Planar fronts in bistable coupled map lattices

R. Coutinho¹, B. Fernandez²

- ¹ Group of Mathematical Physics, University of Lisbon & Department of Mathematics of Instituto Superior Técnico, T U Lisbon.
 - ² Centre de Physique Théorique, Marseille, CNRS & Universités de Marseille I et II, et de Toulon.

- R. Coutinho, B. Fernandez, *Fronts and interfaces in bistable extended mappings*, Nonlinearity **11** (1998) 1407–1433.
- R. Coutinho, B. Fernandez, *Fronts in extended systems of bistable maps coupled by convolutions*, Nonlinearity **17** (2004) 23–47.

The phase space is $[0,1]^{\mathbb{Z}^d}$ and the map (CML) is

$$u_{\mathbf{n}}^{t+1} = \sum_{\mathbf{s} \in \mathbb{Z}^d} \ell_{\mathbf{s}} f(u_{\mathbf{n}-\mathbf{s}}^t)$$

For each site **n** in the lattice \mathbb{Z}^d and for each discrete time $t \in \mathbb{Z}$ the variable $u_{\mathbf{n}}^t \in [0,1]$. The local map is a function $f:[0,1] \to [0,1]$. The convex diffusive coupling is given by the coefficients $\ell_{\mathbf{s}}$ satisfying

$$\ell_{\mathbf{s}} \geqslant 0$$
 and $\sum_{\mathbf{s} \in \mathbb{Z}^d} \ell_{\mathbf{s}} = 1.$

Example: for
$$d = 2$$
, $\ell_{0,0} = 1 - \varepsilon$, $\ell_{1,0} = \ell_{-1,0} = \ell_{0,1} = \ell_{0,-1} = \frac{\varepsilon}{4}$ and $\ell_{m,n} = 0$ if $|m| + |n| > 1$.
$$u_{m,n}^{t+1} = (1 - \varepsilon) f(u_{m,n}^t) + \frac{\varepsilon}{4} (f(u_{m+1,n}^t) + f(u_{m,n+1}^t) + f(u_{m-1,n}^t) + f(u_{m,n-1}^t))$$

that is

$$u^{t+1} = f(u^t) + \frac{\varepsilon}{4} \Delta f(u^t)$$

where $\varepsilon \in [0, 1]$ is the coupling parameter.

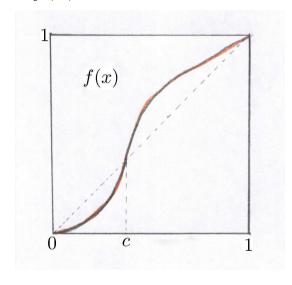
bistable map on [0,1]:

a continuous increasing map $f: [0,1] \rightarrow [0,1]$

such that there exists $c \in (0,1)$ so that

$$f(x) < x$$
 for all $x \in (0,c)$ and $x < f(x)$ for all $x \in (c,1)$.

Two stable fixed points: f(0) = 0 and f(1) = 1; one unstable fixed point: f(c) = c.



Planar Fronts: solutions $u_{\mathbf{n}}^{t}$ of the form

$$u_{\mathbf{n}}^t = \phi(\mathbf{n} \cdot \mathbf{k} - t \, v) \qquad \forall t \in \mathbb{Z}$$

Where:

 $\phi: \mathbb{R} \to [0,1]$ is the **front shape** satisfying $\lim_{x \to -\infty} \phi(x) = 0$ and $\lim_{x \to +\infty} \phi(x) = 1$ **k** is the direction of propagation ($\mathbf{k} \in \mathbb{R}^d$, $\|\mathbf{k}\| = 1$; i.e. $\mathbf{k} \in \mathbb{S}^{d-1}$) v is the front velocity

For each direction $\mathbf{k} \in \mathbb{S}^{d-1}$ define the set

$$Z(\mathbf{k}) = \{ \omega \in \mathbb{R} : \exists \mathbf{s} \in \mathbb{Z}^d \mid \omega = \mathbf{s} \cdot \mathbf{k} \}.$$

and consider the invariant subset $\mathcal{X}_{\mathbf{k}} \subset [0,1]^{\mathbb{Z}^d}$, defined by

$$\mathcal{X}_{\mathbf{k}} = \left\{ \left\{ u_{\mathbf{n}} \right\}_{\mathbf{n} \in \mathbb{Z}^d} \in [0, 1]^{\mathbb{Z}^d} : \mathbf{m} \cdot \mathbf{k} = \mathbf{n} \cdot \mathbf{k} \Rightarrow u_{\mathbf{m}} = u_{\mathbf{n}} \right\}$$

For each $\{u_{\mathbf{s}}\}_{\mathbf{s}\in\mathbb{Z}^d}\in\mathcal{X}_{\mathbf{k}}$ define the function $\psi\in[0,1]^{\mathbb{R}}$, in $Z(\mathbf{k})$ by

$$\psi(\mathbf{s} \cdot \mathbf{k}) = u_{\mathbf{s}}$$

and for $x \in \mathbb{R} \setminus Z(\mathbf{k})$ by $\psi(x) = 0$ (0 being a fixed point of f).

Then the dynamics of the (CML) implies that

$$\psi^{t+1}(x) = \sum_{\mathbf{s} \in \mathbb{Z}^d} \ell_{\mathbf{s}} f \circ \psi^t(x - \mathbf{s} \cdot \mathbf{k}).$$

Hence the (CML) dynamics induces a map $F : [0,1]^{\mathbb{R}} \to [0,1]^{\mathbb{R}}$. $\psi^{t+1} = F(\psi^t)$.

- If the direction **k** is totally irrational (\forall **s** \in \mathbb{Z}^d **s** \cdot **k** = $0 \Rightarrow$ **s** = **o**), then the (CML) dynamics is a restriction of the dynamics given by the map F, because $\mathcal{X}_{\mathbf{k}} = [0,1]^{\mathbb{Z}^d}$ in this case.
- If the direction **k** is not totally irrational, then the map F is an extension of the (CML) dynamics restricted to the set $\mathcal{X}_{\mathbf{k}}$.

If we restrict the map $F(\psi)(x) = \sum_{\mathbf{s} \in \mathbb{Z}^d} \ell_{\mathbf{s}} f \circ \psi(x - \mathbf{s} \cdot \mathbf{k})$ to the set \mathcal{B} of Borel measurable functions on \mathbb{R} with values in [0,1], then the map F can be written as

$$F(\psi) = h_{\mathbf{k}} * f \circ \psi,$$

where the convolution is defined by the Lebesgue-Stieltjes integral

$$h * \varphi(x) = \int_{\mathbb{R}} \varphi(x - y) \ dh(y)$$

and the distribution function $h_{\mathbf{k}} : \mathbb{R} \to [0,1]$ is $h_{\mathbf{k}}(x) = \sum_{\mathbf{s} \in \mathbb{Z}^d} \ell_{\mathbf{s}} H(x - \mathbf{s} \cdot \mathbf{k})$

and *H* is the Heaviside function: $H(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$

Reformulating the problem:

Given a distribution function $h: \mathbb{R} \to [0,1]$ (increasing function with the following limits $\lim_{x \to -\infty} h(x) = 0$ and $\lim_{x \to +\infty} h(x) = 1$) and a bistable map $f: [0,1] \to [0,1]$ define the map $F: \mathcal{B} \to \mathcal{B}$ by

$$F(\psi) = h * f \circ \psi$$

Find a front shape $\phi \in \mathcal{B}$ and a velocity ν , satisfying:

$$T^{\nu}\phi = F(\phi)$$
 , with $\lim_{x \to -\infty} \phi(x) = 0$ and $\lim_{x \to +\infty} \phi(x) = 1$

where T^{ν} is the **translation** by $\nu \in \mathbb{R}$ defined by $T^{\nu}u(x) = u(x - \nu)$

Results

Existence of fronts

Theorem For any distribution function h and **any bistable map** f, there exists a velocity $v \in \mathbb{R}$ and an increasing function ϕ such that

$$\lim_{x\to -\infty}\phi(x)=0,\quad \lim_{x\to +\infty}\phi(x)=1\quad and\quad T^{\nu}\phi=F\phi,$$

where $F\phi = h * f \circ \phi$.

Uniqueness of front velocity

Theorem For any distribution function h and any bistable regular map f, there exists a unique velocity $v \in \mathbb{R}$ and an increasing function ϕ such that

$$\lim_{x \to -\infty} \phi(x) = 0, \quad \lim_{x \to +\infty} \phi(x) = 1 \quad and \quad T^{\nu} \phi = F \phi,$$

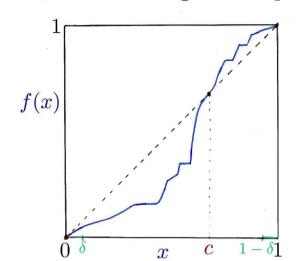
where $F\phi = h * f \circ \phi$.

Bistable regular maps

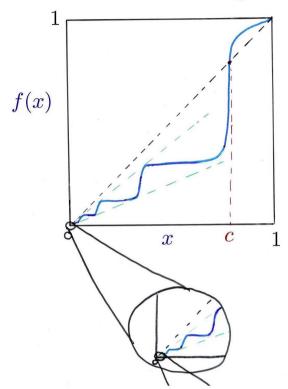
A bistable map is said to be regular if it is a weak contraction in a neighbourhood of each stable fixed point. That is

$$\exists \delta > 0 \quad [x, y \in (0, \delta) \quad \text{or} \quad x, y \in (1 - \delta, 1)] \quad \Rightarrow |f(x) - f(y)| \leq |x - y|.$$

f Bistable regular map



f Bistable but nonregular



Using the Taylor's formula we find the following sufficient conditions for a bistable map *f* to be **regular**:

a)
$$f$$
 analytic or b) $f \in C^1$ and $f'(0) < 1$ and $f'(1) < 1$ or $f \in C^2$ and $f''(0) \ne 0$ and $f''(1) \ne 0$ or d) $f \in C^3$ and $f'''(0) \ne 0$ and $f'''(1) \ne 0$ or ...

Nevertheless it is possible to construct C^{∞} bistable maps that are not regular

Continuity of the front velocity

Assume that f is **regular** and let v(f,h) be the unique front velocity of F.

Theorem Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of regular bistable maps which converges pointwise to a bistable regular map f. Let $\{h_n\}_{n\in\mathbb{N}}$ be a sequence of distribution functions and h be a distribution function such that $\lim_{n\to\infty} d(h_n,h) = 0$. Then $\lim_{n\to\infty} v(f_n,h_n) = v(f,h)$.

Given two right continuous distribution functions h and h', define the **Lévy distance**

$$d(h,h') = \inf\{\varepsilon > 0 : h(x-\varepsilon) - \varepsilon \leqslant h'(x) \leqslant h(x+\varepsilon) + \varepsilon, \quad \forall x \in \mathbb{R} \}.$$

This is the same as the **Hausdorff distance** restricted to graphs of distribution functions. **Hausdorff distance**:

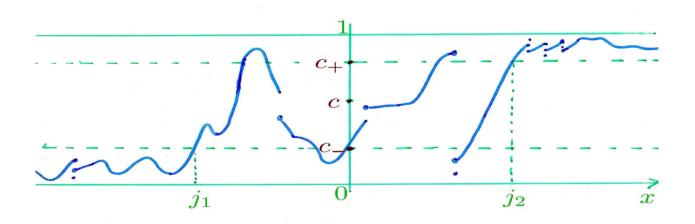
$$d(h,h') = \max \left\{ \sup_{z_1 \in Gh} \inf_{z_2 \in Gh'} \|z_1 - z_2\|, \sup_{z_1 \in Gh'} \inf_{z_2 \in Gh} \|z_1 - z_2\| \right\},\,$$

where *Gh* is the graph of *h*, i.e. $Gh = \{(x,y) : h(x^{-}) \le y \le h(x^{+})\}$, and the \mathbb{R}^{2} norm $\|.\|$ is given by $\|(x,y)\| = \max\{|x|,|y|\}$

Interfaces and reference centers $J_a(\psi)$

Recall that *c* denotes the unstable fixed point of *f*.

An **interface** is a function $u \in \mathcal{B}$ if there exists $c_- \in (0,c)$, $c_+ \in (c,1)$ and $j_1 \leq j_2 \in \mathbb{R}$ so that $u(x) \leq c_-$ if $x \leq j_1$ and $u(x) \geq c_+$ if $x \geq j_2$.



If *u* is an interface, then the iterate $F^t u$ is also an interface ($t \ge 0$).

Moreover for sufficiently large t, F^tu is an interface for c_- arbitrarily near 0 and c_+ arbitrarily near 1.

Given the level $a \in (0,1)$, the **reference center** of a function u is

$$J_a(u) = \inf\{x \in \mathbb{R} : u(x) \geqslant a\}.$$

By applying a translation a function u can be centered at 0: $J_a(T^{-J_a(u)}u) = 0$.

Velocity of interfaces

Theorem Let h be a distribution function and let f be a regular bistable map. For every interface u and every $a \in (0,1)$, we have

$$\lim_{t\to\infty}\frac{J_a(F^tu)}{t}=v(f,h).$$

Where v(f,h) is the (unique) front velocity of F.

Application to the planar fronts of (CML)

$$u_{\mathbf{n}}^{t+1} = \sum_{\mathbf{s} \in \mathbb{Z}^d} \ell_{\mathbf{s}} f(u_{\mathbf{n}-\mathbf{s}}^t), \text{ with } f \text{ bistable, } \ell_{\mathbf{s}} \geqslant 0 \text{ and } \sum_{\mathbf{s} \in \mathbb{Z}^d} \ell_{\mathbf{s}} = 1.$$

If ϕ is a function such that $\lim_{x\to -\infty} \phi(x) = 0$, $\lim_{x\to +\infty} \phi(x) = 1$ and $T^{\nu}\phi = F\phi$, where $F\phi = h_{\mathbf{k}} * f \circ \phi$, then defining

$$u_{\mathbf{n}}^t = \phi(\sigma + \mathbf{n} \cdot \mathbf{k} - tv)$$

(for an arbitrary phase $\sigma \in \mathbb{R}$), we have $u_{\mathbf{n}}^{t+1} = \sum_{\mathbf{s} \in \mathbb{Z}^d} \ell_{\mathbf{s}} f(u_{\mathbf{n}-\mathbf{s}}^t)$, i.e. $u_{\mathbf{n}}^t$ is a planar front with direction of propagation \mathbf{k} and front shape ϕ .

Existence of planar fronts

Theorem For any direction $\mathbf{k} \in \mathbb{S}^{d-1}$ and any bistable function f there exists planar fronts in the direction \mathbf{k} for (CML). If f is regular, then the velocity of these fronts is uniquely determined for each direction \mathbf{k} .

The velocity of fronts v depends then on f, $\{\ell_{\mathbf{s}}\}_{\mathbf{s}\in\mathbb{Z}^d}$ and \mathbf{k} :

$$v = v(f, \{\ell_{\mathbf{S}}\}_{\mathbf{S} \in \mathbb{Z}^d}, \mathbf{k})$$

Continuity of the velocity

Theorem Given $\varepsilon > 0$ there exists $\delta > 0$ such that for any f, f' regular bistable, $\{\ell_{\mathbf{s}}\}_{\mathbf{s} \in \mathbb{Z}^d}, \{\ell'_{\mathbf{s}}\}_{\mathbf{s} \in \mathbb{Z}^d}$ nonnegative and normalized and $\mathbf{k}, \mathbf{k}' \in \mathbb{S}^{d-1}$ satisfying

$$\|\boldsymbol{k}-\boldsymbol{k}'\| < \delta, \quad \sum_{\boldsymbol{s}\in\mathbb{Z}^d} |\ell'_{\boldsymbol{s}}-\ell_{\boldsymbol{s}}| < \delta \quad and \quad sup|f-f'| < \delta,$$

we have

$$|v(f, \{\ell_{\mathbf{s}}\}_{\mathbf{s}\in\mathbb{Z}^d}, \mathbf{k}) - v(f', \{\ell'_{\mathbf{s}}\}_{\mathbf{s}\in\mathbb{Z}^d}, \mathbf{k}')| < \varepsilon.$$

Interfaces

A configuration $\{u_{\mathbf{s}}\}_{\mathbf{s} \in \mathbb{Z}^d} \in [0,1]^{\mathbb{Z}^d}$ is an interface in the direction **k** if there exists j_-, j_+ , $0 < c_- < c < c_+ < 1$, such that

$$\mathbf{n} \cdot \mathbf{k} < j_{-} \Rightarrow u_{\mathbf{n}} < c_{-} \text{ and } \mathbf{n} \cdot \mathbf{k} > j_{+} \Rightarrow u_{\mathbf{n}} > c_{+}.$$

(note that $\mathbf{n} \cdot \mathbf{k}$ measures a position along the line orthogonal to \mathbf{k})

Theorem If $\{u_{\mathbf{s}}^0\}_{\mathbf{s}\in\mathbb{Z}^d,t\in\mathbb{N}}$ is an interface in the direction \mathbf{k} , then the evolution $\{u_{\mathbf{s}}^t\}_{\mathbf{s}\in\mathbb{Z}^d}$ by (CML) is an interface in the direction \mathbf{k} and

$$\lim_{t\to+\infty}\frac{1}{t}J_a^{\boldsymbol{k}}(\left\{u_{\boldsymbol{s}}^t\right\}_{\boldsymbol{s}\in\mathbb{Z}^d})=v(f,\left\{\ell_{\boldsymbol{s}}\right\}_{\boldsymbol{s}\in\mathbb{Z}^d},\boldsymbol{k}).$$

Where $J_a^{\mathbf{k}}(\{u_{\mathbf{s}}\}_{\mathbf{s}\in\mathbb{Z}^d}) = \inf\{j \in \mathbb{R} : \mathbf{n} \cdot \mathbf{k} > j \Rightarrow u_{\mathbf{n}} \geq a\} \text{ and } a \in (0,1).$

Extended bistable maps

$$u^{t+1} = Fu^t := h * f \circ u^t$$

The phase space is the set \mathcal{B} of Borel-measurable functions on \mathbb{R} with values in [0,1].

Basic properties:

Homogeneity

$$T^{\nu}F = FT^{\nu}$$
 for all $\nu \in \mathbb{R}$.

Continuity:

$$\forall x \in \mathbb{R} \quad \lim_{n \to \infty} u_n(x) = u(x) \qquad \Rightarrow \qquad \forall x \in \mathbb{R} \quad \lim_{n \to \infty} Fu_n(x) = Fu(x).$$

Monotony:

$$u \leq v \Rightarrow Fu \leq Fv.$$

Sketch of the proof of existence of fronts

Let $\mathcal{I} \subset \mathcal{B}$ be the subset composed of increasing functions, $v \in \mathbb{R}$ and $c_+ \in (c, 1)$. The set \mathcal{S}_{v,c_+} of **sub-fronts** of velocity v:

$$S_{v,c_+} = \{ \psi \in \mathcal{I} : F\psi \leqslant T^v \psi \text{ and } J_{c_+}(\psi) = 0 \}.$$

When S_{v,c_+} is not empty, consider the function

$$\eta_{\nu}(x) = \inf_{\psi \in \mathcal{S}_{\nu,c_+}} \psi(x), \quad x \in \mathbb{R}.$$

It turns out that $\eta_v \in S_{v,c_+}$ and therefore η_v is a **minimal sub-front** of velocity v.

We also prove the existence of a maximal sub-fronts velocity $\bar{v} = \max\{v \in \mathbb{R} : S_{v,c_+} \neq \emptyset\}.$

Consider the reference centers of the iterates $F^n\eta_{\bar{\nu}}$ of the minimal sub-front $\eta_{\bar{\nu}}$ for the maximal sub-fronts velocity $\bar{\nu}$:

$$j_n := J_{c_+}(F^n \eta_{\bar{v}})$$

Then we prove that $\liminf_{n\to\infty}(j_{n+m}-j_n)=m\bar{v}$.

From this we use an arithmetical Lemma that ensures that there exists a strictly increasing sequence $\{n_k\}$ such that for all m

$$\lim_{k\to\infty}(j_{n_k+m}-j_{n_k})=m\bar{v}.$$

Using this subsequence $\{n_k\}$, we consider the sequence $\{T^{-j_{n_k}}F^{n_k}\eta_{\bar{\nu}}\}_{k\in\mathbb{N}}$ from which a convergent subsequence can be extracted by Helly's Selection Theorem:

$$\eta_{\infty} = \lim_{k \to \infty} T^{-j_{n_k}} F^{n_k} \eta_{\bar{v}}.$$

Consider now the sequence $\{T^{-m\bar{\nu}}F^m\eta_\infty\}_{k\in\mathbb{N}}$. It satisfies $\eta_{\bar{\nu}} \leqslant T^{-(m+1)\bar{\nu}}F^{m+1}\eta_\infty \leqslant T^{-m\bar{\nu}}F^m\eta_\infty$. Hence, the following limit exists

$$\phi = \lim_{m \to \infty} T^{-m\bar{\nu}} F^m \eta_{\infty}$$

and satisfies $T^{\nu}\phi = F\phi$ and $\lim_{x\to +\infty}\phi(x) = 1$. As for the limit $\lim_{x\to -\infty}\phi(x)$, in general we cannot say more than $\lim_{x\to -\infty}\phi(x)\in\{0,c\}$.

However, if *f* and *h* are such that

$$\frac{df}{dc}(c) = +\infty$$
 and $\inf\{x \in \mathbb{R} : h(x) > 0\} = -\infty$,

then one can prove that $\lim_{x\to -\infty} \phi(x) = 0$.

Finally, to conclude in the general case, we show that every pair of bistable map f and distribution function h can be approximated pairs satisfying the previous condition. The existence of fronts then follows from continuity properties (see the references for more details).