Lie Groups Solutions, Problem Set # 3

Section 2.2:

1: (a) If G is the group of invertible block-triangular matrices, then ¢ is the vector
space of all block-triangular matrices (with the sizes of the blocks fixed). It is easy
to see that the exponential of a block-triangular is block-triangular, and that the
derivative of a path in the block-triangulars is block-triangular.

(b) If you add the condition in G that the blocks are identity matrices, then g is the
set of upper-block-triangular matrices, i.e. those with a; = 0, € M,, .

3: (a) The condition can be rewritten as a'fa = f. Clearly, if a € G, then
f = (aYalfaa™ = (aV)fa™!, so a=! € G. Likewise, if a and b are in G,
then (ab)'f(ab) = bla'fab = b'(a'fa)b = b'fb = f, so ab € G. As for the Lie
algebra, taking the derivative of a'fa = f at a = 1 gives X'f + fX = 0, so
9= {X € MIX*f = —fX}
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é g) with A'C' = C*'A (i.e., A'C' symmetric),

B'D = D'B; and A'D — C*B = 1. For m = 1, this is exactly SL(2, R). For m > 1,
this is more complicated.

As for the group, we want a = (

4: (a) so(3) is simple. The only sub-algebras are either 1-dimensional (with a trivial
bracket), or the full 3-dimensional algebra.

(b) Even though sl(2,C) is the complexification of so(3), the set of available Lie
sub-algebras is actually MORE than the complexification of the answer to (a). There
exist 2-dimensional subalgebras, all of which are conjugate to the span of H and X, .
To see that these are the ONLY 2-dimensional subalgebras, we argue as follows:

Suppose we have a basis for a 2-D subalgebra, spanned by matrices A and B. Then
[A, B] is a linear combination of A and B. By calling this combination our second basis
vector and rescaling our vectors, we can assume that [A, B] = 2B. If B is semi-simple
and has eigenvalues £, then exp(27B/\) = 1, so Ad(exp(2rB/)\))A = A. But by
Baker-Campbell-Haussdorff, Ad(exp(Bt)A = A+2Bt. So B must not be semi-simple,
which implies it must be nilpotent, hence conjugate to X . The equation [A, B] = 2B



then implies that A = H plus a multiple of B, so our algebra is spanned by H and
X,

8: (a) The group law is trivial, and the Lie algebra is {X € M|Xc = c¢X}, or
equivalently {X € M|[X, ] = 0}.

(b) If ¢ is diagonal, then it is NOT true that X has to be diagonal. That’s only
true if the eigenvalues of ¢ are all different. If ¢ has eigenvalue \; repeated n; times,
then A\ repeated ny times, etc, then X must be block-diagonal, with the first n; x ny
block arbitrary, the second ns X ny block arbitrary, etc.

Section 2.3:

9: This is part of Theorem 1 of section 2.6, and a proof can be found on page 78. For
completeness, however, I'll reprise the argument here.

Let g(t) = f(exp(tX)). Then g(0) = 1 and ¢/(t) = d(f(exp((t + $)X) /dx)]smo =
d(exp(tX)exp(sX))/ds|s=0 = g(t)p(X). But the solution to this differential equation
is exp(tp(X)) satisfies, so f(exp(tX)) = exp(t¢(X)). Finally, set t = 1.

10: (a) This was essentially done in the proof of Theorem 3. We constructed the
analytic map f(X,Y) = exp(X)(1+Y) from M to M, and noted that by the inverse
function theorem it had an analytic local inverse near 1. Since the leaves of G were
V = constant (with V' denoting the function in the proof, NOT the open ball in R™),
and G U U is C'-path-connected, this means that every point in G U U has V = 0,
and hence maps to a ball around zero in R™ x 0 € RV

(b) Part (a) showed that 1 € G has a neighborhood in G which is the restriction
of an open set (in M) to G. Multiplying on the left (or right) by a then gives us a
neighborhood of @ € GG with the same property. This shows that the intrinsic topology
of GG is the same as the topology that G inherits from M.

(c) First work locally, then glue. Locally, if we have a C* function on G, then
it gives a C* function on R™, which, when multiplied by a smooth function of the
remaining N — m coordinates, gives a C* function on R¥, hence on a neighborhood
of a in M. Now glue these local functions together using a smooth partition-of-unity
of M. This shows that any C* function on G can be extended to a C* function on
M. The fact that the restriction of a C* function on M to G is C* is trivial.



