1. Prove the Mazur Separation Theorem: Let \(X \) be an NLS, \(Y \) a linear subspace of \(X \), and \(w \in X, w \notin Y \). If \(d = \text{dist}(w, Y) = \inf_{y \in Y} \|w - y\|_X > 0 \), then there exists \(f \in X^* \) such that \(\|f\|_{X^*} \leq 1, f(w) = d \), and \(f(y) = 0 \) for all \(y \in Y \).

2. Let \(X \) be a vector space and let \(W \) be a vector space of linear functionals on \(X \). Suppose that \(W \) separates points of \(X \), meaning that for any \(x, y \in X, x \neq y \), there exists \(w \in W \) such that \(w(x) \neq w(y) \). Let \(X \) be endowed with the smallest topology such that each \(w \in W \) is continuous (we call this the \(W \)-weak topology of \(X \)).

 (a) Describe a \(W \)-weak open set of 0.

 (b) Prove that if \(L \) is a \(W \)-weakly continuous linear functional on \(X \), then \(L \in W \). [Hint: Consider the inverse image of \(B_1(0) \subset \mathbb{F} \), which must contain a \(W \)-weak open set of 0, and apply the result from linear algebra that if \(w_i, i = 1, 2, ..., n \), and \(L \) are linear functionals on \(X \) such that \(L(x) = 0 \) whenever \(w_i(x) = 0 \) for all \(i \), then \(L \) is a linear combination of the \(w_i \).]

 (c) Based on this result, if \(X \) is an NLS, characterize the set of weak-* continuous linear functionals on \(X^* \).

3. Let \(\Omega = (-1, 1)^2 \subset \mathbb{R}^2 \) and \(T : D(\Omega) \rightarrow D(-1, 1) \) be defined by \(T\varphi(x, y) = \varphi(x, 0) \).

 (a) Show that \(T \) is a (sequentially) continuous linear operator.

 (b) Note that \(T' : D'(-1, 1) \rightarrow D'(\Omega) \). Determine \(T'(\delta_0) \) and \(T'(\delta_0') \), where \(\delta_0 \) is the usual Dirac point distribution in one space dimension at 0.