
Lie Groups Solutions, Problem Set # 2

Section 1.3:

5: This problem is surprisingly subtle, and took me a while to solve. If a = exp(X)
and b = exp(Y ), showing that a−1 = exp(−X) is in exp(n) is easy, but showing that
ab ∈ exp(n) is much harder.

First note that, since n is finite dimensional and consists of nilpotent matrices,
there must be a fixed integer k for which every X ∈ n satisfies Xk. By problem 1
of section 1.2 (which you did last week), this implies that (exp(X) − 1)k = 0 for all
X ∈ n.

Now, for small t, exp(tX) exp(tY ) = exp(Z(t)), where Z(t) is given by the con-
vergent Dynkin series. Since each term of the Dynkin series is a bracket, and since
[n,n] ⊂ n, Z(t) ∈ n. Hence exp(Z(t)) ∈ exp(n). This implies that (exp(tX) exp(tY )−
1)k = 0 for t small.

However, (exp(tx) exp(tY ) − 1)k is an analytic function of t, so if it is zero for
small t, it must be zero for all t. This implies that the power series for Z(t) =
log(exp(tX) exp(tY )) has only a finite number of nonzero terms, so it converges for
all t, and we conclude that ab = exp(Z(1)) ∈ exp(n).

6: Recall that exp maps the nilpotents to the unipotents bijectively (problem 1.2.1),
so for each a ∈ exp(n), there is a unique X ∈ n for which a = exp(X).

Now, suppose that φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ n1, that a = exp(X)
and that b = exp(Y ). We have f(ab) = f(exp(Z)) = exp(φ(Z)), where Z is given
by the Dynkin series. But φ of the Dynkin series is the same as the Dynkin series
computed from φ(X) and φ(Y ), since φ commutes with brackets. That is, f(ab) =
f(a)f(b).

Conversely, if f is a group homomorphism, consider a(t) = exp(tX) and b(t) =
exp(tY ), so f(a(t)) = exp(tφ(X)), f(b(t)) = exp(tφ(Y )), and a(t)b(t) = exp(tX +
tY +t2[X,Y ]/2+· · ·), so f(a(t)b(t)) = exp(tφ(X0+tφ(Y )+t2φ([X,Y ])/2+· · ·. Writing
the equation f(a(t)b(t)) = f(a(t))f(b(t)) as a power series in t and comparing the t2

coefficients gives φ[x, y] = [φ(X), φ(Y )].

7: (a) There are 1, 2 and 3 dimensional subspaces of the (3-dimensional) set of upper
triangular matrices with the desired properties. Notice that the three basis vectors
(call them eα, eβ and eγ) have all pairwise products equal to zero, except eαeβ, which
equals eγ. In particular, the product of any two elements is proportional to eγ, and
the product of any three elements is zero.

ANY 1-D subspace will satisfy [n,n] ⊂ n, since the bracket of a matrix with
a multiple of itself is zero. If X is the lone basis element, then N = exp(n) =



{exp(tX)} = {1 + tX + t2X2/2}. There are two possibilities on what this looks like,
depending on whether X2 = 0 or not.

The 2-D subspaces are abelian, and are spanned by eγ and an arbitrary linear
combination of eα and eγ. In this case N = exp(n) = 1 + n, since for any X ∈ n we
have exp(X) = 1 + X + X2/2, and X2 is proportional to eγ.

The 3-D subspace is the entire set of upper triangular matrices, for which N =
exp(n) = 1 + n.

(b) Let n be the set of real 2 × 2 traceless matrices. It’s easy to see that the bracket
of two traceless matrices is traceless (in fact, the bracket of ANY two matrices is

traceless, by the cyclic property of traces). Then

(

4 5
3 4

)

and

(

−1 0
0 −1

)

are both

in exp(n), but

(

−4 −5
−3 −4

)

is not, since its trace is less than −2.

Section 2.1:

5: (a) First note that ij = k = −ji, so for any complex number α, jα = ᾱj and
αj = jᾱ. If q1 = α + jβ and q2 = γ + jδ, then q̄1 = ᾱ + β̄j̄ = ᾱ − jβ, whose
matrix is the adjoint of the matrix of q1. Likewise, q1q2 = αγ + jβγ + αjδ + jβjδ =

(αγ−β̄δ)+j(βγ+ᾱδ), whose matrix is

(

αγ − β̄δ −β̄γ̄ − αδ̄
βγ + ᾱδ ᾱγ̄ − βδ̄

)

, which is the product

of the matrix of q1 and the matrix of q2. Since quaternionic multiplication is mapped
to multiplication of complex matrices, this gives a homomorphism from Sp(1) (aka
the unit quaternions) to the matrices of the given form with |α|2 + |β|2 = 1, and the
homomorphism is clearly 1–1. But by example 2 the image is precisely SU(2).

(b) If γ̄ = −γ, then the matrix of γ (call it Mγ is anti-Hermitian, so it has pure
imaginary eigenvalues and orthogonal eigenvectors. By choosing the phases of the
two eigenvectors correctly, we can write Mγ = λPDP−1, where P ∈ SU(2), λ is

real and positive and D =

(

i 0
0 −i

)

. Likewise, we can write Mj = P0DP−1

0
, so

D = P−1

0
MjP0. We then have Mγ = λPP−1

0
MjP0P

−1. If we take α to be the

quaternion whose matrix is
√

λP0P
−1, then Mγ = MᾱMjMα, so γ = ᾱjα.

Note that α is not uniquely defined. Replacing α′ = ejφα would work as well. This
ambiguity corresponds the the phase freedom we have in choosing the eigenvectors of
Mγ .

6: This is VERY closely related to problem 7 from section 1.3. (a) n = h(3, R) is just
the upper triangular matrices of problem 1.3.7, and the verification was done there.
(b) If X ∈ n, then X3 = 0, and exp(X) = 1 + X + X2/2 is in H(3, R). Likewise, if
a ∈ H(3, R), then (a − 1)3 = 0, so log(a) = a − 1 − (a − 1)2/2, which is easily seen



to be in h(3, R). (c) The brackets in n are: [eα, eβ] = eγ, [eα, eγ ] = [eβ, eγ ] = 0. If

Y =





0 y1 y3

0 0 y2

0 0 0



 and X =





0 x1 x3

0 0 x2

0 0 0



, then Ad(exp(X))Y = Y + [X,Y ] =

Y + (y1x2 − y2x1)eγ, since all higher-order brackets are zero. The adjoint orbit of Y
is therefore: (i) Y itself, if y1 = y2 = 0. In this case Y is proportional to eγ, and
commutes with all elements of the group. (ii) Y plus an arbitrary multiple of eγ, if
y1 6= 0 or y2 6= 0.

7: This problem we deleted from the problem set.


