Lie Groups Solutions, Problem Set # 1

Section 1.1:

4: This problem can be done either with power series or with differential equations.
I'll do part (a) with differential equations and part (b) with power series. For both

parts, note that Xe; = = x e; = ||z||ea, Xey = —||z|le; and Xez = 0, so the matrix
0 —lzf} ©

of X in the e basis is | ||z|| 0 0
0 0 0

(a) We will show that exp(tX)e; = cos(t||z|)er + sin(t]|z||)es, exp(tX)e; =
cos(t||z]|)er +sin(t]|z||)es, and exp(tX)es = e3. This is true at ¢t = 0, since exp(0X) =
1, and the derivative of the right-hand side is X acting on the right-hand side, so by
the differential-equations definition of exp(tX) we are done. Now just set t = 1.

(b) From the matrix form, note that X® = —||z|>X, and more generally that
X2 — (—1)¥||2]|** X and X%+2 = (—1)*||z||** X2, so the power series for exp(X)
becomes 1+ X (1—||z||?/3!+ ||z|*/5! — |||/ /7! + - - ) + X2(1/2 — ||=||? /4! + || || * /6! —
w) =14 X(sin[|lz[))/[lz] + X*(1 = cos(||z]]))/l|*.

6: exp(7D)f(€) = oo, 7" f®(€)/k!. This is precisely the Taylor series for f(¢& + 7).
Since the n-th derivative of f is identically zero, the series terminates after the 771
term, and the remainder term in Taylor’s theorem is zero, so this is exactly f(& 4+ 7).
Notice the interplay between the derivative and the exponential. D can be viewed as
an infinitesimal translation. Its exponential is a macroscopic translation (by Taylor’s
theorem), while the derivative of a translation is (by definition) D.

Section 1.2:

1: If X is nilpotent with X* = 0, then the series for a = exp(X) terminates after the
X*=1 term, so there is no issue of convergence. But then (1 — a) is a sum of positive
powers of X, so (1 —a)* = 0, so a is unipotent. Likewise, if a is unipotent with
(1 —a)* =0, then the series for log(a) terminates after k¥ — 1 terms, and X = log(a)
is a sum of powers of (1 —a), so X* = 0. This shows that exp maps the nilpotents to
the unipotents and that log maps the unipotents to the nilpotents.

What remains is to show that these are inverse operations. This follows from a
modification of the Substitution Principle. We already know that after a suitable
rearrangement of terms, the power series of log(exp(z)) is exactly x. But the series
for log(exp(X)) has only a finite number of nonzero terms, so all rearrangements are
OK. Likewise for exp(log(a)).

2: a) If X is semisimple, then X = PDP~! where D is diagonal and the columns
of P are the eigenvectors of X. But then exp(X) = Pexp(D)P~! is also semisimple,



with the same eigenvectors and with eigenvalues that are the exponentials of the
eigenvalues of X.

b) If @ is invertible and semisimple, then a = PdP~!, with d diagonal with all
nonzero eigenvalues. But then we can take the logs of all of the diagonal entries of d
to get a diagonal matrix D with exp(D) = d. Furthermore we can choose our branch
for the log function so that the imaginary part of the entries of D are all in [0, 27).
But then exp(PDP™') = PdP™! = a.

c¢) First note that this is FALSE if we do not make the assumption about eigen-

values of X not differing by multiples of 277. The matrices X = (8 2?”) and

X' = (8 271”) have exp(X) = exp(X') = I.

Assuming that no two eigenvalues of X differ by a nonzero multiple of 27, I claim
that a vector v is an eigenvector of exp(X) if and only it is an eigenvector of X. The
“if” follows from part (a). The “only if” depends on the fact that the exponentials
of the eigenvalues of X are all different. If v is a nontrivial linear combination of
eigenvectors of X with different eigenvalues, then it is a nontrivial linear combination
of eigenvectors of exp(z) with different eigenvalues, and hence is not an eigenvector

of exp(X).

We now proceed to the proposition. If X and X’ are simultaneously diagonaliz-
able, with entries differing by multiples of 27i, then their exponentials are manifestly
the same. Conversely, if exp(X) = exp(X’), then every eigenvector of X’ is an eigen-
vector of exp(X’) = exp(X), and hence is an eigenvector of X. Thus, X and X' are
simultaneously diagonalizable. For the exponentials of the eigenvalues to agree, the
eigenvalues must differ by multiples of 27i.

1 At o0 0
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4: The matrix shown is A times the unipotent matrix | . : : . |- By
0 0 0--- 1

problem 1, the unipotent matrix is the exponential of a nilpotent matrix, so the block
in question is the exponential of (log A)1 plus a nilpotent matrix.

Now let a be an arbitrary invertible matrix. By choosing the correct basis, we
can transform this matrix into the direct sum of Jordan blocks, each of which is
an exponential by the previous argument. Since the direct sum of exponentials is
the exponential of a direct sum (think about that if it isn’t clear!l!), @ must be an
exponential.



