Lie Groups Solutions, Problem Set # 6

The problems that say “verify”, namely problems 1, 2, 3, 4, 5 and 9 of section 3.3,
did not need to be written up, and are not included in these solutions.
Section 3.2:

9: This is a compact version of problem 6, but the results do NOT directly follow
from problem 6, since being conjugate to a diagonal matrix in a COMPLEX group
does not a priori imply being conjugate in a COMPACT subgroup. (It does imply,
but the implication takes work to show, which is the point of this exercise.)

A maximal torus is connected, and so is generated by exp of its Lie algebra. Thus
the problem is tantamount to showing that t, the Lie algebra of a maximal torus in
a compact classical group K, is conjugate to the Lie algebra of the standard Cartan
subgroup. This in turn reduces to showing that t is conjugate to a sub-algebra of
the standard Cartan subgroup’s Lie algebra (call if h), as maximality will then imply
that t = h.

But that’s the same as simultaneously diagonalizing a basis for t, and arranging
the eigenvectors into a matrix that is in K. This is done EXACTLY as in the proof
of Theorem 1 of section 3.1 (see the book). For SU(n) and Sp(n), this follows from
the fact that unitary matrices have orthogonal eigenvectors, and that each pair of
eigenvectors of Sp(n) are related by multiplication by j. For SO(n), we have to split
each eigenvector into real and imaginary parts.

Section 3.3:

6: We do this first for A,. Reflection along A\; — A;1; is equivalent to interchanging
Aj <> Ajt1. But ALL permutations can be realized as the product of interchanges of
adjacent elements, so the entire Weyl group 5, is generated by reflections along the
simple roots.

For B,, (or C,,), we also have reflection along A, (or 2),), which just flips the sign
of one element (namely \,,). By permuting elements and flipping signs, we obtain all

of W.

For D,,, we have all permutations, generated by reflections about the A\; — A\j4q,
and a specific permutation with two sign flips generated by reflection along A\,,_1 + A,,.
Combining these we get all permutations together with an even number of sign flips,
hence all of W.

7: Again, we begin with A,. Reflection along o = A; — A;1; sends the positive root
Ak — Ao (k <€) to itself, unless k or ¢ equals j or j 4 1, But replacing k by k + 1 or
replacing ¢ by £ —1 only changes the positivity of the root if both k = j and ¢ = j+1,
which is to say that \y — Ay = a.



For B,, and C,, the same argument applies when o = A\; — A4, with the added
computation that reflection along A; — ;1 sends Ay + A¢ to a sum of two As, hence
a positive root and sends (2)\; to (twice) another A\. We then only need consider
refletions about a = (2)\,,, which leaves all the positive roots alone except A\; £ A,
which goes to Ay F \,,, and «, which goes to minus itself.

For D,, the argument concerning reflections about A\; — A;4; is the same as before,
and we need only check reflections about o = \,,_1 + \,,, which manifestly leaves all
positive roots alone except A, £\,_; which goes to Ay £\, (and vice-versa), \,_1 — Ay,
which goes to itself, and «a, which flips sign.

(b) Reflection about « sends p to p — a, since it merely permutes the terms in
the sum, except for the term «/2 which becomes —«/2. But by definition reflection
about «a takes p to p — 2[(p, @)/(a, a)]a, so 2[(p, a)/(a, a)]a must equal 1.

8: (a) A dominant weight pairs non-negatively with every positive root, which is
equivalent to pairing non-negatively with each simple root «;, which is equivalent to
being a non-negative linear combination of the dual basis elements o .

(b) If A is higher than 0, it is a non-negative linear combination of positive roots,
each of which is a sum of simple roots, so A is a non-negative linear combination
of simple roots. Conversely, simple roots are positive, so every non-negative linear
combination of simple roots is higher than zero.



