Q.. — R bounded from below.

inf G > M.

Qk,a

Minimizing sequence {v,,} C Q. equicont/bdd in C*.

Avp,]>a>0 = {

I’Yn(S) - 7n(0)| <ls— o
7 (s) = (o) < |s —ala™t.

Yn; = ¥s  C.

A :@Q — R upper semi-cont wrt/C! convergence.

Aly.] =z a.

G : Qro — R lower semi-cont wrt/C' convergence.

Gln,] = jof G2 Glv.

G[v«] = inf G.

Qk,a



Numerical example

Optimal packing

Minimize radius of gyration G[v] subject to
o fixed center of mass: ¢[y] = 0 (for convenience).
e Inextensibility: |y/| = 1.
e lower bound on thickness: Alvy] > a.

Gl =1 [ 1v(s) = el ds

o
©

RADIUS OF GYRATION
o
o

TIME




Numerical scheme

Gradient flow approach

o interpret minimizers as fixed points of a gradient flow
e Integrate the flow

= —-VG(r) + Z NV E;(r)+ Z e Vdg(r grad flow
0= FE;(r) arcl, com
0<1,(r), 0< g, 0=p.l.(r) thickness

Discretization

e space discretization: piecewise linear
e time discretization: fully implicit mid-point rule w/constraints



Concluding remarks

e Optimal packing of curves = interesting class of problems.
e Theory/analysis of problems is still in its infancy.

e Numerical analysis of problems is wide open.



