1. Let X, Y, and Z be NLS’s and $T : X \times Y \to Z$ a bilinear map.
 (a) Prove that the following are equivalent.

 (i) T is continuous;
 (ii) T is continuous at $(0, 0)$;
 (iii) T is bounded, meaning that there is some $M \geq 0$ such that
 $$\|T(x, y)\|_Z \leq M \|x\|_X \|y\|_Y \quad \forall x \in X, \ y \in Y.$$

 (b) Show that the minimal M above gives a norm on the set of continuous bilinear maps.
 That is, $\|\cdot\|$ is a norm, where
 $$\|T\| = \sup_{x \in X, y \in Y} \frac{\|T(x, y)\|_Z}{\|x\|_X \|y\|_Y}.$$

2. Let H be a nontrivial Hilbert space. Let $P : H \to M$ be a linear projection operator, and let $Q : H \to N$ be an orthogonal projection operator. Assume that M and N are neither $\{0\}$ nor H.
 (a) Prove that $\|P\| \geq 1$.
 (b) Prove that $\|P\| = 1$ if and only if P is an orthogonal projection.
 (c) Suppose now that P is an orthogonal projection, and also that $PQ = QP$. Show that PQ is an orthogonal projection onto $M \cap N$.

3. Let $K : L^2(0, 1) \to L^2(0, 1)$ be the integral operator defined as
 $$Ku(x) = \int_0^1 e^{x-y}u(y)dy.$$

 (a) Find the range of K. Is the range of K closed? Is K a compact operator?
 (b) Compute the adjoint operator K^*, and find its kernel.
 (c) Verify explicitly that $Ku = f$ is solvable if and only if $f \perp \text{Ker} \ K^*$.

Applied Math Prelim
August 17, 2011
Part I
Choose any 3 of the 4 following problems.

4. For \(\varphi \in C^0(\mathbb{R}^d) \), let the restriction map \(R : C^0(\mathbb{R}^d) \to C^0(\mathbb{R}^{d-k}) \) be defined by
\[R\varphi(x') = \varphi(x',0), \quad \forall x' \in \mathbb{R}^{d-k} \text{ and } 0 \in \mathbb{R}^k, \] for \(0 < k < d \), with \(k \) an integer number.

Show that the restriction map \(R \) extends to a bounded linear map from \(H^s(\mathbb{R}^d) \) onto \(H^{s-k/2}(\mathbb{R}^{d-k}) \), provided that \(s > k/2 \).

Hint: Show this result first for the restriction of functions in \(S(\mathbb{R}^d) \) using the Sobolev norms involving the Fourier representation.

5. Let \(\Omega \subset \mathbb{R}^d \) be a bounded domain with a Lipschitz boundary, \(f \in L^2(\Omega) \) and \(\alpha > 0 \). Consider the Robin boundary value problem in \(\Omega \),
\[
\begin{cases}
-\Delta u + u = f & \text{in } \Omega \\
\frac{\partial u}{\partial \nu} + \alpha u = 0 & \text{on } \partial \Omega.
\end{cases}
\]
(a) For this problem, formulate a variational principle \(B(u,v) = (f,v), \forall v \in H^1(\Omega) \).
(b) Show that this problem has a unique weak solution.

6. Set up and apply the contraction mapping principle to show that the boundary value problem \((\varepsilon > 0) \):
\[
\begin{cases}
-\varepsilon u + u - \varepsilon u^2 = f(x), \quad x \in (0, +\infty), \\
u(0) = 1, \quad \lim_{x \to +\infty} u(x) = 0,
\end{cases}
\]
where \(f(x) \) is a smooth compactly supported function on \((0, +\infty) \), has a unique smooth solution if \(\varepsilon \) is small enough.

7. Show that for \(y \in \mathbb{R}^2 \) fixed, \(\frac{1}{2\pi} \ln |x - y| \) is locally integrable in \(\mathbb{R}^2 \), i.e. it is a function in \(L_{1,\text{loc}}(\mathbb{R}^2) \); and that it is a fundamental solution of \(\Delta u = \delta_y \), where \(\Delta = \partial^2_{x_1} + \partial^2_{x_2} \) is the Laplace operator.