Directions: You have 90 minutes. Solve two of the three problems. Clearly mark which ones you want graded.

B1. Let l and p be primes. Show that the number of irreducible monic polynomials over \mathbb{F}_p, of degree l, is equal to $(p^l - p)/l$.

B2. Suppose k is an algebraically closed field, V is a finite-dimensional vector space over k, and $M : V \to V$ is a linear transformation. Show that there exists a unique pair of linear transformations $D, N : V \to V$ with the following properties. (For existence you can use well-known results, but for uniqueness you should argue directly.)

 1. $M = N + D$.
 2. N is nilpotent, i.e. $N^s = 0$ for some integer $s > 0$.
 3. D is diagonalizable, i.e. V has a basis of D-eigenvectors.
 4. Every linear transformation G commuting with M also commutes with N and D.

B3. Let E be the splitting field of $x^7 - 3$ over \mathbb{Q}.

 (a) Determine the Galois group $\text{Gal}(E/\mathbb{Q})$ as a group of permutations of the roots of $x^7 - 3$.
 (b) Find a primitive generator of E/\mathbb{Q}.
 (c) Prove that E is not a subfield of any cyclotomic extension of \mathbb{Q}.
 (d) Describe all the subfields of E/\mathbb{Q} that are Galois over \mathbb{Q}.