1. Consider the energy

\[E(u) := \frac{1}{2} \int_0^1 |u_x(x)|^2 \, dx + \frac{\lambda}{2} \int_0^1 (u(x) - f(x))^2 \, dx, \lambda > 0, \]

defined for \(u \in C^2([0,1]; \mathbb{R}) \), \(f \in C([0,1]; \mathbb{R}) \), and \(u(0) = u(1) = f(0) = f(1) = 0 \). Consider a discrete approximation of \(E \) as follows: \(U = (u_1, u_2, \ldots, u_{N-1})^T \),

\[E_h(U) := \frac{1}{2} \sum_{j=1}^{N-1} |D^+ u_j|^2 h + \frac{\lambda}{2} \sum_{j=1}^{N-1} |u_j - f_j|^2 h, \]

where \(h = 1/N \), \(u_0 = u_N = 0 \), \(D^+ u_j = (u_{j+1} - u_j)/h \), and \(f_j = f(jh) \).

(a) Derive the linear system

\[AU = b \tag{1} \]

whose solution minimizes \(E_h \).

(b) Derive the Gauss-Seidel method for this linear system and show that the iteration method will converge.

(c) Does the solution of (1) approximate the minimizer of \(E \)? Justify your answer.

2. Consider

\[u_t = a(x)u_x, \quad 0 < x < 1, \ t > 0. \]

(a) Derive an upwind scheme for the equation. Determine a suitable boundary condition such that the PDE is well-posed. Introduce a suitable discrete \(L^2 \) norm \(\| \cdot \|_h \) and show that the upwind scheme is stable in this norm.

(b) Derive a discontinuous Galerkin method with piecewise linear basis functions for the equation above.

3. Derive the order of accuracy of the multistep method

\[y_{n+1} + 4y_{n+1} - 5y_n = h(4f_{n+1} + 2f_n), \ h > 0 \]
for approximation of the solutions of $y' = y$. Is the scheme convergent? Why?