1. Consider a real \(m \times n \) matrix \(A \).

(a) Describe how singular value decomposition can be used to solve the least squares problem \(\min_i \|Ax - b\| \).

(b) Describe two methods for computing the vector \(u \) that minimizes,

\[
\min_{u \neq 0} \frac{\langle u, Au \rangle}{\langle u, u \rangle}.
\]

2. Let \(f(x) : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a smooth function such that \(f(a) = 0 \) and the matrix \(\frac{\partial f}{\partial x} \) is full rank.

(a) Write down the Newton method for solving \(f(x) = 0 \).

(b) Show that the Newton method converges to the root \(a \) if the initial condition \(x_0 \) is sufficiently close to \(a \).

(c) Suppose that the following iteration is used instead

\[
x_{n+1} = x_n - A f(x_n),
\]

where \(A \) is a \(n \times n \) matrix. Find a sufficient condition on \(A \) such that this iteration is also convergent for \(x_0 \) close to \(a \).

3. In the numerical integration formula

\[
\int_{-1}^{1} f(x) \, dx = af(-1) + bf(c),
\]

(a) if constants \(a, b, c \) can be chosen arbitrarily, what is the highest degree \(k \) such that this formula is exact for all polynomials of degree up to \(k \)?

(b) Find the constants \(a, b, c \) for which the formula is exact for all polynomials of degree up \(k \).