Stochastic reversible deformation of dynamical systems

Jean-Claude Zambrini Group of Mathematical Physics University of Lisbon (GFM-UL) Portugal

I. Stochastic processes and reversibility

Wiener process associated with $H=-(\hbar^2/2)\Delta$. Archetype of irreversibility. Origin of irreversibility in Stochastic Analysis: historic, not scientific.

Kolmogorov and probabilistic initial value problem.

Markov process $X_t \in \Lambda$, $t \in I$, on $(\Omega, \mathfrak{a}, P)$, $\mathcal{P}_t = \sigma\{X_\tau, \tau \leq t\} \subset \mathfrak{a}$.

Usual formulation (time asymmetric) of *X* Markovian:

$$E[f(X_t) | X(t_{-1}), X(t_{-2}), \dots, X(t_{-n})] \qquad s < t_{-n} < \dots < t_{-2} < t_{-1} \le t$$

$$= E[f(X_t) | X(t_{-1})] \qquad \text{i.e. "forget the past } \mathcal{P}_{t_{-1}} \text{ of } t_{-1}"$$

Building block of construction of measure: Kolmogorov's transition probability

$$P(s, X_s, t, B) = P(X_t \in B \mid X_s), \quad s \le t, \quad B \text{ Borelian}.$$

When X_s given by a distribution P_s , $s \le \tau_1 \le \tau_2 \le \ldots < u$

$$P(X_{\tau_1} \in B_1, \dots, X_{\tau_n} \in B_n) = \int P_s(dx) P(s, x, \tau_1, B_1) \dots P(\tau_{n-1}, x_{n-1}, \tau_n, B_n)$$

Finite-dimensional distribution of X.

Probabilistic analogue of *initial* value problem for classical dynamics.

Smooth paths space
$$\Omega_{x,s} = \{ \omega \in C^2([s, u]; \mathbb{R}) \text{ s.t. } \omega(s) = x \}$$
. But Markov property is *time-symmetric*. If

$$\mathcal{F}_t = \sigma\{X_\tau, \ \tau \ge t\}, \quad A \in \mathcal{P}_t, \quad B \in \mathcal{F}_t,$$
$$P(AB \mid \mathcal{P}_t \cap \mathcal{F}_t) = P(A \mid \mathcal{P}_t \cap \mathcal{F}_t) \cdot P(B \mid \mathcal{P}_t \cap \mathcal{F}_t)$$

 \Rightarrow backward Markovian evolution from a *final* distribution $P_u(dz)$:

$$P(X_{\tau_1} \in B_1, \dots, X_{\tau_n} \in B_n) = \int P^*(\tau_1, B_1, \tau_2, x_2) \dots P^*(\tau_n, B_n, u, z) P_u(dz)$$

 P^* = backward transition probability.

$$E[f(X_t) | X(t_1), X(t_2), \dots, X(t_n)] = E[f(X_t) | X(t_1)], \quad s < t < t_1 < t_2 < \dots < u$$
 "forget the future \mathcal{F}_{t_1} of $X(t_1)$ " Also time asymmetric!

Probabilistic counterpart of final value problem for classical dynamical systems. Smooth path space $\Omega^{u,z}$.

What is probabilistic counterpart of boundary value variational problem with

$$\Omega^{z,u}_{x,s} = \left\{ \omega \in C^2([s,u]; \mathbb{R}] \text{ s.t. } \omega(s) = x, \omega(u) = z \right\} ?$$

Probabilistic idea: Forget the past of any s_1 and the future of any t_1 :

$$E[f(Z_t) | \mathcal{P}_{s_1} \cup \mathcal{F}_{t_1}] = E[f(Z_t) | Z(s_1), Z(t_1)] \quad \forall s \le s_1 < t < t_1 \le u$$

"Bernstein property" (1985–6, or "local Markov" or "two-sided Markov" or "Reciprocal", 1932): more general than Markov (OK for $Z(s_1)$ or $Z(t_1)$ fixed). **Data:** Initial *and* final probabilities $P_s(dx)$, $P_u(dz)$.

How to construct unique process Z_t , $t \in [s, u]$ from given joint probability measure M(dx, dz)?

- 1) Build 3 points counterpart of transition probability Q(s, x; t, B; u, z) s.t. if Z_u fixed Q behaves like forward transition probability P(s, x, t, B) and, if Z_s fixed, as a backward transition $P^*(t, B, u, z)$.
- 2) Use M(dx, dz) instead of $P_s(dx)$, $P_u(dz)$ to write finite-dimensional distributions of Z_t , $\forall t \in [s, u]$.

Then ∃! Bernstein Z_t , $t \in [s, u]$, generally not Markovian.

Difficulty: For given $(P_s, P_u) \exists$ many M (marginals not sufficient).

"Solution": \exists ! *M* for given (P_s , P_u), denoted by M_m , s.t. Z is also Markovian.

Let us consider a class including Wiener process. Then

$$\begin{split} M_m(dx,dz) &= \eta_s^*(x) \, h(x,u-s,z) \, \eta_u(z) \, dx \, dz, \qquad \eta_s^*, \, \eta_u > 0 \\ h(x,u-s,z) &= \Big(e^{-(u-s)H/\hbar} \Big)(x,z) \qquad \text{on } L^2(\mathbb{R}^n), \, \hbar > 0. \\ H &= -\frac{\hbar^2}{2} \Delta + V, \quad \text{s.t. } h > 0, \text{ jointly continuous, } V \in \text{ Kato class.} \end{split}$$

Then, finite dimensional distributions of Z_t , $t \in [s, u]$:

$$P(Z_{t_1} \in B_1, \dots, Z_{t_n} \in B_n) = \int \eta_s^*(x) h(x, t_1 - s, B_1) \dots h(B_n, u - t_n, z) \eta_u(z) dx dz$$

Marginals of M_m determine η_s^* , η_u , given $P_s(dx) = p_s(x) dx$, $P_u(dz) = p_u(z) dz$:

$$\begin{cases} \eta_s^*(x) \int h(x, u - s, z) \, \eta_u(z) \, dz = p_s(x) \\ \eta_u(z) \int \eta_s^*(x) \, h(x, u - s, z) \, dx = p_u(z) \end{cases}$$
 Nonlinear integral eq. for (η_s^*, η_u) .

Theorem A. Beurling (1960, Ann. Math):

h as before, $\exists !$ positive (not necessarily integrable) solutions η_s^* , η_u if p_s and p_u are strictly positive.

Ex:

 $H=H_0$, $p_s=\delta_x$, $p_u=h_0(x,u-s,z)$ ("free" Gaussian kernel). Then $\eta_s^*(x)=\delta_x$, $\eta_u(z)=1$ and $Z_t=W_t$. The Brownian irreversibility is only a special scenario of free (V=0) evolution. This Brownian will allow, however, to construct many other free (reversible) diffusions.

Properties of Bernstein Markovian processes:

1)
$$P(Z_t \in A) = \int_A \eta^*(q, t) \, \eta(q, t) \, dx, \quad t \in [s, u]$$

$$\begin{cases}
-\hbar \frac{\partial \eta^*}{\partial t} = H \eta^* & \begin{cases} \hbar \frac{\partial \eta}{\partial t} = H \eta & \text{Smooth } \eta, \eta^* > 0 \\ \eta^*(x, s) = \eta_s^*(x) & \eta(x, u) = \eta_u(x) & H \text{ as before} \end{cases}$$

2) $\hat{Z}(t) = Z(u + s - t)$, $t \in [s, u]$ well defined. Built-in reversibility! \hat{Z} . has boundary probabilities at time s and u permuted with respect to the ones of Z.

3) Infinitesimal coefficients (1 dim, for $H = -(\hbar^2/2)\Delta + V$):

Forward
$$\mathcal{P}_t - \mathrm{SDE}$$
 $dZ_t = \hbar \frac{\nabla \eta}{\eta} (Z_t, t) dt + \hbar^{1/2} dW_t$
Backward \mathcal{F}_t $d_*Z_t = -\hbar \frac{\nabla \eta^*}{\eta^*} (Z_t, t) dt + \hbar^{1/2} d_*W_t^*$
 $(W^* = \mathrm{Backward\ Wiener)}$

4) Infinitesimal generators:

$$D_t f(Z(t), t) = \lim_{\Delta t \to 0} E_t \left[\frac{f(Z(t + \Delta t), t + \Delta t) - f(Z(t), t)}{\Delta t} \right]$$
$$D_t^* f(Z(t), t) = \lim_{\Delta t \to 0} E_t \left[\frac{f(Z(t), t) - f(Z(t - \Delta t), t - \Delta t)}{\Delta t} \right]$$

where E_t = conditional expectation (given Z(t))

$$D_t = \frac{\partial}{\partial t} + \hbar \frac{\nabla \eta}{\eta} \nabla + \frac{\hbar}{2} \Delta \qquad ; \qquad D_t^* = \frac{\partial}{\partial t} - \hbar \frac{\nabla \eta^*}{\eta^*} \nabla - \frac{\hbar}{2} \Delta$$

For
$$D_tZ=B(Z,t)=\hbar\frac{\nabla\eta}{\eta}(Z,t),\ D_t^*Z=B^*(Z,t)$$
 ("drifts")

$$B^*(Z,t) = B(Z,t) - \hbar \nabla \log(\eta^* \eta)(Z,t)$$

NB: Only in stationary case $B^* = -B$ (as when $\hbar = 0$).

Ex: Wiener (starting from *x* at time *s*)

$$\begin{split} \eta(q,t) &= 1 \Rightarrow B = 0 \\ \eta^*(q,t) &= h_0(x,t-s,q) \Rightarrow B_*(q,t) = -\hbar\nabla \log h_0(x,t-s,q) \end{split}$$

Deformations of constants under dynamics:

$$f(Z,t)$$
 s.t. $D_t f = 0$ is \mathcal{P}_t -martingale $g(Z,t)$ s.t. $D_t^* g = 0$ is \mathcal{F}_t -martingale

II. Reversible stochastic deformation of dynamical systems

Singular $\lim_{h\to 0}$ ~ classical limit of QM.

Above framework = stochastic deformation of such limiting classical system. Let H(x, p) its Hamiltonian, $L(x, \dot{x})$ its Lagrangian.

Claim: All classical Theorems needed to analyse this classical dynamical system are deformable a.s. along Bernstein processes $t \mapsto Z_t$.

A selection of examples:

1) Stationary case, $H = -(\hbar^2/2)\Delta + V(x)$, State space $\Lambda = \text{interval of } \mathbb{R}$ $\eta(x,t) = g_{\alpha}(x)e^{-\alpha t/\hbar}$, $\eta^*(x,t) = g_{\alpha}(x)e^{\alpha t/\hbar}$, $\alpha = \text{cst.}$ $p_s(x) = p_u(x) = |g_{\alpha}(x)|^2$ invariant probability density.

Deformation of Lagrangian-Newtonian approach

$$S_L(x,t) = E_{xt} \int_t^{\hat{\tau}} L(X(\tau), D_{\tau}X(\tau)) d\tau \equiv S_L[X(\tau)], \qquad E[\hat{\tau}] < \infty$$

(upper integration limit $\hat{\tau}$ random when Λ bounded)

$$\mathcal{D}_{S_L} = \left\{ X_{\cdot} \text{ solving } \mathcal{P}_t\text{-SDE, fixed diffusion coef.,} \right.$$
 smooth $D_{\tau}X$ to be determined $\left. \right\}$

Def: Critical diffusions Z of $S_L[X(\cdot)]: \delta S_L = E_{xt}[\nabla S_L[Z](\delta Z)] = 0$, " $\forall \delta Z$ ",

$$\nabla S_L[Z](\delta Z) = \lim_{\varepsilon \to 0} \frac{S_L[Z + \varepsilon \delta Z] - S_L[Z]}{\varepsilon}$$
 a.s. Gâteaux derivative

 $\delta Z(\cdot) \in \text{Cameron-Martin (Hilbert) space } \mathcal{H}_{\text{CM}} \text{ with } \langle \varphi, \psi \rangle = \int_0^\infty \dot{\varphi}(\tau) \, \dot{\psi}(\tau) \, d\tau$

$$E_{xt} \int_{t}^{\hat{\tau}} \left(\frac{\partial L}{\partial X} \delta X + \frac{\partial L}{\partial D_{\tau} X} D_{\tau} \delta X \right) d\tau = 0 \qquad \forall \, \delta X \in \mathcal{H}_{\text{CM}}$$

Integration by parts w.r.t. D_{τ} (Itô's formula for $\forall \delta X \in \mathcal{H}_{CM}$)

$$D_{\tau} \frac{\partial L}{\partial D_{\tau} Z} - \frac{\partial L}{\partial Z} = 0$$
 a.s. deformed Euler-Lagrange

Elementary
$$H \Rightarrow L(q, \dot{q}) = \frac{1}{2}|\dot{q}|^2 + V(q)$$
 so

Theorem

The critical diffusions of S_L in \mathcal{D}_{S_L} , for this L, are Bernstein Markov processes solving a.s. $D_{\tau}D_{\tau}Z(\tau) = \nabla V(Z(\tau))$

(Deformed Newton).

2) A variational principle with (non holonomic) constraint: 1d Maupertuis Principle

$$Z(\cdot):[s,u]\longrightarrow [0,y]=\Lambda\subset\mathbb{R}$$

H(V) time independent. Stationary case: $p_s = p_u$.

Drifts time independent: $B^* = -B$

and satisfy deformed energy conservation constraint:

$$\frac{1}{2}|B_{\alpha}|^{2}(Z(\tau)) + \frac{\hbar}{2}\nabla B_{\alpha}(Z(\tau)) - V(Z(\tau)) = \alpha \tag{*}$$

Theorem

The critical diffusions of S_L are also critical for the deformed reduced action

$$E_{xt} \int_{t}^{\tau^{y}} B_{\alpha}(Z(\tau)) \circ dZ(\tau)$$
 • Stratonovich differential

in the (narrower) class of diffusions $Z_{\alpha}(\cdot)$ as above satisfying (*), and

$$\tau^y = \inf\{\tau \ge t : Z(\tau) = y \mid Z(t) = x\}.$$

Idea:

1)

$$S_{L}[Z(\cdot)] = E_{xt} \int_{t}^{\tau^{y}} B(Z(\tau)) \circ dZ(\tau) - \int_{t}^{\tau^{y}} \underbrace{\left(\frac{1}{2}|B|^{2} + \frac{\hbar}{2}\nabla B - V\right)}_{= \alpha \text{ on } Z_{\alpha}(\cdot)} (Z(\tau)) d\tau$$

2) Not any $g_{\alpha}(x)$ qualifies as probability density of critical diffusions $Z(\cdot)$ since both $\partial \Lambda$ are attainable. But

$$g_{\alpha}^{+}(x) = g_{\alpha}(x) \int_{0}^{x} g_{\alpha}^{-2}(\xi) d\xi \quad \Rightarrow \quad q_{\alpha}^{+}(x) = \frac{g_{\alpha}^{+}(x)}{g_{\alpha}(x)} \frac{g_{\alpha}(y)}{g_{\alpha}^{+}(y)} > 0$$

$$D_{\tau}q_{\alpha}^{+}(Z_{\alpha}(\tau)) = 0, \quad q_{\alpha}^{+}(0) = 0, \quad q_{\alpha}^{+}(y) = 1 \quad (\mathcal{P}_{\tau}\text{-Martingale})$$

Doob's transformation of $Z(\tau)$ via positive martingale

$$q_{\alpha}^+ \to Z_{\alpha}^+(t), \ t \in [s,u], \ B_{\alpha}^+(x) = \hbar \frac{\nabla g_{\alpha}^+}{g_{\alpha}^+}(x),$$

 Z_{α}^{+} cannot reach origin anymore but solves same a.s. Newton equation.

3)

In addition
$$Z_{\alpha}^+$$
 solves a.s.
$$\begin{cases} D_{\tau} m(Z_{\alpha}^+(\tau)) = -1 \,, & \tau \in [t,\tau^y] \\ m(x) = E_{xt}[\tau^y] - t & m(y) = 0 & \text{Not Dirichlet problem! } (m(\partial \Lambda) \neq 0) \end{cases}$$

Deformation of characteristics

Def: Deformed Hamilton *characteristic function*:

$$W_{\alpha}^{+}(x) = -\hbar \log g_{\alpha}^{+}(x) \qquad x \in \Lambda$$

solves reduced Hamilton-Jacobi-Bellman equation:

$$\frac{1}{2}|\nabla W_{\alpha}^{+}|^{2}(x) - \frac{\hbar}{2}\Delta W_{\alpha}^{+}(x) - V(x) = \alpha \tag{HJB}$$

Since $B_{\alpha}^{+} = -\nabla W_{\alpha}^{+}$, (HJB) \Leftrightarrow Deformed energy conservation

$$D_t W_{\alpha}^+(Z_{\alpha}^+(t)) = -|B_{\alpha}^+(Z_{\alpha}^+(t))|^2 - \frac{\hbar}{2} \nabla B_{\alpha}^+(Z_{\alpha}^+(t)) \implies \qquad \text{(Cf Stratonovich/Itô)}$$

$$W_{\alpha}^+(x) = E_{x,t} \int_t^{\tau^y} B_{\alpha}^+(Z_{\alpha}^+(\tau)) \circ dZ_{\alpha}^+(\tau) \qquad \text{Deformed reduced action}$$

As classically

$$\nabla(\text{HJB}) \longrightarrow D_t D_t Z_{\alpha}^+(t) = \nabla V(Z_{\alpha}^+(t))$$

Same method for Z_{α}^{-} conditioned on reaching only lower border 0.

3) Time dependent variational principle $\Lambda = \mathbb{R}^n$

$$H = -\frac{\hbar^2}{2}\Delta + V \qquad \text{Any } p_s(x) \text{ and } p_u(x) \qquad \text{(Beurling)}$$

$$S_L(x,t) = E_{xt} \int_t^u L(X(\tau), D_\tau X(\tau)) d\tau + E_{xt} S_L(X(u), u)$$

 $\Lambda = \mathbb{R}^n$, no need of random time

Critical diffusions:
$$\begin{cases} D_{\tau} \frac{\partial L}{\partial D_{\tau} Z} - \frac{\partial L}{\partial Z} = D_{\tau} D_{\tau} Z(\tau) - \nabla V(Z(\tau)) = 0 & \text{a.s.} \\ BC: Z(t) = x, & DZ(u) = -\nabla S_L(Z(u), u) \end{cases}$$

 S_L solves time-dependent Hamilton-Jacobi-Bellman equation

$$\frac{\partial S_L}{\partial t} - \frac{1}{2} |\nabla S_L|^2 + \frac{\hbar}{2} \Delta S_L + V = 0$$

$$DZ(\tau) = -\nabla S_L(Z(\tau), \tau) \qquad \text{true } \forall t \le \tau \le u$$

$$\nabla(\text{HJB}) \quad \text{is} \quad D_t D_t Z(t) = \nabla V(Z(t))$$

There is also a stochastic deformation of *Næther's Theorem*, for S_L :

 $D_t(pX + hT - \phi)(Z(t), t) = 0$ for $X, T, \phi =$ infinitesimal generator coefficients of symmetry group of heat equation, and $p = -\nabla S_L$, $h = -\partial_t S_L$. For recent geometric approach, cf P. Lescot, J.-C. Z.

It produces a collection of \mathcal{P}_t (\mathcal{F}_t) martingales of critical $Z(\tau)$.

Stochastic dynamical system reinterpretation of martingales of diffusions. Ex: Wiener's martingales (cf Chung, J.-C. Z. p181–185) for V=0

4) $\Lambda = n$ -dim. Riemannian manifold. $d\mu(q) = \sqrt{g} dq$, $g = \det g_{ij}$

Framework preserved for huge class of *H* (i.e. Bernstein). Ex:

$$Hf(k) = U(k)f(k) - c\nabla F - \frac{1}{2}\Delta f - \int_{\mathbb{R}^n} (f(k+y) - f(k) - y\nabla f(k) \cdot \mathbb{1}_{\{|y| \le 1\}}) \nu(dy)$$

$$c, k \in \mathbb{R}^n, \quad \nu \text{ Lévy measure on } \mathbb{R}^n \setminus \{0\} \qquad \text{NB: } H \text{ not symmetric!}$$

Then two underlying heat equations involve H and its adjoint H^+ . (cf Privault, J.-C. Z.)

Generator D_t = Integro-differential.

Stochastic Analysis can be entirely time-symmetrized and, but only after, be regarded as a (stochastic) dynamical systems theory.

Other interpretation of this program: Systematic Analysis of PDE with the (deformed) tools of ODE. Geometric flavour.

References:

- K. L. Chung, J.-C. Z., "Introduction to random time and Quantum Randomness", World Scientific (2003).
- A. B. Cruzeiro, J.-C. Z.,
 "Malliavin Calculus and Euclidean Quantum Mechanics I Functional Calculus", Journal of Functional Analysis 96 (1) (1991), 62.
- N. Privault, J.-C. Z.,
 "Markovian bridges and reversible diffusion processes with jumps",
 Ann. I. H. Poincaré, PR 40 (2004) 599–633.
- J.-C. Z.,
 "On the geometry of the Hamilton-Jacobi-Bellman equation",
 Journal of Geometric Mechanics 1 N.3 (2009), 369.
- P. Lescot, J.-C. Z.,
 "Probabilistic deformation of contact geometry, diffusion processes and their quadratures",
 Seminar on Stochastic Analysis, Random Fields and Appl. V,
 Prog. in Prob. 59, Birkhäuser, Basel (2008) 203–226.
- N. Privault, J.-C. Z., "Stochastic deformation of integrable dynamical systems and random time symmetry", to appear (2010).