In the following table, each line/entry contains the name of the computer file, the page number where it can be found in the textbook, and a brief description. Click on the program name to display the source code, which can be downloaded.
Chapter 1: Introduction | ||
sineplot.m | 20 | Graph of Taylor series partial sums for sin(x) (invoking s1.m, s2.m, s3.m) |
sqrt_approx.m | 27 | Variable precision arithmetic for approximation |
Chapter 2: Number Representation and Errors | ||
format.m | 51-52 | Numbers in different formats |
accuracy.m | 81 | Numbers with different accuracy |
Chapter 3: Locating Roots of Equations | ||
fcn_roots.m | 98 | Roots of functions or polynomials (invoking G.m) |
poly_roots1.m | 108 | Roots of a cubic polynomial |
newton_sys.m | 114 | Example of Newton's method for solving a nonlinear system |
gauss_newton.m | 114-115 | Newton's method for solving nonlinear systems (invoking Fcn.m) |
fractal.m | 115,124 | Fractal basins of attraction (CPb. 3.2.27) |
poly_roots2.m | 128 | Roots of a fifth degree polynomial |
Chapter 4: Interpolation and Numerical Differentiation | ||
newtn_int_poly.m | 155 | Newton interpolation polynomial equidistant pts |
inverse_interp.m | 156-157 | Inverse Newton interpolation polynomial example |
runge_fcn.m | 171 | Polynomial interpolation for the Runge function |
Chapter 5: Numerical Integration | ||
num_int1.m | 202 | Numerical integration of exp(-x*x) (invoking f1.m) |
num_int2.m | 208 | Numerical integration of sin(x)/x (invoking f2.m) |
Chapter 6: More on Numerical Integration | ||
num_int3.m | 242 | Numerical intergratin of cos(2*x)/exp(x) (invoking f3.m) |
cpb6_2_8.m | 260 | Computer Problem 6.2.8: Numerical intergration example |
cpb6_2_9.m | 260 | Computer Problem 6.2.9: Difficult Numerical intergration |
Chapter 7: Systems of Linear Equations | ||
gauss_elim1.m | 265-266 | Gaussian elimination to solve linear systems |
gauss_elim2.m | 289 | Gaussian elimination to solve linear systems |
Chapter 8: More on Systems of Linear Equations | ||
ldl.m | 323-324 | LDL Factorization |
lu_fact.m | 328 | LU Factorization |
eig.m | 358 | Eigenvalue Example |
null.m | 358 | Null Space Example |
timing.m | 359 | Timing eigenvalue computation |
sng_val_decomp.m | 367 | Singular value decompositon of a matrix |
cpb8_3_1d.m | 371 | Computer Problem 8.3.1d |
mod_power.m | 375 | Modified Power Method |
small_eig.m | 376-377 | Small eigenvalue |
inv_power.m | 377-378 | Inverse Power Methods |
shift_inv_power.m | 379 | Shifted Inverse Power Mehtod |
Chapter 9: Approximation by Spline Functions | ||
spline_sin_plot.m | 406 | Plot of a cubic spline curve for sin(x) |
spline_plot.m | 408 | Plot of a cubic spline curve |
Chapter 10: Ordinary Differential Equations | ||
euler.m | 449-450 | Euler's method for solving an ODE (invoking f.m) |
rk_ode23.m | 463 | Runge-Kutta method for solving an IVP (invoking ode23file1.m) |
rkf_ode45.m | 475-476 | Runge-Kutta Fehlberg method for solving an IVP (invoking ode45file1.m) |
Chapter 11: Systems of Ordinary Differential Equations | ||
rk2_ode23.m | 494 | Runge-Kutta method for systems of ODEs (invoking ode23file2.m) |
rkf2_ode45.m | 503 | Runge-Kutta-Fehlberg method for systems of ODEs (invoking ode45file2.m) |
Chapter 12: Smoothing of Data and the Method of Least Squares | ||
ls_fit.m | 523 | Linear least squares fit for polynomials |
np_ls_fit.m | 525-526 | Least squares fit for a non-polynomial function |
p_inv1.m | 552 | Minimal solution using pseudoin of matrices |
p_inv2.m | 554 | Find pseudoinverse in case of loss in rank |
Chapter 13: Monte Carlo Methods and Simulation | ||
rand.m | 560,563 | Examples using random numbers |
Chapter 14: Boundary Value Problems for Ordinary Differential Equations | ||
bvp.m | 608 | Two-point boundary-value problem example (invoking bvpfcn.m, bvpbc.m) |
Chapter 15: Partial Differential Equations | ||
heat.m | 623-625 | Heat Equation (invoking pdexlpde.m, pdexlic.m, pdexlbc.m) |
par.m | 625-626 | Parabolic Equation (PDEDEMO5) |
wave.m | 635 | Wave Equation (PDEDEMO6) |
poisson.m | 646 | Poisson Equation (PDEDEMO1) |
fast.m | 646 | Fast Equation (PDEDEMO8) |
helm.m | 646-647 | Helmholtz Equation (PDEDEMO2) |
Chapter 16: Minimization of Functions | ||
fmin1.m | 657 | Minimizing multivariate functions |
fmin2.m | 658 | Find local minimum of a function |
Chapter 17: Linear Programming | ||
lin_prog1.m | 694 | Maximize subject to inequality constraints |
lin_prog2.m | 698 | Minimize subject to inequality constraints |
lin_prog3.m | 713 | Minimize subject to equality constraints |
lin_prog4.m | 715 | Minimize subject to inequality constraints |
Addditional programs can be found at the textbook's anonymous ftp site:
ftp://ftp.ma.utexas.edu/pub/cheney-kincaid/
[Home] | [Features] | [TOC] | [Purchase] | [Sample Code] | [Web] | [Manuals] | [Errata] | [Links] |
Last updated: |