ALGEBRA PRELIMINARY EXAM: PART I

Problem 1

Fix an \(n \times n \) matrix \(A \) with entries in an algebraically closed field \(K \). Let \(V \) be the space of \(n \times n \) matrices over \(K \) that commute with \(A \). Observe that \(V \) is a vector space over \(K \). Show that

\[\dim V \geq n, \]

and the equality holds if and only if the characteristic polynomial of \(A \) equals the minimal polynomial of \(A \).

Problem 2

A finite group \(G \) is supersolvable if there is an increasing chain of subgroups

\[\{1_G\} = G_0 \subset G_1 \subset \ldots \subset G_r = G \]

such that each \(G_i \) is normal in \(G \), and \(G_{i+1}/G_i \) is cyclic for all \(i \).

(a) Show that every \(p \)-group is supersolvable.
(b) Give an example of a solvable group that is not supersolvable.

Problem 3

Let \(A \) be the ring of \(n \times n \) matrices over a field \(F \).

(a) Show that for any subspace \(V \) of \(F^n \), the set \(I_V \) of matrices whose kernel contains \(V \) is a left ideal of \(A \).
(b) Show that every left ideal of \(A \) is principal.

Date: August 22, 2013.