PRELIMINARY EXAMINATION: NUMERICAL ANALYSIS II
August 17, 2011, 2:40-4:10

Work all 3 of the following 3 problems.

1. Consider the system of two ordinary differential equations
 \[u'(t) = f(v) \quad \text{and} \quad v'(t) = g(u), \]
 where \(u(0) = u_0 \) and \(v(0) = v_0 \), and, for \(h > 0 \), the numerical scheme
 \[U_{n+1} = U_n + h f\left(V_n + \frac{h}{2} g(U_n) \right) \quad \text{and} \quad V_{n+1} = V_n + h g\left(\frac{1}{2} (U_n + U_{n+1}) \right). \]
 \[(a)\] Show that the local truncation error for both \(u \) and \(v \) is \(O(h^2) \).
 \[(b)\] For the linear system where \(f(v) = \lambda v \) and \(g(u) = -\mu u \), both \(\lambda \) and \(\mu \) being positive, show that when \(h \lambda < 1 \) and \(h \mu < 1 \), the scheme is stable. [Hint: The eigenvalues of the matrix \(\begin{pmatrix} a & b \\ c & a \end{pmatrix} \) are \(a \pm \sqrt{bc} \).]

2. Let \(\Omega \subset \mathbb{R}^2 \) be a bounded domain with a polygonal boundary. Consider the elliptic partial differential equation for \(u(x) \) given by
 \[-a \Delta u + cu = f \quad \text{in} \ \Omega, \]
 \[u = 0 \quad \text{on} \ \partial \Omega, \]
 where \(a(x) \) and \(c(x) \) satisfy \(0 < a_* \leq a(x) \leq a^* < \infty \), \(0 \leq c(x) \leq c^* < \infty \), and also \(|\nabla a(x)| \leq b^* < \infty \). Assume that \(f \in L^2(\Omega) \).
 \[(a)\] Find a variational form suitable for approximation by finite elements.
 \[(b)\] Give a reasonable condition on \(b^* \) that insures that your bilinear form is coercive.
 \[(c)\] Derive a bound on the error between \(u \) and a finite element approximation \(u_h \).

3. Let \(\Omega \subset \mathbb{R}^2 \) be a bounded domain with a polygonal boundary. Consider the parabolic partial differential equation
 \[u_t - \Delta u = f(x,t) \quad \text{for} \ x \in \Omega, \ t > 0, \]
 \[u(x,t) = 0 \quad \text{for} \ x \in \partial \Omega, \ t > 0, \]
 \[u(x,0) = u_0(x) \quad \text{for} \ x \in \Omega, \ t = 0. \]
 It has the variational form
 \[(u_t, v) + (\nabla u, \nabla v) = (f, v) \quad \forall v \in H^1_0(\Omega). \]
 \[(a)\] Write down the discrete scheme that uses a suitable finite element method in space and backward Euler in time.
 \[(b)\] Show that your scheme is stable by bounding
 \[\max_n \|u^n\|^2 + \sum_n \|
\nabla u^n\|^2 \Delta t \]
 in terms of \(\|u_0\| \) and \(\max_t \|f(\cdot, t)\| \).