Lie Groups Solutions, Problem Set # 5

Section 3.1:

1: (a) Given a real vector space E, let F'= F® C, and let C' be complex conjugation.
Conversely, given a pair (F,C') with F' of complex dimension n, we can view F' as
a real vector space of real dimension 2n. Since C? = 1, the eigenspaces of C have
eigenvalues £1, and since C7 = —iC', multiplication by ¢ sends each eigenspace to the
other. Let E be the +1 eigenspace, so ¢F is the —1 eigenspace, so F' = F¢1E = EQC.
This shows that the correspondence is a bijection.

(b) If E is a right-H vector space, then F is also a (right) complex vector space
(of twice the dimension), since the complexes are a subset of the quaternions. Let F’
be the same set as E, and let J be right-multiplication by j. Since for any complex
number a, oj = j&, J is complex anti-linear, and since j? = —1, J?> = —1. Conversely,
if we have a pair (F,J), then we can allow the quaternion ¢ = o + j3 to act on a
vector z by z(a + j3) = z(a) + (Jz)p.

Note an essential difference between the two constructions. In the real case, F is
a subset of F'. In the quaternionic case, E is the same set as F'.

6: Here are two solutions: (a) Work on the Lie algebra level. sl(2,R) is spanned

by the Hermitian matrices (é _()1) and ((1) (1)) and the anti-Hermitian matrix

A = ((1) _01) Meanwhile, su(1,1) is spanned by two Hermitian matrices and
0 — 1 1
is the matrix of eigenvectors of A. Likewise, the Hermitian generators of sl(2,R)

are Ad(c) of the Hermitian generators of SU(1, 1), and by exponentiation we see that
SL(2,R) = cSU(1,1)c!. (b) Following the hint in the book, SL(2, R), acting on R?,

the anti-Hermitian matrix B = (Z 0,). But A = ¢Bc™!, where ¢ = (Z _Z>

. : . 1 . .
preserves the bilinear form with matrix M = _01 0/ But then acting on C? it
preserves the sesquilinear form with matrix iM = _02 [Z) . But this is a Hermitian

form of signature (1,1), so SL(2,R) C SU(iM). Since the groups are connected
and of the same dimension, they are in fact equal. But SU(iM) is conjugate to the

standard SU(1, 1) by a change of basis that takes i M to ( L

0 o :
0 —1 ) , which is precisely

the matrix ¢ listed above.

11: In all cases we count degrees of freedom in the Lie algebra. (a) There are n?
variables and one constraing (trace equals zero), hence n? — 1 degrees of freedom. (b)



so(n,C) is the set of anti-symmetric matrices, which are determined by the upper
triangular block, with n(n—1)/2 degrees of freedom. (c) As we worked out in problem
2.2.3, the Lie algebra of sp(n, C) is all block matrices (é g) with D = — A" (m?
degrees of freedom) and with B and C symmetric (m(m + 1)/2 degrees of freedom
each), for a total of 2m? + m.

12: (a) go = su(n) is the set of traceless anti-Hermitian matrices, igq is the set of
traceless Hermitians, and go @ igy = g is the set of all traceless matrices. (b) go is
the set of anti-symmetric real matrices, igy is the set of anti-symmetric imaginary
matrices, and g = go@1igp is the set of all anti-symmetric matrices. (c¢) As in problem
é, IB; , with D = — A" and with B
and C' symmetric, g is the set of imaginary matrices of that form, and g is the set
of all complex matrices of that form.
Section 3.2:

2.2.3, go is the set of all real block matrices

6: (a) For G = SL(n,C), every simple matrix is diagonalizable, and the matrix of
eigenvectors can be chosen to have determinant 1 (just rescale one of the eigenvectors).
For the other classical groups, we have a bit more work to do. Suppose that G
preserves the bilinear form ¢. Then for any a € GG, and any eigenvectors vy, vy of a
with eigenvalues A; and A, ¢(v1,v9) = @(avy, avy) = AAep(vy,v9). That is, either
A1Ao = 1 or the two eigenvectors are ¢-orthogonal. However, ¢ is non-degenerate,
so it can’t be that EVERY eigenvector is orthogonal to v;. For each j, there must
be an eigenvector w; whose eigenvalue is /\;1, and for which ¢(v;, w;) = 1. For the
moment, suppose all of the eigenvalues of a are distinct, and that G = SO(2n, C) or
Sp(n,C). Then we can choose list our eigenvectors in the form vy, ..., v,, wy, ..., w,.
The matrix that has these vectors as its columns will be in G. (Seeing that it preserves
¢ is precisely the ¢-orthonormality of the eigenvectors. Seeing that it has determinant
+1 is subtler.) If G = SO(2n + 1,C), then there is an additional eigenvector with
eigenvalue 1, which goes last. Finally, if there are repeated eigenvalues, then we
must do a Gram-Schmidt-like change-of-basis within each eigenspace to ensure that
o(v;, vp) = 0 = p(w;, wy) and that ¢(v;, wy) = 1if j = k and zero otherwise.

(b) If X € g is semi-simple, then exp(tX) is a semi-simple element of G, so by
(a) its eigenvectors can be assembled into an element of G. But for ¢ small enough,

all eigenvectors of exp(tX) are eigenvectors of X, so X is conjugate to an element of
h by G.

(c) Pick an element X € a such that X has a maximal number of distinct eigenval-
ues. By (b), X is conjugate (by G) to a diagonal matrix, and without loss of generality
we can group the repeated eigenvalues together. Any matrix Y € a commutes with



X, and so must be block-diagonal, with blocks corresponding to the eigenspaces of
X. Now I claim that the blocks in Y are all proportional to the identity, for other-
wise, by first-order perturbation theory, for small ¢, X +tY would have more distinct
eigenvalues than X, which contradicts the maximality condition. Thus every element
of a is diagonal in this basis, so a is conjugate to a subalgebra of h.

(d) Every connected abelian subgroup A of G consisting only of semi-simple ele-
ments is generated by its Lie algebra a, which is, by (c), conjugate to a subalgebra of
h. So A =T'(a) is conjugate to a subgroup of H = I'(h).

(e) By (c), there is g € G such that Ad(g)a C h. But then a C Ad(g~')h. Since
a is a mazimal abelian subgroup, a must equal Ad(g~')h, so a is conjugate to h.

(f) Since A is connected, A = T'(L(A)). Note that L(A) is a maximal abelian
subgroup consisting of semi-simple elements, so by (e), L(A) is conjugate to h. But
then A =T(L(A)) is conjugate to H = I'(h).

(g) Take G = SO(E), and consider A to be the diagonal matrices with entries £1,
relative to the basis of problem 1. (This is equivalent to changing the bilinear form
to the one represented by the identity matrix). These are the only diagonal matrices
in G. The only matrices that commute with all of A are diagonal matrices, hence A
is a maximal abelian subgroup consisting of semi-simple elements. However A, being
finite, is not conjugate to H.

(h) We already did this in class. The group of 2n x 2n matrices with block form
(é Cll) is maximal abelian of dimension n?, but is not conjugate to H (which has

dimension 2n).



