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The phase space is 0,1Z
d
and the map (CML) is

un
t+1 = ∑

s∈Zd

ℓs fun−s
t 

For each site n in the lattice Zd and for each discrete time t ∈ Z the variable un
t ∈ 0,1. The

local map is a function f : 0,1 → 0,1. The convex diffusive coupling is given by the

coefficients ℓs satisfying

ℓs  0 and ∑
s∈Zd

ℓs = 1.

Example: for d = 2, ℓ0,0 = 1 − , ℓ1,0 = ℓ−1,0 = ℓ0,1 = ℓ0,−1 = 
4 and ℓm,n = 0 if |m| + |n| > 1.

um,n
t+1 = 1 −  fum,n

t  + 
4
 fum+1,n

t  + fum,n+1
t  + fum−1,n

t  + fum,n−1
t 

that is

ut+1 = fut + 
4
Δ fut

where  ∈ 0,1 is the coupling parameter.



bistable map on 0,1:
a continuous increasing map f : 0,1 → 0,1

such that there exists c ∈ 0,1 so that

fx < x for all x ∈ 0,c and x < fx for all x ∈ c,1.

Two stable fixed points: f0 = 0 and f1 = 1; one unstable fixed point: fc = c.

Planar Fronts: solutions un
t of the form

un
t = φn ⋅ k − t v ∀t ∈ Z

Where:

φ : R →0,1 is the front shape satisfying lim
x→−∞

φx = 0 and lim
x→+∞

φx = 1

k is the direction of propagation (k ∈ R
d, ‖k‖ = 1; i.e. k ∈ S

d−1
v is the front velocity



For each direction k ∈ S
d−1 define the set

Zk = ω∈R : ∃s ∈ Zd ω = s ⋅ k.

and consider the invariant subset Xk ⊂ 0,1Z
d
, defined by

Xk = unn∈Zd ∈ 0,1Z
d

: m ⋅ k = n ⋅ k ⇒ um = un

For each uss∈Zd ∈ Xk define the function ψ ∈ 0,1R, in Zk by

ψs ⋅ k = us

and for x ∈ R ∖Zk by ψx = 0 ( 0 being a fixed point of f).

Then the dynamics of the (CML) implies that

ψt+1x = ∑
s∈Zd

ℓs f ∘ ψtx − s ⋅ k.

Hence the (CML) dynamics induces a map F : 0,1R → 0,1R. ψt+1 = Fψt.

■ If the direction k is totally irrational ( ∀s ∈ Zd s ⋅ k = 0 ⇒ s = 0 ), then the (CML)

dynamics is a restriction of the dynamics given by the map F, because Xk = 0,1Z
d
in this case.

■ If the direction k is not totally irrational, then the map F is an extension of the (CML)

dynamics restricted to the set Xk.



If we restrict the map Fψx = ∑
s∈Zd

ℓs f ∘ ψx − s ⋅ k to the set B of Borel measurable functions

on R with values in 0,1, then the map F can be written as

Fψ = hk ∗ f ∘ ψ,

where the convolution is defined by the Lebesgue-Stieltjes integral

h ∗ ϕx = ∫
R

ϕx − y dhy

and the distribution function hk : R →0,1 is hkx = ∑
s∈Zd ℓs Hx − s ⋅ k

and H is the Heaviside function: Hx =
0 if x < 0

1 if x  0

Reformulating the problem:

Given a distribution function h : R →0,1 (increasing function with the following limits

lim
x→−∞

hx = 0 and lim
x→+∞

hx = 1) and a bistable map f : 0,1→0,1 define the map F : B→B by

Fψ = h ∗ f ∘ ψ

Find a front shape φ ∈ B and a velocity v, satisfying:

Tvφ = Fφ , with lim
x→−∞

φx = 0 and lim
x→+∞

φx = 1

where Tv is the translation by v ∈ R defined by Tvux = ux − v



Results

Existence of fronts

Theorem For any distribution function h and any bistable map f, there exists a velocity v ∈ R
and an increasing function φ such that

lim
x→−∞

φx = 0, lim
x→+∞

φx = 1 and Tvφ = Fφ,

where Fφ = h ∗ f ∘ φ.

Uniqueness of front velocity

Theorem For any distribution function h and any bistable regular map f, there exists a unique
velocity v ∈ R and an increasing function φ such that

lim
x→−∞

φx = 0, lim
x→+∞

φx = 1 and Tvφ = Fφ,

where Fφ = h ∗ f ∘ φ.

Bistable regular maps

A bistable map is said to be regular if it is a weak contraction in a neighbourhood of each

stable fixed point. That is

∃δ > 0 x,y ∈ 0,δ or x,y ∈ 1 − δ, 1 ⇒ |fx − fy|  |x − y|.



Using the Taylor’s formula we find the following sufficient conditions for a bistable map f to be

regular:

a) f analytic or b) f ∈ C1 and f′0 < 1 and f′1 < 1 or f ∈ C2 and f′′0 ≠ 0 and

f′′1 ≠ 0 or d) f ∈ C3 and f′′′0 ≠ 0 and f′′′1 ≠ 0 or ...

Nevertheless it is possible to construct C∞ bistable maps that are not regular



Continuity of the front velocity

Assume that f is regular and let vf,h be the unique front velocity of F.

Theorem Let fnn∈N be a sequence of regular bistable maps which converges pointwise to a

bistable regular map f. Let hnn∈N be a sequence of distribution functions and h be a distribution function
such that lim

n→∞
dhn,h = 0. Then lim

n→∞
vfn,hn = vf,h.

Given two right continuous distribution functions h and h′, define the Lévy distance

dh,h′ = inf > 0 : hx −  −   h′x  hx +  + , ∀x ∈ R .

This is the same as theHausdorff distance restricted to graphs of distribution functions.

Hausdorff distance:

dh,h′ = max sup
z1∈Gh

inf
z2∈Gh′

‖z1 − z2‖, sup
z1∈Gh′

inf
z2∈Gh

‖z1 − z2‖ ,

where Gh is the graph of h, i.e. Gh = x,y : hx−  y  hx+,
and the R2 norm ‖. ‖ is given by ‖x,y‖ = max|x|, |y|



Interfaces and reference centers Jaψ

Recall that c denotes the unstable fixed point of f.

An interface is a function u ∈ B if there exists c− ∈ 0,c, c+ ∈ c, 1 and j1  j2 ∈ R so that

ux  c− if x  j1 and ux  c+ if x  j2.

If u is an interface, then the iterate Ftu is also an interface ( t  0).
Moreover for sufficiently large t, Ftu is an interface for c− arbitrarily near 0 and c+ arbitrarily

near 1.



Given the level a ∈ 0,1, the reference center of a function u is

Jau = infx ∈ R : ux  a.

By applying a translation a function u can be centered at 0: JaT−Jauu = 0.

Velocity of interfaces

Theorem Let h be a distribution function and let f be a regular bistable map. For every interface u
and every a ∈ 0,1, we have

lim
t→∞

JaFtu
t = vf,h.

Where vf,h is the (unique) front velocity of F.



Application to the planar fronts of (CML)

un
t+1 = ∑

s∈Zd

ℓs fun−s
t , with f bistable, ℓs  0 and ∑

s∈Zd

ℓs = 1.

If φ is a function such that lim
x→−∞

φx = 0, lim
x→+∞

φx = 1 and Tvφ = Fφ,

where Fφ = hk ∗ f ∘ φ, then defining

un
t = φσ + n ⋅ k − tv

(for an arbitrary phase σ ∈ R), we have un
t+1 = ∑

s∈Zd

ℓs fun−s
t , i.e. un

t is a planar front with

direction of propagation k and front shape φ.

Existence of planar fronts

Theorem For any direction k ∈ S
d−1 and any bistable function f there exists planar fronts in the

direction k for (CML). If f is regular, then the velocity of these fronts is uniquely determined for each
direction k.

The velocity of fronts v depends then on f, ℓss∈Zd and k:

v = vf,ℓss∈Zd ,k



Continuity of the velocity

Theorem Given  > 0 there exists δ > 0 such that for any f, f ′ regular bistable, ℓss∈Zd , ℓs′ s∈Zd

nonnegative and normalized and k, k′∈ S
d−1 satisfying

‖k − k′‖ < δ, ∑
s∈Zd

|ℓs′ − ℓs | < δ and sup|f − f ′ | < δ,

we have

vf,ℓss∈Zd ,k − vf ′,ℓs′ s∈Zd ,k′ < .

Interfaces

A configuration uss∈Zd ∈ 0,1Z
d
is an interface in the direction k if there exists j−, j+ ,

0 < c− < c < c+ < 1, such that

n ⋅ k < j− ⇒ un < c− and n ⋅ k > j+ ⇒ un > c+.

(note that n ⋅ kmeasures a position along the line orthogonal to k)

Theorem If us0s∈Zd,t∈N is an interface in the direction k, then the evolution ust s∈Zd by (CML) is an

interface in the direction k and

lim
t→+∞

1
t Ja
kust s∈Zd  = vf,ℓss∈Zd ,k.

Where Ja
kuss∈Zd  = inf j ∈ R : n ⋅ k > j ⇒ un  a and a ∈ 0,1.



Extended bistable maps

ut+1 = Fut := h ∗ f ∘ ut

The phase space is the set B of Borel-measurable functions on R with values in 0,1.

Basic properties:

Homogeneity

TvF = FTv for all v ∈ R.

Continuity:

∀x ∈ R lim
n→∞

unx = ux ⇒ ∀x ∈ R lim
n→∞

Funx = Fux.

Monotony:

u  v ⇒ Fu  Fv.



Sketch of the proof of existence of fronts

Let I ⊂ B be the subset composed of increasing functions, v ∈ R and c+ ∈ c, 1.
The set Sv,c+ of sub-fronts of velocity v:

Sv,c+ = ψ ∈ I : Fψ  Tvψ and Jc+ψ = 0 .

When Sv,c+ is not empty, consider the function

ηvx = inf
ψ∈Sv,c+

ψx, x ∈ R.

It turns out that ηv ∈ Sv,c+ and therefore ηv is aminimal sub-front of velocity v.

We also prove the existence of a maximal sub-fronts velocity v̄ = maxv ∈ R : Sv,c+ ≠ ∅.

Consider the reference centers of the iterates Fnη v̄ of the minimal sub-front η v̄ for the

maximal sub-fronts velocity v̄:

jn := Jc+Fnη v̄

Then we prove that lim inf
n→∞

jn+m − jn = mv̄.

From this we use an arithmetical Lemma that ensures that there exists a strictly increasing

sequence nk such that for all m

lim
k→∞

jnk+m − jnk = mv̄.



Using this subsequence nk, we consider the sequence T−jnk Fnkη v̄k∈N from which a

convergent subsequence can be extracted by Helly’s Selection Theorem:

η∞ = lim
k→∞

T−jnk Fnkη v̄.

Consider now the sequenceT−mv̄Fmη∞k∈N. It satisfies η v̄  T−m+1v̄Fm+1η∞  T−mv̄Fmη∞.
Hence, the following limit exists

φ = lim
m→∞

T−mv̄Fmη∞

and satisfies Tvφ = Fφ and lim
x→+∞

φx = 1. As for the limit lim
x→−∞

φx, in general we cannot

say more than lim
x→−∞

φx ∈ 0,c.

However, if f and h are such that

df
dc

c = +∞ and infx ∈ R : hx > 0 = −∞,

then one can prove that lim
x→−∞

φx = 0.

Finally, to conclude in the general case, we show that every pair of bistable map f and
distribution function h can be approximated pairs satisfying the previous condition. The

existence of fronts then follows from continuity properties (see the references for more details).


