Stochastic reversible deformation of dynamical systems

Jean-Claude Zambrini
Group of Mathematical Physics
University of Lisbon
(GFM-UL)

Portugal



I. Stochastic processes and reversibility

Wiener process associated with H = —(1?/2)A. Archetype of irreversibility.
Origin of irreversibility in Stochastic Analysis: historic, not scientific.

Kolmogorov and probabilistic initial value problem.
Markov process X; € A, t € I,on (Q,qa,P), P =0{X,, 7 <t} Ca.

Usual formulation (time asymmetric) of X Markovian:

E[f(X)I1X(t1), X(ta),.. X(t)]  s<tu<...<ta<ty<t
= E[f(X,) | X(t,1)] i.e. “forget the past P, , of t_”

Building block of construction of measure: Kolmogorov’s transition
probability

P(s, X;,t,B) = P(X; € B| X;), s<t, B Borelian.

When X, given by a distribution P;,s <71 <1, <...<u
P(X;, €By,...,X;, €B,) = fPs(dx) P(s,x,t1,B1) ... P(Ty-1, Xy—1, T, Bn)

Finite-dimensional distribution of X.



Probabilistic analogue of initial value problem for classical dynamics.
Smooth paths space Q. ; = {a) € C?([s,u]; R) s.t. w(s) = x}.
But Markov property is time-symmetric. If

Fr=0lX,, t2t}, AP, BeF,,
P(AB|P: N F:) = P(A|P: N Fy) - P(BIP: N Fr)
= backward Markovian evolution from a final distribution P, (dz):

P(X., €By,..., X, €By) = fP*(Tl,Bl,’cz,xz)...P*(’cn,Bn,u,z)Pu(dz)

P* = backward transition probability.



E[f(X) 1 X(t), X(ta), ..., X(t)] = E[f(X)1X(t)], s<t<h<h<..<u

“forget the future ¥, of X(t;)” Also time asymmetric!

Probabilistic counterpart of final value problem for classical dynamical
systems. Smooth path space Q"*.

What is probabilistic counterpart of boundary value variational problem with
Qi = {a) € C*([s,u]; R] s.t. w(s) = x, w(u) = z} ?
Probabilistic idea: Forget the past of any s, and the future of any t:
E[f(Z)|P, UF,| = E[f(Z)1Z(s1), Z(t)]  Vs<si<t<t<u

“Bernstein property” (1985-6, or “local Markov” or “two-sided Markov” or
“Reciprocal”, 1932): more general than Markov (OK for Z(s;) or Z(t;) fixed).

Data: Initial and final probabilities P,(dx), P, (dz).



How to construct unique process Z;, t € [s, u]

from given joint probability measure M(dx, dz) ?

1) Build 3 points counterpart of transition probability Q(s, x;t, B; u, z)
s.t. if Z, fixed Q behaves like forward transition probability P(s, x, t, B)
and, if Z, fixed, as a backward transition P*(t, B, u, z).

2) Use M(dx, dz) instead of P,(dx), P,(dz)
to write finite-dimensional distributions of Z;, Y t € [s, u].

Then 3! Bernstein Z,, t € [s, u], generally not Markovian.



Difficulty: For given (Ps, P,) 3 many M (marginals not sufficient).
“Solution”: 3! M for given (Ps, P,), denoted by M,,, s.t. Z. is also Markovian.

Let us consider a class including Wiener process. Then
M, (dx, dz) = n(x) h(x, u — s, z) n,(2) dx dz, s M > 0
h(x,u—s,z) = (e'<”‘S)H/h)(x, z) on L2(R"), # > 0.

2
H= —EA +V, st h>0, jointly continuous, V € Kato class.



Then, finite dimensional distributions of Z;, t € [s, u]:
P(Z, €By,...,Z:, €B,) = fn;(x)h(x, ty —s,By) ... W(By, u — t,, z) Nu(z) dx dz
Marginals of M,, determine 13, 1,, given P,(dx) = ps(x) dx, P,(dz) = pu(z) dz:
5(x) fh(x, u —s,z) N,(2) dz = ps(x)

Nonlinear integral eq. for (1, 1.).

1nu(2) f 1:(x) h(x, u — 5,z) dx = p,(2)



Theorem A. Beurling (1960, Ann. Math):

h as before, 3! positive (not necessarily integrable) solutions n;, 1,
if p; and p,, are strictly positive.

Ex:

H = Hy, ps = 0, pu = ho(x,u —s,z) (“free” Gaussian kernel). Then n;(x) = o,
nu(z) = 1 and Z; = W,. The Brownian irreversibility is only a special scenario
of free (V = 0) evolution. This Brownian will allow, however, to construct
many other free (reversible) diffusions.



Properties of Bernstein Markovian processes:

1) P(Z € A) = [, @ t)ngt)dx, te[s,u]

_h% =Hrn’ h(;—z =Hn Smooth 1,n" > 0
n'(x,s) = 75(x) n(x, 1) = 1,(x) H as before

2) Z(t) = Z(u +s —t), t € [s,u] well defined. Built-in reversibility !
7. has boundary probabilities at time s and u permuted with respect to the
ones of Z.



3) Infinitesimal coefficients (1 dim, for H = —(1?/2)A + V):
Vi 1/2
Forward P, —SDE dzZ; = hF(Zt’ bdt + = dW,

V *
Backward 7 4.7, = —hn—rf(zt, B dt + K2 W
(W* = Backward Wiener)



4) Infinitesimal generators:

D f(2(t, 1) = lim £, [ (AL AL 20 2D, t)]
At
D f(Z(t), ) = lim E [f (Z(t), 1) ~f(Z(t ~ A, £~ At)]
At—0 At
where E; = conditional expectation (given Z(t))
_ 9 | i . . i B _77 _ﬁ
Dy = E+h—V+2A ; Dj = g 7 - v A

For D,Z = B(Z,t) = h3)(Z,1), D;Z = B'(Z,t) (“drifts”)

B'(Z,1) = B(Z,t) = hVlog(n'n)(Z, t)
NB: Only in stationary case B = —B (as when /i = 0).



Ex: Wiener (starting from x at time s)
n(g,t)=1=B=0
17'(q,t) = ho(x,t —5,9) = B.(q,t) = —IiVIlogho(x,t — 5,q)

Deformations of constants under dynamics:

f(Z,t) st. Dif =0 is P-martingale
g(Z,t) st. D;g=0 is Fi-martingale



II. Reversible stochastic deformation of dynamical systems

Singular lim ~ classical limit of QM.

h—0
Above framework = stochastic deformation of such limiting classical system.
Let H(x, p) its Hamiltonian, L(x, X) its Lagrangian.

Claim: All classical Theorems needed to analyse this classical dynamical
system are deformable a.s. along Bernstein processes t — Z;.



A selection of examples:

1) Stationary case, H = —(h?/2)A + V(x), State space A = interval of R
n(x, 1) = ga(x)e™ ", n*(x, t) = gu(x)e¥", @ = cst.

ps(x) = pu(x) = |go(x)* invariant probability density.

Deformation of Lagrangian-Newtonian approach

S.660) = Ex [ L(X@DX@)dr=SXO),  Elt] <o0
t
(upper integration limit # random when A bounded)

Ds, = {X solving P;-SDE, fixed diffusion coef.,
smooth D, X to be determined }



Def: Critical diffusions Z of S;[X(")] : 6S; = Ex[VS.[Z](6Z)] =0, “Y 62",

Si[Z + £6Z] - S1[Z]
&

a.s. Gateaux derivative

VS.[Z1(67) = lim

0Z(-) € Cameron-Martin (Hilbert) space Hem with (@, ) = fow o(1) lj)(’c) dt

T(oL JL
ExtI (ﬁéX (9D XD 5X)d’[ VoX e WCM



Integration by parts w.r.t. D, (It0’s formula for ¥ 6X € Hewm)

JdL JdL

“3D.Z oz =0 a.s. deformed Euler-Lagrange

Elementary H = L(g,9) = %Vﬂz +V(g) so

Theorem

The critical diffusions of S; in D, , for this L, are Bernstein Markov processes
solving a.s. D.D.Z(1) = VV(Z(1))

(Deformed Newton).



2) A variational principle with (non holonomic) constraint:
1d Maupertuis Principle

Z():[s,u] = [0,y =ACR
H(V) time independent. Stationary case: p; = p,,.

Drifts time independent: B* = —B
and satisfy deformed energy conservation constraint:

SIBP(Z(2) + SVBL(Z(2) - V(Z(x) = )

Theorem

The critical diffusions of S; are also critical for the deformed reduced action

v
Ey f B,(Z(1)) o dZ(7) o Stratonovich differential
t

in the (narrower) class of diffusions Z,(-) as above satisfying (+), and

v =inf{r > t: Z(1) = y| Z(t) = x}.



Idea:
1)

S [Z()] = E’”f B(Z(t)) 0o dZ(7) — fT (%|B|2 + ZVB - V)(Z(T))d’l’
—— e
=aonZ,()

2) Not any g.(x) qualifies as probability density of critical diffusions Z(-)
since both JA are attainable. But

(%) ga(y)
8a(¥) ga(y)

Dega(Za(1) =0, q;(0)=0, ga(y)=1 (P.-Martingale)

2100 = 400 f O = g =



3)

Doob’s transformation of Z(t) via positive martingale
v +
gt = Z®), tels,ul, By =1 g%“ (x),

o
Z} cannot reach origin anymore but solves same a.s. Newton equation.

In addition Z;, solves a.s. ( D.m(Z%(17)) = -1, 7 €[t Y]
m(x) = Exy[tY] — ¢t m(y) =0  Not Dirichlet problem! (m(dA) # 0)



Deformation of characteristics

Def: Deformed Hamilton characteristic function:
W (x) = —lilog g (x) xeA

solves reduced Hamilton-Jacobi-Bellman equation:
1 +12 L
SIVWERG) = SAW; () - V() = a (HJB)
Since B} = -VW, (H]B) < Deformed energy conservation
h
DIWHZE(t) = —IBX(ZE )P - EVB;(Z:;(t)) = (Cf Stratonovich / Itd)
el
Wi(x) =Ey; f Bi(Z:(t)) 0 dZ}(7) Deformed reduced action
t

As classically V(HJB) — D;D,Z () = VV(Zi(t))

Same method for Z conditioned on reaching only lower border 0.



3) Time dependent variational principle A = R"

2
H= —%A +V  Anypi(x)andp,(x)  (Beurling)

Si(x,t) = Ey f u L(X(1), DX (1)) d + ES1(X(w), )

A = R", no need of random time

oL IL
D: oD.Z dZ

Critical diffusions:
BC: Z(t) =x, DZ(u) = =VS.(Z(u), u)

- £ =D.D,Z(1) - VV(Z(1)) = 0

a.s.



Sy solves time-dependent Hamilton-Jacobi-Bellman equation

9, 1 ., h B
7 - §|V5L| + EASL +V=0 (HIB)

DZ(t) = =VS.(Z(1), 1) trueVt<t<u
V(H]B) is D;D;Z(t) = VV(Z(t))
There is also a stochastic deformation of Neether’s Theorem, for S; :

Dy(pX + hT — ¢)(Z(t),t) = 0 for X, T, ¢ = infinitesimal generator coefficients of
symmetry group of heat equation, and p = —=VS;, h = —d;5;.
For recent geometric approach, cf P. Lescot, ].-C. Z.

It produces a collection of P; (¥;) martingales of critical Z(7).



Stochastic dynamical system reinterpretation of martingales of diffusions.
Ex: Wiener’s martingales (cf Chung, J.-C. Z. p181-185) for V =0

4) A = n-dim. Riemannian manifold. du(q) = g dq, g = detg;
Framework preserved for huge class of H (i.e. Bernstein). Ex:

1
HFQ) = U0~ VF = 207 = [ (fk4.) = £ = 350 Lygen ot
]RH
¢,keR", vLévymeasure onR"\ {0} NB: H not symmetric!
Then two underlying heat equations involve H and its adjoint H.
(cf Privault, J.-C. Z.)
Generator D; = Integro-differential.

Stochastic Analysis can be entirely time-symmetrized and, but only after,
be regarded as a (stochastic) dynamical systems theory.

Other interpretation of this program: Systematic Analysis of PDE with the
(deformed) tools of ODE. Geometric flavour.
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