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Let’s go back to our checkerboard design - we shall think of it as extending over the

whole plane to form a tiling by congruent copies of a single square. An alternating coloring

has been added for extra effect.  This tiling will be left unchanged by various reflections

and rotations about various points.

•  Go back to the checkerboard figure and mark in the mirror lines with respect to which a

reflection leaves the design unchanged.  Mark the mirror lines in bold. Mark in red the

centers of rotation through 90˚ that leave the design unchanged. Mark also in blue the

centers of rotation through 180˚ that leave the design unchanged.

•  Your pattern should look like the one below.

•  This tiling is classified as “p4m”.  The smallest rotations allowed are quarter -turns and

there are reflections in four directions.

•  Successive use of the reflections and rotations fixing the design would replicate the

whole tiling from just one white square and one colored tile. Can the whole tiling be

generated from any part smaller than theses two squares? Find the smallest piece from

which the whole tiling could be generated by successive reflections and rotations. This

smallest piece is called a Fundamental Domain.
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How would the pattern of reflections and rotations differ if the tiling consisted of all

white squares? What is a Fundamental domain of the new monochromatic tiling?

You can continue to examine wallpaper designs in the next set of exercises.  Now we

will assemble all the results and ideas developed about transformations and tilings to show

how to use Sketchpad to construct figures with a prescribed symmetry.  First let’s see how

to use Custom Tools to define our own transformations.

4.4.1 Demonstration.  Custom transformations.

A custom transformation is a sequence of one or more transformations.  The basic steps

are given below.

 

•  Transform an object one or more times.

•  Hide any intermediate objects or format them as you wish them to appear when you

apply your transformation.

•  Select the pre-image and image, and select and show the labels of all marked

transformation parameters.

•  Create a new tool.  The pre-image and transformation parameters will become given

objects in the custom tool.

•  In the custom tool's Script View, set each of the given transformation

parameters—mirrors, centers, and so forth—to automatically match objects with the

same label..

For example, let’s define a rotation ρ θA,  through a given angle θ  about a given point A.

•  Open a new sketch and construct a point A and any point P.  Mark A as a center of

rotation.  Then construct the point ′P  which is the rotation of P about A through an

angle θ  (choose any θ ).

•  Next select P and ′P  and A. Choose “Create New Tool from the Tools menu. Type a

name that describes the transformational sequence.  In the Script View window, double

click on Point A in the “Given” section and check the box “Automatically Match Sketch

Object”.
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•  You can now apply your custom transformation to any figure in your sketch.  Draw

any polygonal figure in your sketch and construct its interior.  Select the polygon

interior and apply the tool.

Repeat this process to define a reflection Sm about a given mirror line m and a translation

Tv  in a given direction.

End of Demonstration 4.4.1.

        When you define a multi-step transformation, Sketchpad remembers the formatting

you’ve applied to each step’s image—whether you’ve colored it, or hidden it, and so forth.

When you apply the transformation to new objects, Sketchpad creates intermediate images

with exactly the same formatting. If you are interested only in the final image of the

sequence of transformational steps, and not in the intermediate images, hide each

intermediate image between your two selected objects before defining the transformation. If

you want your transformed images to have a certain color, then be sure your image has the

appropriate color when you define the transformation.

4.4.2 Demonstration.  Producing a picture with p4g symmetry.

To utilize these ideas and generate the symmetries necessary for producing a picture having

p4g symmetry:

•  Create a tool which performs a 4-fold rotation about A; call it 4-foldrot. Construct a 2-

fold rotation about B; call it 2-foldrot. Finally construct a reflection about the side BC

of  ABC∆ .

•  Construct a right-angled isosceles triangle ABC∆  having a right angle at A; this will be

the fundamental domain of the figure.

      Now you are free to draw any figure having p4g  symmetry.  Below is one example.

The original ∆ has been left in. The picture was constructed from one triangle inside the

fundamental domain and one circle. The most interesting designs usually occur when the

initial figure ‘pokes’ outside the fundamental domain. The vertices of the original triangle

can be dragged to change the appearance of the design; the original design can be dragged

too. This often results in a radical change in the design.
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End of Demonstration 4.4.2

     Earlier, as a consequence of the Euclidean parallel postulate, we saw that the sum of the

angles of a triangle is always 180˚ no matter the shape of the triangle; similarly the sum of

the angles of a quadrilateral is always 360˚ no matter the shape of the quadrilateral.

Somewhat later we gave a more careful proof of this fact by determining the sum of the

angles of any polygon - in fact we saw that the value depends only on the number sides of

the polygon.  This value was then used to show that equilateral triangles, squares and

regular hexagons are the only regular polygons that tile the Euclidean plane. But nothing

was said about the possibility of non-regular polygons tiling the plane.  In fact, any triangle

or quadrilateral can tile the plane.  The figure below illustrates the case of a convex

quadrilateral. ABCD was the original quadrilateral and E, F, G, H are the respective

midpoints. One can obtain the figure below by rotating by 180˚ about the midpoint of each

side of the quadrilateral. (You can tile the plane with any triangle by the same method – try

it!)
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     To do this for yourself, you can use custom transformations.  Define a transformation

for each midpoint.  I’ve drawn a different figure in each of the corners of the chosen

quadrilateral to help me distinguish among the corners. Use your four rotations to produce

a tiling of the plane by congruent copies of the original quadrilateral with one copy of each

of the four corners occurring at every vertex.   Join neighboring images of the midpoints by

line segments. What resulting repeating diagram emerges?  You should see an overlay of

parallelograms.  Can you find a parallelogram and points so that successive rotations of the

parallelogram through 180˚ about the points would produce the same tiling?

4.5 DILATIONS.  In this section we would like look at another type of mapping,

dilation, that is frequently used in geometry.  Dilation will not be an isometry but it will

have another useful property, namely that it preserves angle measure.

4.5.1 Definition.  A geometric transformation of the Euclidean Plane is said to be

conformal when it preserves angle measure.   That is, if A', B', and C' are the images of

A, B, and C then m A B C m ABC∠ ′ ′ ′ = ∠ .

4.5.2 Definition.  A dilation with center O and dilation constant k ≠ 0  is a

transformation that leaves O fixed and maps any other point P to the point ′P  on the ray OP

such that OP k OP′ = ⋅ .
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4.5.2a Demonstration.  Dilation with Sketchpad.

Sketchpad has the dilation transformation built into the program.

•  Open a new sketch and construct a point O and ∆ABC.

•  Select O and then “Mark Center O.” under the Transform menu.

•  Select ∆ABC and then select “dilate” from the Transform menu.

•  Enter the desired scale factor (dilation constant). (In the figure above the dilation

constant is equal to 2.  Notice that in the dialogue box, the scale factor is given as a

fraction.  In this case, we would either enter 
2
1

 or 
1

0 5.
.)

•  What is the image of a segment under dilation? Is the dilation transformation is

conformal?

•  Next construct a circle and dilate about the center O by the same constant. What is the

image of a circle?

End of Demonstration 4.5.2a.

4.5.3 Theorem.  The image of PQ under dilation is a parallel segment, ′ ′P Q  such that

′ ′ = ⋅P Q k PQ| |
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Proof. From SAS similarity it follows that ∆ ∆POQ P OQ~ ′ ′  and thus ′ ′ = ⋅P Q k PQ| | .

The proof needs to be modified when O,P, and Q are collinear.

4.5.4 Theorem. The dilation transformation is conformal.

Proof.  See Exercise Set 4.6.

One can easily see that the following theorem is also true. The idea for the proof is to

show that all points are a fixed distance from the center.

4.5.5 Theorem. The image of a circle under dilation is another circle.

 Proof. Let O be the center of dilation, Q be the center of the circle, and P be a point on

the circle.  Q’ will be the center of the image circle.  By Theorem 4.5.3, 
′ ′ = ′P Q

PQ

OQ

OQ
 or

′ ′ = ⋅ ′
P Q

PQ OQ

OQ
.  Now each segment in the right-hand expression has a fixed length so

P’Q’  is a constant.  Thus for any position of P, P’ lies on a circle with center Q’.

Using dilations we can provide an alternate proof for the fact that the centroid of a

triangle trisects the segment joining the circumcenter and the orthocenter (The Euler Line).
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Given ∆ABC with centroid G, orthocenter H, and circumcenter O.  Let ′A , ′B , and ′C  be

the midpoints of the sides.   First note that O is the orthocenter of ∆ ′ ′ ′A B C  and that G

divides each median into a 2:3 ratio.   Thus if we dilate ∆ABC about G with a dilation

constant of  2

1−  , ∆ABC will get mapped to ∆ ′ ′ ′A B C  and H will get mapped to O  (their

orthocenters must correspond).    Hence O, G, and H must be collinear by the definition of

a dilation and OG HG= 1
2

.    QED.

4.6 Exercises.

Exercise 4.6.1.  Recall the two regular tilings of order 2 produced with squares and

triangles.  Classify each as a wallpaper design.
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Exercise 4.6.2. Classify the following wallpaper design. Is there any relation to the

checkerboard tiling?

Exercise 4.6.3. What type of wallpaper design is Escher’s version of ‘Devils and

Angels’ for Euclidean geometry?
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Exercise 4.6.4.  On sketchpad use custom transformations to create a wallpaper design

other than a p4g.

Exercise 4.6.5.  Let ABCD be a quadrilateral.  In the figure below E,F,G, and H are

the midpoints of the sides.  Prove that EFGH is a parallelogram.  Hint: Similar triangles.

A
D

C

B

E

F

H

G
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Exercise 4.6.6.  Escher’s lizard graphic is shown below. Mark all the points in the

picture about which there are rotations by 180˚. What do you notice about these points?

Exhibit a parallelogram and three points about which successive rotations through 180˚

would produce Escher’s design. What is the wallpaper classification for the lizard design?

Exercise 4.6.7.  Now pretend that you are Escher. Start with a parallelogram PQRS.

Draw some geometric design inside this parallelogram - a combination of circles and

polygons, say. Choose three points and define rotations through 180˚ about these points so

that successive rotations about these three point tiles the plane with congruent copies of

your design. Try making a second design allowing some of the circles and polygons to fall

outside the initial parallelogram - this usually produces a more interesting picture. Here’s

one based on two circles and an arc of a circle
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Exercise 4.6.8.  Prove Theorem 4.5.4.  The dilation transformation is conformal.

4.7 USING TRANSFORMATIONS IN PROOFS

Transformations can also be useful in proving certain theorems, sometimes providing a

more illuminating proof than those accomplished by synthetic or analytic methods.  We

“discovered” Yaglom’s Theorem in the second assignment and re-visited it while looking at

tilings.  There is an easy proof that uses transformations.

4.7.1 Theorem.  Let ABCD be any parallelogram and suppose we construct squares

externally on each side of the parallelogram.  Then centers of these squares also form a

square.
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Proof.  Consider the rotation about P by 90˚.  (Try it on sketchpad.) The square centered

at P will rotate onto its original position andAB must rotate to A A© , so the square centered

at Q will rotate to onto the square centered at S.  Thus their centers will coincide. This tells

us that the segment PQ rotates 90˚ onto the segment PS, and therefore PQ=PS and

m QPS∠ =90.  Do the same for the other centers Q, R, and S.  Thus PQRS is a square.

QED

Earlier in this chapter we looked at the Buried Treasure problem (Exercise 4.3.6).

After working with the Treasure sketch one notices that the location of the treasure is likely

to be independent of the position of the gallows. If we use this observation as an

assumption, then perhaps we can gain an understanding as to where the treasure is buried

with respect to the trees.

The map’s instructions are very symmetrical. Since the only reference points are the

two trees, a symmetry argument will be used with objects reflected across the perpendicular

bisector of the segment joining the trees. Choose a position for the gallows (G) near the

Oak tree, and its reflection (G’) near the Pine tree (Figure 1).

Figure 1
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Line of Symmetry

G'

T

G

The treasure must lie upon the line of symmetry; or else it is in two different places.

Therefore, the treasure lies upon the perpendicular bisector of the Pine Oak segment.

To calculate where upon the perpendicular bisector the treasure lies, we next choose G

to be a point on the line of symmetry, specifically the midpoint between the Pine (P) and

the Oak (O) trees (Figure 2). We will need to find GT. Since G is the midpoint of OP, we

see that GO = GP; in addition,  by following the treasure map directions, we see that GP =

PS and GO = OR.
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Figure 2

Treasure (T)

Oak (O)

Pine (P)

G

Spike1 (R)

Spike2 (S)

OR = PS by transitivity. OR PS||  since they are both perpendicular to the same line,

therefore ORSP is a parallelogram, specifically a rectangle. OP = RS, and since G is the

midpoint of OP and T is the midpoint of RS it follows that GP = TS. Therefore GTSP is a

parallelogram, more specifically a square. So one solution to help José is the following: he

needs to find and mark the midpoint between the Pine and the Oak. Then starting at the pine

tree he should walk toward the marker while counting his steps, then make a 90° turn to the

right and pace off the same number of paces. The treasure is at this point.

We can provide a proof of our result  by coordinate geometry or by transformations.

1. Solution by coordinate geometry:

José should be happy now with his treasure, but in the preceding argument we made a

fairly big assumption, so our conclusion is only as strong as our assumptions. Using

coordinate geometry we can develop a proof of the treasure’s location without making such

assumptions.

•  Pick convenient coordinate axes.  The pine and oak trees are the only clear references.

Let the pine tree be the origin and the oak tree some point on the y-axis (0, a). The

gallows are in an unknown position, say (x, y).

•  Calculate the position of Spike 2 (S).   Rotating the gallows position -90° about the pine

tree gives the coordinate of S as (y, -x).



39

•  Calculate the position of Spike1 (R).  Rotating the gallows position 90° about the oak

tree will take a little more effort. If the oak tree were the origin then the rotation of 90°

would be simple. So lets reduce our task to a more simple task. Translate the entire

picture, T (0, -a). This will place the oak tree on the origin. Rotate the translated gallows

(x, y - a) 90° about the origin to (-y + a, x). Now translate the picture T (0, a) and the

picture is back where it began. The position of R is now (-y + a, x + a).

•  Our last task is to calculate where the treasure is located.

 Use the midpoint formula to

calculate the position of the

treasure halfway between

the spikes.

 Spike 1: R (-y + a, x + a)

 Spike 2: S (y, -x)

 Treasure: T (a/2, a/2)

 Coordinate geometry proves

that the position of the

treasure is invariant with

respect to the gallows.

2. Explanation by Isometries:

So far the explanations have given a solution, but they haven’t given us much insight as

to why the location of the treasure is independent of the position of the gallows. Sketchpad

can assist in the explanation using transformations.

4.7.2 Demonstration.  The Buried Treasure Problem using Sketchpad.

The exact position of the gallows is unknown, therefore we indicate the position of the

Gallows by the letter G and make no more assumptions about its position. Construct the

segment joining the Oak tree (O) and Pine tree (P). Construct lines l and k perpendicular to

OP passing through O and P respectively. Lines l and k are parallel to each other.

Construct GA as the altitude of the ∆ POG. By the instructions given in the map, construct

the positions of the spikes (R and S), and the treasure (T). Hide all unnecessary lines and

points. (Figure 4)

 Figure 3

 

Gallows

Pine

Oak

Spike 2

Spike 1

Treasure

(0, 0)

(0, a)

(x, y)
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Figure 4

k

l

Pine (P)

G

Oak (O)

A

Spike2 (S)

Spike1 (R)

Treasure (T)

In the coordinate proof the spike positions were found by rotating the position of the

gallows about the trees. We will use this technique again in this proof. Rotate ∆ OAG 90°

about O, forming ∆ OBR. Rotate ∆ PAG -90° about P, forming ∆ PCS. It is simple to

show B lies on l and C lies on k. Since isometries preserve distance the following

congruencies hold: GA RB≅ ; GA SC≅ , and by transitivity RB SC≅ . Since RB SC|| ,

∠ BRT ≅ ∠ CST. By SAS ∆ RBT ≅

∆ SCT. From this we can conclude B, T,

C are collinear, T is the midpoint of BC

and therefore equidistant from l and k.

(See Figure 5).

                                   Figure 5  �

With T established as the midpoint of

BC, we will change our focus to the

trapezoid OBCP (See Figure 6).  Naming

M the midpoint of OP, yields the median MT . The length of the median is the average of

the two bases, thus MT = 1
2 ( )OB PC+ . But by the original rotation we know that OB +

PC = OA + AP = OP; thus MT = 1
2 OP. From this we can conclude that ∆PMT is an

isosceles right triangle.
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k 
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G 
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Treasure (T) 
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C 
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Figure 6

k

l

Pine (P)

G

Oak (O)

A

Spike2 (S)

Spike1 (R)

Treasure (T)

C

B

M

End of Demonstration 4.7.2.
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4.8 STEREOGRAPHIC PROJECTION. In all the previous discussions the

geometric transformation has mapped one model of a geometry onto the same model. But

in map-making, for instance, the problem is to map the sphere model to a different model,

in fact to a model realized as some geometry realized in the plane. One very important

example of this is the transformation known as Stereographic Projection. We shall see this

plays also a crucial role in describing the geometric transformation taking the line model of

hyperbolic geometry in terms of lines and planes inside a cone in 3-space to the Poincaré

model D.

To construct the stereographic projection of the sphere onto the plane, first draw the

equatorial plane - this will serve as the plane onto which the sphere is mapped. Now take

any point P on the sphere other than the South Pole and draw the ray starting at the South

Pole and passing through P. Label by ′P  the point of intersection of this ray with the

equatorial plane. For clarity in the figure below the ray has been drawn as the line segment

joining the South Pole and P.

       

Equator

Equatorial plane

South Pole

P

P '

Stereographic projection is the mapping P P→ ′ from the sphere to the equatorial plane. It

has a number of important properties:

1. When P lies on the equator, then P P= ′ so the image of the equator is itself. More

precisely, the equator is left fixed by the transformation P P→ ′ . For convenience,

let’s agree to call this circle the equatorial circle.
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2. When P lies in the Northern hemisphere then ′P  lies inside the equatorial circle, while

if P  lies in the Southern hemisphere, ′P  lies outside the equatorial circle.

3. Since the ray passing through the South Pole and P approaches the tangent line to the

sphere at the South Pole, and so becomes parallel to the equatorial plane, as P

approaches the South Pole, the image of the South Pole under stereographic projection

is identified with infinity in the equatorial plane.

4. There is a 1-1 correspondence between the equatorial plane and the set of all points on

the sphere excluding the South Pole.

5. The image of any line of longitude, i.e., any great circle passing through the North and

South Poles, is a straight line passing through the center of the equatorial circle.

Conversely, the pre-image of any straight line through the center of the equatorial circle

is a line of longitude on the sphere.

6. The image of any line of latitude on the sphere is a circle in the equatorial plane

concentric to the equatorial circle.

7. The image of any great circle on the sphere is a circle in the equatorial plane. Now

every great circle intersects the equator at diametrically opposite points on the equator.

On the other hand, the points on the equator are fixed by stereographic projection, so

we see that the image of any great circle on the sphere is a circle in the equatorial plane

passing through diametrically opposite points on the equatorial circle

8. Stereographic projection is conformal  in the sense that it preserves angle measure. In

other words, if the angle between the tangents at the point of intersection of two great

circles is θ , then the angle between the tangents at the points of intersection of the

images of these great circles is again θ .

Many books develop the properties of stereographic projection listed above by

using the idea of inversion in 3-space. These same properties can, however, be established

algebraically. This is what we’ll do at this juncture because it brings in results learned

earlier in calculus courses. Let Σ  be the sphere in 3-space centered at the origin having

radius 1. The points on Σ  can described by

( , , )ξ η ζ ,    ξ η ζ2 2 2 1+ + = ,
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so in the figure above, let P P= ( , , )ξ η ζ  and let ′ = ′P P x y( , )  be its image in the equatorial

plane under stereographic transformation where the center of the equatorial circle is taken as

the origin. In particular, the equation of the equatorial circle is x y2 2 1+ = . To determine

the relation between ( , , )ξ η ζ  and ( , )x y  we use similar triangles to show that

(A)                 Π : P P x y( , , ) ( , )ξ η ζ → ′ ,        x =
+
ξ

ζ1
,      y =

+
η

ζ1
.

This is the algebraic formulation of stereographic projection. Since ξ η ζ2 2 2 1+ + = , the

coordinates of ′P x y( , )  satisfy the relation

(B)                                x y2 2
2

2

1
1

1
1

+ = −
+

= −
+

ζ
ζ

ζ
ζ( )

.

As illustration, consider the case first of the North Pole P = ( , , )0 01 . Under stereographic

projection  Π  mapsP = ( , , )0 01  maps to ′ =P ( , )0 0  in the equatorial plane, i.e., to the

origin in the equatorial plane. By contrast, the South Pole is the point P = −( , , )0 0 1  and it is

the only point of the sphere with ζ = −1. Thus the South Pole is the only point on Σ  for

which the denominator 1+ζ = 0. Thus the south Pole maps to infinity in the equatorial

plane, and it is the only point on Σ  which does so. That P P x y( , , ) ( , )ξ η ζ → ′  is a 1-1

mapping from Σ \ ( , , )0 0 1−  onto the equatorial plane can also be shown solving the

equations

x =
+
ξ

ζ1
,      y =

+
η

ζ1

given a point ( , , )ξ η ζ  in Σ \ ( , , )0 0 1−  or a point ( , )x y  in the equatorial plane.

Now let’s turn to the important question of what Π  does to circles on Σ . Every

such circle is the intersection with Σ  of a plane; for instance, a great circle is the

intersection of Σ  and a plane through the origin. In calculus you learned that a plane is

given by the equation
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(C)                                          A B C Dξ η ζ+ + =

where the vector ( , , )A B C  is the normal to the plane and 
D

A B C2 2 2+ +
 is the distance of

the plane from the origin. The simplest case is that of a line of longitude. Algebraically, this

is the intersection of Σ  with a vertical plane through the origin, so the normal lies in the

( , )ξ η -plane meaning that C D= = 0 in the equation above. Thus a line of longitude is the

set of points ( , , )ξ η ζ  such that

A Bξ η+ = 0,     ξ η ζ2 2 2 1+ + = .

The image of any such point under Π  is the set of points ( , )x y  in the equatorial plane such

that Ax By+ = 0, which is the general equation of a straight line passing through the

origin. Conversely, given any straight line l  in the equatorial plane, it will be given by

Ax By+ = 0 for some choice of constants A B, . So l will be the image of the great circle

defined by the plane A Bξ η+ = 0. This shows that there is a 1-1 correspondence between

lines of longitude and straight lines through the center of the equatorial circle, proving

property 5 above.

The image of a line of latitude is easily determined also since a line of latitude is the

intersection of Σ  with a horizontal plane, i.e., a plane ζ = D with − < <1 1D . But then, by

the general relation (B) the image of the line of latitude determined by the plane ζ = D

consists of all points ( , )x y  in the equatorial plane such that

x y
D

D
2 2 1

1
+ = −

+
.

This is the equation of a circle centered at the origin and radius ( ) ( )1 1− +D D ; as D

varies over the range − < <1 1D , this describes the family of all circles centered at the

origin. So Π  defines a 1-1 mapping of the lines of latitude onto the family of all circles

concentric with the equatorial circle.
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The proof of property 7 is a little more tricky. Consider first the case of a plane

passing through the points ( , , )0 1 0±  on Σ ; we could think of these as being the East and

West ‘Poles’. Also, the plane need not be vertical because otherwise its intersection with Σ
would be a line of longitude dealt with earlier in property 6. Thus we are led to considering

a great circle determined by the plane

ζ ξ θ= tan ,

whereθ  is fixed, − < <π θ π
2 2

; in fact, θ  is the angle between the plane and the ( , )ξ η -

plane. By relations (A) and (B), the points ( , )x y  in the image of the intersection with Σ  of

the plane ζ ξ θ= tan  will satisfy the equations

x =
+

ξ
ξ θ1 tan

 ,       x y2 2 1
1

1
1

+ = −
+

= −
+

ζ
ζ

ξ θ
ξ θ

tan
tan

 .

After eliminating ξ  from these equations we see that the image point ( , )x y  satisfies the

equation

x y x2 2 1 2+ = − tanθ .

In other words, the image of the great circle determined by the plane ζ ξ θ= tan  is the circle

( tan ) (tan ) (sec )x y+ + = + =θ θ θ2 2 2 21

which is the circle centered at ( tan , )− θ 0  having radius 1 cosθ . As problem 7 in

Assignment 6 shows, this is a circle passing though diametrically opposite points of the

circle x y2 2 1+ = ; in fact, it passes through the points y = ±1 which are the image of the

points of intersection of the great circles determined by the plane  ζ ξ θ= tan  and the

equator in Σ .

But how do we deal with a more general great circle that is not a line of longitude

and does not pass through the East and West Poles? The fundamental idea we’ll use is that

a rotation of the sphere about the ζ -axis through an angle φ will fix the ζ -coordinate of a
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point P( , , )ξ η ζ  on Σ  while rotating the ξ η, -coordinates, but it will also rotate the x y, -

coordinates of the image′P x y( , )  by the same angle φ. So the effect of rotating a great

circle is to rotate its image under stereographic projection. Since a rotation is an isometry, it

maps a circle to a circle. Hence the image of any great circle is a circle. Let’s do the details.

4.8.1 Theorem. Under the rotation ρ φO,  about the origin the point ( , )ξ η  is mapped to

the point ( , )′ ′ξ η  = ρ ξ ηφO, ( , )  where

′ = −ξ ξ φ η φcos sin ,    ′ = +η ξ φ η φsin cos .

More generally, the point ( , , )ξ η ζ  is mapped to the point ( , , )′ ′ξ η ζ .

Under ρ φO,  the plane ζ ξ θ= tan  is mapped to the plane ζ ξ φ η φ θ= +( cos sin ) tan .

The angle between this plane and the ( , )ξ η -plane is again θ  and the intersection of the

plane with Σ  is a great circle passing through the equator at the points

( sin ,cos , )− φ φ0 ,   (sin , cos , )φ φ− 0 .

Now by (A), the point ( , , )′ ′ξ η ζ  is mapped to ( , )′ ′x y  where

′ = −x x ycos sinφ φ,    ′ = +y x ysin cosφ φ.

Consequently, stereographic projection commutes with the rotation ρ φO,  in the sense that

(D)                                        Π Πo oρ ρφ φO O, ,= .

Since the isometry ρ φO,  will map circles to circles, we obtain the following result,

completing the proof of property 7 listed above.

4.8.2 Theorem. Stereographic projection maps the great circle determined by the rotated

plane ζ ξ φ η φ θ= +( cos sin ) tan  to the circle in the equatorial plane obtained after rotation

by ρ φO,  of the image of the great circle determined by the plane ζ ξ θ= tan .
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 The general result of property 8 can be established using similar transformation

ideas to those in the proof of Theorem 4.8.2.


