Planar fronts in bistable coupled map lattices

R. Coutinho¹, B. Fernandez²

¹ Group of Mathematical Physics, University of Lisbon & Department of Mathematics of Instituto Superior Técnico, T U Lisbon.
² Centre de Physique Théorique, Marseille, CNRS & Universités de Marseille I et II, et de Toulon.

The phase space is $[0, 1]^\mathbb{Z}^d$ and the map (CML) is

$$u_{t+1}^n = \sum_{s \in \mathbb{Z}^d} \ell_s f(u_{t-s}^n)$$

For each site n in the lattice \mathbb{Z}^d and for each discrete time $t \in \mathbb{Z}$ the variable $u^n_t \in [0, 1]$. The local map is a function $f : [0, 1] \to [0, 1]$. The convex diffusive coupling is given by the coefficients ℓ_s satisfying

$$\ell_s \geq 0 \quad \text{and} \quad \sum_{s \in \mathbb{Z}^d} \ell_s = 1.$$

Example: for $d = 2$, $\ell_{0,0} = 1 - \varepsilon$, $\ell_{1,0} = \ell_{-1,0} = \ell_{0,1} = \ell_{0,-1} = \frac{\varepsilon}{4}$ and $\ell_{m,n} = 0$ if $|m| + |n| > 1$.

$$u^{t+1}_{m,n} = (1 - \varepsilon) f(u^t_{m,n}) + \frac{\varepsilon}{4} (f(u^t_{m+1,n}) + f(u^t_{m+1,n+1}) + f(u^t_{m-1,n}) + f(u^t_{m,n-1}))$$

that is

$$u^{t+1} = f(u^t) + \frac{\varepsilon}{4} \Delta f(u^t)$$

where $\varepsilon \in [0, 1]$ is the coupling parameter.
bistable map on $[0, 1]$: a continuous increasing map $f : [0, 1] \rightarrow [0, 1]$
such that there exists $c \in (0, 1)$ so that

$$f(x) < x \text{ for all } x \in (0, c) \quad \text{and} \quad x < f(x) \text{ for all } x \in (c, 1).$$

Two stable fixed points: $f(0) = 0$ and $f(1) = 1$; one unstable fixed point: $f(c) = c$.

Planar Fronts: solutions u^t_n of the form

$$u^t_n = \phi(n \cdot k - tv) \quad \forall t \in \mathbb{Z}$$

Where:

- $\phi : \mathbb{R} \rightarrow [0, 1]$ is the **front shape** satisfying $\lim_{x \to -\infty} \phi(x) = 0$ and $\lim_{x \to +\infty} \phi(x) = 1$
- k is the direction of propagation ($k \in \mathbb{R}^d, \|k\| = 1$; i.e. $k \in S^{d-1}$)
- v is the front velocity
For each direction $k \in S^{d-1}$ define the set

$$Z(k) = \{ \omega \in \mathbb{R} : \exists s \in \mathbb{Z}^d \quad \omega = s \cdot k \}.$$

and consider the invariant subset $\mathcal{X}_k \subset [0, 1]^\mathbb{Z}^d$, defined by

$$\mathcal{X}_k = \left\{ \{u_n\}_{n \in \mathbb{Z}^d} \in [0, 1]^\mathbb{Z}^d : m \cdot k = n \cdot k \Rightarrow u_m = u_n \right\}$$

For each $\{u_s\}_{s \in \mathbb{Z}^d} \in \mathcal{X}_k$ define the function $\psi \in [0, 1]^\mathbb{R}$, in $Z(k)$ by

$$\psi(s \cdot k) = u_s$$

and for $x \in \mathbb{R} \setminus Z(k)$ by $\psi(x) = 0$ (0 being a fixed point of f).

Then the dynamics of the (CML) implies that

$$\psi^{t+1}(x) = \sum_{s \in \mathbb{Z}^d} \ell_s f \circ \psi^t(x - s \cdot k).$$

Hence the (CML) dynamics induces a map $F : [0, 1]^\mathbb{R} \to [0, 1]^\mathbb{R}$. $\psi^{t+1} = F(\psi^t)$.

- If the direction k is totally irrational ($\forall s \in \mathbb{Z}^d \quad s \cdot k = 0 \Rightarrow s = 0$), then the (CML) dynamics is a restriction of the dynamics given by the map F, because $\mathcal{X}_k = [0, 1]^\mathbb{Z}^d$ in this case.

- If the direction k is not totally irrational, then the map F is an extension of the (CML) dynamics restricted to the set \mathcal{X}_k.
If we restrict the map \(F(\psi)(x) = \sum_{s \in \mathbb{Z}^d} \ell_s f \circ \psi(x - s \cdot k) \) to the set \(B \) of Borel measurable functions on \(\mathbb{R} \) with values in \([0, 1]\), then the map \(F \) can be written as

\[
F(\psi) = h_k \ast f \circ \psi,
\]

where the convolution is defined by the Lebesgue-Stieltjes integral

\[
h \ast \phi(x) = \int_{\mathbb{R}} \phi(x - y) \, dh(y)
\]

and the distribution function \(h_k : \mathbb{R} \rightarrow [0, 1] \) is

\[
h_k(x) = \sum_{s \in \mathbb{Z}^d} \ell_s H(x - s \cdot k)
\]

and \(H \) is the Heaviside function:

\[
H(x) = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{if } x \geq 0
\end{cases}
\]

Reformulating the problem:

Given a distribution function \(h : \mathbb{R} \rightarrow [0, 1] \) (increasing function with the following limits \(\lim_{x \rightarrow -\infty} h(x) = 0 \) and \(\lim_{x \rightarrow +\infty} h(x) = 1 \)) and a bistable map \(f : [0, 1] \rightarrow [0, 1] \) define the map \(F : B \rightarrow B \) by

\[
F(\psi) = h \ast f \circ \psi
\]

Find a front shape \(\phi \in B \) and a velocity \(v \), satisfying:

\[
T^v \phi = F(\phi) , \text{ with } \lim_{x \rightarrow -\infty} \phi(x) = 0 \text{ and } \lim_{x \rightarrow +\infty} \phi(x) = 1
\]

where \(T^v \) is the **translation** by \(v \in \mathbb{R} \) defined by \(T^v u(x) = u(x - v) \).
Results

Existence of fronts

Theorem For any distribution function h and any bistable map f, there exists a velocity $v \in \mathbb{R}$ and an increasing function ϕ such that

$$
\lim_{x \to -\infty} \phi(x) = 0, \quad \lim_{x \to +\infty} \phi(x) = 1 \quad \text{and} \quad T^v \phi = F\phi,
$$

where $F\phi = h * f \circ \phi$.

Uniqueness of front velocity

Theorem For any distribution function h and any bistable regular map f, there exists a unique velocity $v \in \mathbb{R}$ and an increasing function ϕ such that

$$
\lim_{x \to -\infty} \phi(x) = 0, \quad \lim_{x \to +\infty} \phi(x) = 1 \quad \text{and} \quad T^v \phi = F\phi,
$$

where $F\phi = h * f \circ \phi$.

Bistable regular maps

A bistable map is said to be regular if it is a weak contraction in a neighbourhood of each stable fixed point. That is

$$
\exists \delta > 0 \quad \left[x, y \in (0, \delta) \quad \text{or} \quad x, y \in (1 - \delta, 1) \right] \quad \Rightarrow \quad |f(x) - f(y)| \leq |x - y|.
$$
Using the Taylor’s formula we find the following sufficient conditions for a bistable map f to be regular:

a) f analytic or b) $f \in C^1$ and $f'(0) < 1$ and $f'(1) < 1$ or $f \in C^2$ and $f''(0) \neq 0$ and $f''(1) \neq 0$ or d) $f \in C^3$ and $f'''(0) \neq 0$ and $f'''(1) \neq 0$ or ...

Nevertheless it is possible to construct C^∞ bistable maps that are not regular.
Continuity of the front velocity

Assume that f is \textbf{regular} and let $v(f, h)$ be the unique front velocity of F.

Theorem Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of regular bistable maps which converges pointwise to a bistable regular map f. Let $\{h_n\}_{n \in \mathbb{N}}$ be a sequence of distribution functions and h be a distribution function such that $\lim_{n \to \infty} d(h_n, h) = 0$. Then $\lim_{n \to \infty} v(f_n, h_n) = v(f, h)$.

Given two right continuous distribution functions h and h', define the \textbf{Lévy distance}

$$d(h, h') = \inf \{\varepsilon > 0 : h(x - \varepsilon) - \varepsilon \leq h'(x) \leq h(x + \varepsilon) + \varepsilon, \quad \forall x \in \mathbb{R}\}.$$

This is the same as the \textbf{Hausdorff distance} restricted to graphs of distribution functions. \textbf{Hausdorff distance}:

$$d(h, h') = \max \left\{ \sup_{z_1 \in Gh} \inf_{z_2 \in Gh'} \|z_1 - z_2\|, \sup_{z_1 \in Gh'} \inf_{z_2 \in Gh} \|z_1 - z_2\| \right\},$$

where Gh is the graph of h, i.e. $Gh = \{(x, y) : h(x^-) \leq y \leq h(x^+)\}$, and the \mathbb{R}^2 norm $\| \cdot \|$ is given by $\|(x, y)\| = \max \{|x|, |y|\}$.
Recall that c denotes the unstable fixed point of f.

An **interface** is a function $u \in B$ if there exists $c_- \in (0, c)$, $c_+ \in (c, 1)$ and $j_1 \leq j_2 \in \mathbb{R}$ so that

$$u(x) \leq c_- \quad \text{if} \quad x \leq j_1 \quad \text{and} \quad u(x) \geq c_+ \quad \text{if} \quad x \geq j_2.$$
Given the level \(a \in (0, 1) \), the **reference center** of a function \(u \) is

\[
J_a(u) = \inf \{ x \in \mathbb{R} : u(x) \geq a \}.
\]

By applying a translation a function \(u \) can be centered at \(0 \):

\[
J_a(T^{-J_a(u)}u) = 0.
\]

Velocity of interfaces

Theorem Let \(h \) be a distribution function and let \(f \) be a regular bistable map. For every interface \(u \) and every \(a \in (0, 1) \), we have

\[
\lim_{t \to \infty} \frac{J_a(F^t u)}{t} = v(f, h).
\]

Where \(v(f, h) \) is the (unique) front velocity of \(F \).
Application to the planar fronts of (CML)

\[u_{n+1}^t = \sum_{s \in \mathbb{Z}^d} \ell_s f(u_{n-s}^t), \quad \text{with } f \text{ bistable, } \ell_s \geq 0 \text{ and } \sum_{s \in \mathbb{Z}^d} \ell_s = 1. \]

If \(\phi \) is a function such that \(\lim_{x \to -\infty} \phi(x) = 0, \lim_{x \to +\infty} \phi(x) = 1 \) and \(T^v \phi = F \phi \), where \(F \phi = h_k * f \circ \phi \), then defining

\[u_n^t = \phi(\sigma + n \cdot k - tv) \]

(for an arbitrary phase \(\sigma \in \mathbb{R} \)), we have \(u_{n+1}^t = \sum_{s \in \mathbb{Z}^d} \ell_s f(u_{n-s}^t) \), i.e. \(u_n^t \) is a planar front with direction of propagation \(k \) and front shape \(\phi \).

Existence of planar fronts

Theorem For any direction \(k \in S^{d-1} \) and any bistable function \(f \) there exists planar fronts in the direction \(k \) for (CML). If \(f \) is regular, then the velocity of these fronts is uniquely determined for each direction \(k \).

The velocity of fronts \(v \) depends then on \(f, \{\ell_s\}_{s \in \mathbb{Z}^d} \) and \(k \):

\[v = v(f, \{\ell_s\}_{s \in \mathbb{Z}^d}, k) \]
Continuity of the velocity

Theorem Given $\epsilon > 0$ there exists $\delta > 0$ such that for any f, f' regular bistable, $\{\ell_s\}_{s \in \mathbb{Z}^d}, \{\ell'_s\}_{s \in \mathbb{Z}^d}$ nonnegative and normalized and $k, k' \in S^{d-1}$ satisfying

$$\|k - k'\| < \delta, \quad \sum_{s \in \mathbb{Z}^d} |\ell'_s - \ell_s| < \delta \quad \text{and} \quad \sup |f - f'| < \delta,$$

we have

$$|v(f, \{\ell_s\}_{s \in \mathbb{Z}^d}, k) - v(f', \{\ell'_s\}_{s \in \mathbb{Z}^d}, k')| < \epsilon.$$

Interfaces

A configuration $\{u_s\}_{s \in \mathbb{Z}^d} \in [0, 1]^{\mathbb{Z}^d}$ is an interface in the direction k if there exists $j_-, j_+, 0 < c_- < c < c_+ < 1$, such that

$$n \cdot k < j_- \Rightarrow u_n < c_- \quad \text{and} \quad n \cdot k > j_+ \Rightarrow u_n > c_+.$$

(note that $n \cdot k$ measures a position along the line orthogonal to k)

Theorem If $\{u_0^s\}_{s \in \mathbb{Z}^d, t \in \mathbb{N}}$ is an interface in the direction k, then the evolution $\{u'_s\}_{s \in \mathbb{Z}^d}$ by (CML) is an interface in the direction k and

$$\lim_{t \to +\infty} \frac{1}{t} J_a^k(\{u'_s\}_{s \in \mathbb{Z}^d}) = v(f, \{\ell_s\}_{s \in \mathbb{Z}^d}, k).$$

Where $J_a^k(\{u_s\}_{s \in \mathbb{Z}^d}) = \inf \{ j \in \mathbb{R} : n \cdot k > j \Rightarrow u_n \geq a \}$ and $a \in (0, 1)$.
Extended bistable maps

$$u^{t+1} = Fu^t := h * f \circ u^t$$

The phase space is the set \mathcal{B} of Borel-measurable functions on \mathbb{R} with values in $[0, 1]$.

Basic properties:

Homogeneity

$$T^v F = FT^v \quad \text{for all } v \in \mathbb{R}.$$

Continuity:

$$\forall x \in \mathbb{R} \quad \lim_{n \to \infty} u_n(x) = u(x) \quad \Rightarrow \quad \forall x \in \mathbb{R} \quad \lim_{n \to \infty} Fu_n(x) = Fu(x).$$

Monotony:

$$u \leq v \quad \Rightarrow \quad Fu \leq Fv.$$
Sketch of the proof of existence of fronts

Let $\mathcal{I} \subset \mathcal{B}$ be the subset composed of increasing functions, $v \in \mathbb{R}$ and $c_+ \in (c, 1)$. The set S_{v,c_+} of **sub-fronts** of velocity v:

$$S_{v,c_+} = \{ \psi \in \mathcal{I} : F\psi \leq T^v\psi \text{ and } J_{c_+}(\psi) = 0 \}.$$

When S_{v,c_+} is not empty, consider the function

$$\eta_v(x) = \inf_{\psi \in S_{v,c_+}} \psi(x), \quad x \in \mathbb{R}.$$

It turns out that $\eta_v \in S_{v,c_+}$ and therefore η_v is a **minimal sub-front** of velocity v.

We also prove the existence of a maximal sub-fronts velocity $\bar{v} = \max \{ v \in \mathbb{R} : S_{v,c_+} \neq \emptyset \}$.

Consider the reference centers of the iterates $F^n\eta_{\bar{v}}$ of the minimal sub-front $\eta_{\bar{v}}$ for the maximal sub-fronts velocity \bar{v}:

$$j_n := J_{c_+}(F^n\eta_{\bar{v}})$$

Then we prove that $\lim \inf_{n \to \infty} (j_{n+m} - j_n) = m\bar{v}$.

From this we use an arithmetical Lemma that ensures that there exists a strictly increasing sequence $\{n_k\}$ such that for all m

$$\lim_{k \to \infty} (j_{n_k+m} - j_{n_k}) = m\bar{v}.$$
Using this subsequence \(\{n_k\} \), we consider the sequence \(\{T^{-j_n} F^{n_k} \eta \}_k \) from which a convergent subsequence can be extracted by Helly’s Selection Theorem:

\[
\eta_\infty = \lim_{k \to \infty} T^{-j_n} F^{n_k} \eta.
\]

Consider now the sequence \(\{T^{-m\tilde{v}} F^m \eta_\infty\}_k \). It satisfies \(\eta \leq T^{-(m+1)\tilde{v}} F^{m+1} \eta_\infty \leq T^{-m\tilde{v}} F^m \eta_\infty \). Hence, the following limit exists

\[
\phi = \lim_{m \to \infty} T^{-m\tilde{v}} F^m \eta_\infty
\]

and satisfies \(T^{\tilde{v}} \phi = F \phi \) and \(\lim \phi(x) = 1 \). As for the limit \(\lim \phi(x) \), in general we cannot say more than \(\lim \phi(x) \in \{0, c\} \).

However, if \(f \) and \(h \) are such that

\[
\frac{df}{dc}(c) = +\infty \quad \text{and} \quad \inf \{x \in \mathbb{R} : h(x) > 0\} = -\infty,
\]

then one can prove that \(\lim \phi(x) = 0 \).

Finally, to conclude in the general case, we show that every pair of bistable map \(f \) and distribution function \(h \) can be approximated pairs satisfying the previous condition. The existence of fronts then follows from continuity properties (see the references for more details).