
Lie Groups Solutions, Problem Set # 3

Section 2.2:

1: (a) If G is the group of invertible block-triangular matrices, then g is the vector
space of all block-triangular matrices (with the sizes of the blocks fixed). It is easy
to see that the exponential of a block-triangular is block-triangular, and that the
derivative of a path in the block-triangulars is block-triangular.

(b) If you add the condition in G that the blocks are identity matrices, then g is the
set of upper-block-triangular matrices, i.e. those with ak = 0k ∈ Mnk

.

3: (a) The condition can be rewritten as atfa = f . Clearly, if a ∈ G, then
f = (a−1)tatfaa−1 = (a−1)tfa−1, so a−1 ∈ G. Likewise, if a and b are in G,
then (ab)tf(ab) = btatfab = bt(atfa)b = btfb = f , so ab ∈ G. As for the Lie
algebra, taking the derivative of atfa = f at a = 1 gives X tf + fX = 0, so
g = {X ∈ M |X tf = −fX}.

(b) If X =

(

A B
C D

)

, then X tf+fX =

(

At Ct

Bt Dt

) (

0 1
−1 0

)

++

(

0 1
−1 0

)(

A B
C D

)

=
(

C − Ct At + D
−A − Dt B − Bt

)

, so we must have B and C symmetric and D = −At. That

is, the most general Lie algebra element is of the form

(

A B
C −At

)

, with B and C

symmetric and A arbitrary.

As for the group, we want a =

(

A B
C D

)

with AtC = CtA (i.e., AtC symmetric),

BtD = DtB, and AtD − CtB = 1. For m = 1, this is exactly SL(2, R). For m > 1,
this is more complicated.

4: (a) so(3) is simple. The only sub-algebras are either 1-dimensional (with a trivial
bracket), or the full 3-dimensional algebra.

(b) Even though sl(2, C) is the complexification of so(3), the set of available Lie
sub-algebras is actually MORE than the complexification of the answer to (a). There
exist 2-dimensional subalgebras, all of which are conjugate to the span of H and X+.
To see that these are the ONLY 2-dimensional subalgebras, we argue as follows:

Suppose we have a basis for a 2-D subalgebra, spanned by matrices A and B. Then
[A,B] is a linear combination of A and B. By calling this combination our second basis
vector and rescaling our vectors, we can assume that [A,B] = 2B. If B is semi-simple
and has eigenvalues ±λ, then exp(2πB/λ) = 1, so Ad(exp(2πB/λ))A = A. But by
Baker-Campbell-Haussdorff, Ad(exp(Bt)A = A+2Bt. So B must not be semi-simple,
which implies it must be nilpotent, hence conjugate to X+. The equation [A,B] = 2B



then implies that A = H plus a multiple of B, so our algebra is spanned by H and
X+.

8: (a) The group law is trivial, and the Lie algebra is {X ∈ M |Xc = cX}, or
equivalently {X ∈ M |[X, c] = 0}.

(b) If c is diagonal, then it is NOT true that X has to be diagonal. That’s only
true if the eigenvalues of c are all different. If c has eigenvalue λ1 repeated n1 times,
then λ2 repeated n2 times, etc, then X must be block-diagonal, with the first n1 ×n1

block arbitrary, the second n2 × n2 block arbitrary, etc.
Section 2.3:

9: This is part of Theorem 1 of section 2.6, and a proof can be found on page 78. For
completeness, however, I’ll reprise the argument here.

Let g(t) = f(exp(tX)). Then g(0) = 1 and g′(t) = d(f(exp((t + s)X)/dx)|s=0 =
d(exp(tX) exp(sX))/ds|s=0 = g(t)φ(X). But the solution to this differential equation
is exp(tφ(X)) satisfies, so f(exp(tX)) = exp(tφ(X)). Finally, set t = 1.

10: (a) This was essentially done in the proof of Theorem 3. We constructed the
analytic map f(X,Y ) = exp(X)(1 +Y ) from M to M , and noted that by the inverse
function theorem it had an analytic local inverse near 1. Since the leaves of G were
V = constant (with V denoting the function in the proof, NOT the open ball in R

N),
and G ∪ U is C1-path-connected, this means that every point in G ∪ U has V = 0,
and hence maps to a ball around zero in R

m × 0 ⊂ R
N .

(b) Part (a) showed that 1 ∈ G has a neighborhood in G which is the restriction
of an open set (in M) to G. Multiplying on the left (or right) by a then gives us a
neighborhood of a ∈ G with the same property. This shows that the intrinsic topology
of G is the same as the topology that G inherits from M .

(c) First work locally, then glue. Locally, if we have a Ck function on G, then
it gives a Ck function on R

m, which, when multiplied by a smooth function of the
remaining N − m coordinates, gives a Ck function on R

N , hence on a neighborhood
of a in M . Now glue these local functions together using a smooth partition-of-unity
of M . This shows that any Ck function on G can be extended to a Ck function on
M . The fact that the restriction of a Ck function on M to G is Ck is trivial.


