Mathematical tools for analysis, modeling and simulation of spatial networks on various length scales

Part I

Volker Schmidt
Ulm University, Institute of Stochastics

Blanton Museum of Art, UT Austin
May 20, 2015
Contents

Introduction

Point processes and Palm calculus

Random tessellations

Local simulation of typical Voronoi cells

Cox processes on random tessellations

Multiscale network modeling (Outlook to part II)
Contents

Introduction

Point processes and Palm calculus

Random tessellations

Local simulation of typical Voronoi cells

Cox processes on random tessellations

Multiscale network modeling (Outlook to part II)
Motivation

- **Aim**: Stochastic modeling of networks for
 - description of networks by only a few parameters
Motivation

► **Aim:** Stochastic modeling of networks for
 ► description of networks by only a few parameters
 ► simulation of present and future network design scenarios
Motivation

▶ **Aim:** Stochastic modeling of networks for
 ▶ description of networks by only a few parameters
 ▶ simulation of present and future network design scenarios
 ▶ control of service quality
Motivation

- **Aim:** Stochastic modeling of networks for
 - description of networks by only a few parameters
 - simulation of present and future network design scenarios
 - control of service quality
 - cost analysis and risk evaluation
Motivation

Aim: Stochastic modeling of networks for
 - description of networks by only a few parameters
 - simulation of present and future network design scenarios
 - control of service quality
 - cost analysis and risk evaluation

Models necessary both
 - for locations of network components (point processes), and
Motivation

- **Aim:** Stochastic modeling of networks for
 - description of networks by only a few parameters
 - simulation of present and future network design scenarios
 - control of service quality
 - cost analysis and risk evaluation

- Models necessary both
 - for locations of network components (*point processes*), and
 - for systems of communication paths and serving zones
Motivation

- **Aim:** Stochastic modeling of networks for
 - description of networks by only a *few parameters*
 - simulation of present and future network design scenarios
 - control of service quality
 - cost analysis and risk evaluation

- Models necessary both
 - for locations of network components (*point processes*), and
 - for systems of communication paths and serving zones (edge sets and cells of *random tessellations*)
Contents

Introduction

Point processes and Palm calculus

Random tessellations

Local simulation of typical Voronoi cells

Cox processes on random tessellations

Multiscale network modeling (Outlook to part II)
Counting measures

- Denote by \mathbb{N} the set of **locally finite counting measures**
 \[\varphi : \mathcal{B}(\mathbb{R}^2) \to \{0, 1, \ldots \} \cup \{\infty\} \]
Counting measures

- Denote by \(\mathbf{N} \) the set of **locally finite counting measures**
 \(\varphi : \mathcal{B}(\mathbb{R}^2) \rightarrow \{0, 1, \ldots \} \cup \{\infty\} \)

- Let \(\mathcal{N} \) be the smallest \(\sigma \)-algebra on \(\mathbf{N} \) s.t. \(\varphi \rightarrow \varphi(B) \) is measurable for each bounded \(B \in \mathcal{B}(\mathbb{R}^2) \)
Counting measures

- Denote by \mathbf{N} the set of **locally finite counting measures** $\varphi : \mathcal{B}(\mathbb{R}^2) \rightarrow \{0, 1, \ldots \} \cup \{\infty\}$

- Let \mathcal{N} be the smallest σ-algebra on \mathbf{N} s.t. $\varphi \rightarrow \varphi(B)$ is measurable for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$

Examples:

- Let $\{x_1, \ldots, x_n\} \subset \mathbb{R}^2$, then

$$\varphi(B) = \sum_{i=1}^{n} \delta_{x_i}(B) = \# \{ x_i \in B \} \quad \text{for} \quad B \in \mathcal{B}(\mathbb{R}^2)$$
Counting measures

- Denote by \mathbf{N} the set of locally finite counting measures $\varphi : \mathcal{B}(\mathbb{R}^2) \to \{0, 1, \ldots\} \cup \{\infty\}$

- Let \mathcal{N} be the smallest σ-algebra on \mathbf{N} s.t. $\varphi \to \varphi(B)$ is measurable for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$

Examples:

- Let $\{x_1, \ldots, x_n\} \subset \mathbb{R}^2$, then

$$\varphi(B) = \sum_{i=1}^{n} \delta_{x_i}(B) = \# \{ x_i \in B \} \quad \text{for} \quad B \in \mathcal{B}(\mathbb{R}^2)$$

- Let $\{x_{i,j} = (i, j) : i \in \mathbb{Z}, j \in \mathbb{Z}\}$, then

$$\varphi(B) = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \delta_{(i,j)}(B) = \# \{ x \in \mathbb{Z}^2 \cap B \} \quad \text{for} \quad B \in \mathcal{B}(\mathbb{R}^2)$$
Point processes

Definition

Let

1. $(\Omega, \mathcal{A}, \mathbb{P})$ some probability space,
2. $X_1, X_2, \ldots : \Omega \rightarrow \mathbb{R}^2$ a sequence of random vectors such that

$$\#\{X_n \in B\} < \infty \quad \text{for each bounded} \quad B \in \mathcal{B}(\mathbb{R}^2).$$
Point processes

Definition

Let

- $(\Omega, \mathcal{A}, \mathbb{P})$ some probability space,
- $X_1, X_2, \cdots : \Omega \mapsto \mathbb{R}^2$ a sequence of random vectors such that

$$\# \{X_n \in B\} < \infty \quad \text{for each bounded} \quad B \in \mathcal{B}(\mathbb{R}^2).$$

Then the mapping X from $(\Omega, \mathcal{A}, \mathbb{P})$ into $(\mathbb{N}, \mathcal{N})$ defined by $X = \sum_{n=1}^{\infty} \delta_{X_n}$ is called a (random) **point process**.
Point processes

Definition

Let

- $(\Omega, \mathcal{A}, \mathbb{P})$ some probability space,
- $X_1, X_2, \ldots : \Omega \rightarrow \mathbb{R}^2$ a sequence of random vectors such that
 \[
 \# \{ X_n \in B \} < \infty \quad \text{for each bounded} \quad B \in \mathcal{B}(\mathbb{R}^2).
 \]

Then the mapping X from $(\Omega, \mathcal{A}, \mathbb{P})$ into $(\mathbb{N}, \mathcal{N})$ defined by $X = \sum_{n=1}^{\infty} \delta X_n$ is called a (random) point process.

- Henceforth: Identify $X = \sum_{n=1}^{\infty} \delta X_n$ and $\{X_n\}$, where we write $X = \{X_n\}$.
Point processes

Definition

Let

- $(\Omega, \mathcal{A}, \mathbb{P})$ some probability space,
- $X_1, X_2, \cdots : \Omega \mapsto \mathbb{R}^2$ a sequence of random vectors such that

$$\#\{X_n \in B\} < \infty \quad \text{for each bounded} \quad B \in \mathcal{B}(\mathbb{R}^2).$$

Then the mapping X from $(\Omega, \mathcal{A}, \mathbb{P})$ into $(\mathbb{N}, \mathcal{N})$ defined by $X = \sum_{n=1}^{\infty} \delta_{X_n}$ is called a (random) point process.

- Henceforth: Identify $X = \sum_{n=1}^{\infty} \delta_{X_n}$ and $\{X_n\}$, where we write $X = \{X_n\}$
- In other words: The point process $X = \{X_n\}$ is identified with the random counting measure $X = \sum_{n=1}^{\infty} \delta_{X_n}$.
Intensity measure, stationarity and Palm distribution

Definition

Let X be a point process, then

- the **intensity measure** $\mu : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$ of X is defined as

$$\mu(B) = \mathbb{E}X(B), \quad B \in \mathcal{B}(\mathbb{R}^2),$$
Definition

Let X be a point process, then

- the **intensity measure** $\mu : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]$ of X is defined as

 $$
 \mu(B) = \mathbb{E}X(B), \quad B \in \mathcal{B}(\mathbb{R}^2),
 $$

- X is called **stationary** if $\{X_n - x\} \overset{D}{=} \{X_n\}$ for each $x \in \mathbb{R}^2$.

Note that a point process X with distribution P_{oX} is called a Palm version of X.

Intensity measure, stationarity and Palm distribution
Intensity measure, stationarity and Palm distribution

Definition

Let X be a point process, then

- **the intensity measure** $\mu : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$ of X is defined as

 $$\mu(B) = \mathbb{E}X(B), \quad B \in \mathcal{B}(\mathbb{R}^2),$$

- X is called **stationary** if $\{X_n - x\} \overset{D}{=} \{X_n\}$ for each $x \in \mathbb{R}^2$.
- If X is stationary, then $\mu(B) = \lambda \nu_2(B), \quad B \in \mathcal{B}(\mathbb{R}^2)$, for some $\lambda > 0$, which is called the **intensity** of X.

Note that a point process X with distribution P_0^X is called a Palm version of X.

Intensity measure, stationarity and Palm distribution

Definition

Let X be a point process, then

- **the intensity measure** $\mu : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]$ of X is defined as
 $$\mu(B) = \mathbb{E}X(B), \quad B \in \mathcal{B}(\mathbb{R}^2),$$

- X is called **stationary** if $\{X_n - x\} \overset{D}{=} \{X_n\}$ for each $x \in \mathbb{R}^2$.

- If X is stationary, then $\mu(B) = \lambda \nu_2(B), \ B \in \mathcal{B}(\mathbb{R}^2)$, for some $\lambda > 0$, which is called the **intensity** of X.

- The **Palm distribution** $P^o_X : \mathcal{N} \mapsto [0, 1]$ of a stationary point process X with intensity λ is defined as
 $$P^o_X(A) = \frac{1}{\lambda} \mathbb{E}\#\{n : X_n \in [0, 1]^2, X(\cdot + X_n) \in A\}, \quad A \in \mathcal{N}$$

Note that a point process X_o with distribution P^o_X is called a Palm version of X.
Intensity measure, stationarity and Palm distribution

Definition

Let X be a point process, then

- **the intensity measure** $\mu : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]$ of X is defined as

 $$\mu(B) = \mathbb{E}X(B), \quad B \in \mathcal{B}(\mathbb{R}^2),$$

- X is called **stationary** if $\{X_n - x\} \overset{D}{=} \{X_n\}$ for each $x \in \mathbb{R}^2$.

- If X is stationary, then $\mu(B) = \lambda \nu_2(B), B \in \mathcal{B}(\mathbb{R}^2)$, for some $\lambda > 0$, which is called the *intensity* of X.

- The **Palm distribution** $P^o_X : \mathcal{N} \mapsto [0, 1]$ of a stationary point process X with intensity λ is defined as

 $$P^o_X(A) = \frac{1}{\lambda} \mathbb{E} \#\{n : X_n \in [0, 1]^2, X(\cdot + X_n) \in A\}, \quad A \in \mathcal{N}$$

- Note that a point process X^o with distribution P^o_X is called a *Palm version* of X.

Additional Note:

The Palm distribution P^o_X captures the expected number of points in an event set A, conditioned on the presence of a typical point at the origin. It is a fundamental concept in the study of stationary point processes, particularly in the context of spatial networks and stochastic geometry.
Examples: Stationary Poisson processes

For any fixed $\lambda > 0$, let X be a point process such that

∇ $X(B) \sim \text{Poi}(\lambda \nu_2(B))$ for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$, and
Examples: Stationary Poisson processes

For any fixed $\lambda > 0$, let X be a point process such that

- $X(B) \sim \text{Poi}(\lambda \nu_2(B))$ for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$, and
- $X(B_1), \ldots, X(B_n)$ independent random variables for any pairwise disjoint $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2)$.

Examples: Stationary Poisson processes

For any fixed \(\lambda > 0 \), let \(X \) be a point process such that

- \(X(B) \sim \text{Poi}(\lambda \nu_2(B)) \) for each bounded \(B \in \mathcal{B}(\mathbb{R}^2) \), and
- \(X(B_1), \ldots, X(B_n) \) independent random variables for any pairwise disjoint \(B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2) \).

Then \(X \) is called a stationary Poisson process with intensity \(\lambda \).
Examples: Stationary Poisson processes

For any fixed $\lambda > 0$, let X be a point process such that

- $X(B) \sim \text{Poi}(\lambda \nu_2(B))$ for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$, and
- $X(B_1), \ldots, X(B_n)$ independent random variables for any pairwise disjoint $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2)$.

Then X is called a stationary Poisson process with intensity λ.

Realization of a stationary Poisson process
General Poisson processes

For any (locally finite) measure $\mu : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]$, let X be a point process such that

- $X(B) \sim \text{Poi}(\mu(B))$ for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$, and
General Poisson processes

For any (locally finite) measure $\mu : \mathcal{B}(\mathbb{R}^2) \rightarrow [0, \infty]$, let X be a point process such that

- $X(B) \sim \text{Poi}(\mu(B))$ for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$, and
- $X(B_1), \ldots, X(B_n)$ independent random variables for any pairwise disjoint $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2)$.
General Poisson processes

For any (locally finite) measure $\mu : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$, let X be a point process such that

- $X(B) \sim \text{Poi}(\mu(B))$ for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$, and
- $X(B_1), \ldots, X(B_n)$ independent random variables for any pairwise disjoint $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2)$.

Then X is called a Poisson process with intensity measure μ.

General Poisson processes

For any (locally finite) measure $\mu : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$, let X be a point process such that

- $X(B) \sim \text{Poi}(\mu(B))$ for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$, and
- $X(B_1), \ldots, X(B_n)$ independent random variables for any pairwise disjoint $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2)$.

Then X is called a Poisson process with intensity measure μ.

Realization of a general (non-stationary) Poisson process
Poisson-related point processes

- Poisson cluster processes
- Poisson hardcore processes

Realizations of a Poisson cluster process (left) and a Poisson hardcore process (right)
Example: Matern-cluster processes

- Constructed from Poisson processes (of cluster centers)
Example: Matern-cluster processes

- Constructed from Poisson processes (of cluster centers)
 - Cluster centers form a stationary Poisson process (with some intensity λ_0)
Example: Matern-cluster processes

- Constructed from Poisson processes (of cluster centers)
 - **Cluster centers** form a stationary Poisson process (with some intensity λ_0)
 - **Cluster members** form (independent) stationary Poisson processes with some intensity λ_1, within discs of some radius R around the cluster centers
Example: Matern-cluster processes

- Constructed from Poisson processes (of cluster centers)
 - **Cluster centers** form a stationary Poisson process (with some intensity λ_0)
 - **Cluster members** form (independent) stationary Poisson processes with some intensity λ_1, within discs of some radius R around the cluster centers
- \Rightarrow Spatial interaction between points (mutual attraction)
Example: Matern-cluster processes

- Constructed from Poisson processes (of cluster centers)
 - **Cluster centers** form a stationary Poisson process (with some intensity λ_0)
 - **Cluster members** form (independent) stationary Poisson processes with some intensity λ_1, within discs of some radius R around the cluster centers
- \Rightarrow Spatial interaction between points (**mutual attraction**)
 - Realizations are **clustered point patterns** (with higher spatial variability than in the Poisson case)
Example: Matern-cluster processes

- Constructed from Poisson processes (of cluster centers)
 - Cluster centers form a stationary Poisson process (with some intensity λ_0)
 - Cluster members form (independent) stationary Poisson processes with some intensity λ_1, within discs of some radius R around the cluster centers
- Spatial interaction between points (mutual attraction)
 - Realizations are clustered point patterns (with higher spatial variability that in the Poisson case)

- Three-parametric model with parameters λ_0, λ_1 and R
Example: Matern-hardcore processes

- Constructed from Poisson processes (by random deletion of points)
Example: Matern-hardcore processes

- Constructed from Poisson processes (by random deletion of points)
 - Start from a stationary Poisson process (with some intensity λ)
Example: Matern-hardcore processes

- Constructed from Poisson processes (by random deletion of points)
 - Start from a stationary Poisson process (with some intensity λ)
 - Cancel those points whose \textit{distance to their nearest neighbor} is smaller than some threshold R
Example: Matern-hardcore processes

- Constructed from Poisson processes (by random deletion of points)
 - Start from a stationary Poisson process (with some intensity λ)
 - Cancel those points whose distance to their nearest neighbor is smaller than some threshold R
- \Rightarrow Spatial interaction between points (mutual repulsion)
Example: Matern-hardcore processes

- Constructed from Poisson processes (by random deletion of points)
 - Start from a stationary Poisson process (with some intensity λ)
 - Cancel those points whose distance to their nearest neighbor is smaller than some threshold R

- Spatial interaction between points (mutual repulsion)
 - Realizations are regular point patterns (with smaller spatial variability than in the Poisson case)
Example: Matern-hardcore processes

- Constructed from Poisson processes (by random deletion of points)
 - Start from a stationary Poisson process (with some intensity λ)
 - Cancel those points whose distance to their nearest neighbor is smaller than some threshold R
- \Rightarrow Spatial interaction between points (mutual repulsion)
 - Realizations are regular point patterns (with smaller spatial variability that in the Poisson case)
- Two-parametric model with parameters λ and R
Random measures and Cox processes

Random measures

- Denote by \mathbf{M} the set of all locally finite measures $\eta : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$
Random measures and Cox processes

Random measures

- Denote by \mathcal{M} the set of all locally finite measures $\eta : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$

- Let \mathcal{M} be the smallest σ-algebra on \mathcal{M} s.t. $\eta \mapsto \eta(B)$ is measurable for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$.

Cox point processes

A point process X is called a Cox process with random intensity measure Λ if

$$P(X(B_1) = k_1, \ldots, X(B_n) = k_n) = \mathbb{E}\left(n \prod_{i=1}^{n} \Lambda(B_i) k_i^k e^{-\Lambda(B_i)}\right),$$

for all pairwise disjoint, bounded $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2)$ and $k_1, \ldots, k_n \geq 0$.

Conditioning on $\Lambda = \eta$, a Cox process X is a Poisson process with intensity measure η.
Random measures and Cox processes

Random measures
- Denote by \mathbb{M} the set of all locally finite measures $\eta : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$
- Let \mathcal{M} be the smallest σ-algebra on \mathbb{M} s.t. $\eta \to \eta(B)$ is measurable for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$.
- A mapping Λ from $(\Omega, \mathcal{A}, \mathbb{P})$ into $(\mathbb{M}, \mathcal{M})$ is called a random measure.
Random measures and Cox processes

Random measures

- Denote by \mathbf{M} the set of all locally finite measures $\eta : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$

- Let \mathcal{M} be the smallest σ-algebra on \mathbf{M} s.t. $\eta \to \eta(B)$ is measurable for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$.

- A mapping Λ from $(\Omega, \mathcal{A}, \mathbb{P})$ into $(\mathbf{M}, \mathcal{M})$ is called a random measure.

Cox point processes

- A point process X is called a Cox process with random intensity measure Λ if

$$
\mathbb{P}(X(B_1) = k_1, \ldots, X(B_n) = k_n) = \mathbb{E}\left(\prod_{i=1}^{n} \frac{\Lambda(B_i)^{k_i}}{k_i!} e^{-\Lambda(B_i)} \right),
$$

for all pairwise disjoint, bounded $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2)$ and $k_1, \ldots, k_n \geq 0$.

Random measures and Cox processes

Random measures
- Denote by \mathcal{M} the set of all locally finite measures $\eta : \mathcal{B}(\mathbb{R}^2) \to [0, \infty]$.
- Let \mathcal{M} be the smallest σ-algebra on \mathcal{M} s.t. $\eta \to \eta(B)$ is measurable for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$.
- A mapping Λ from $(\Omega, \mathcal{A}, \mathbb{P})$ into $(\mathcal{M}, \mathcal{M})$ is called a random measure.

Cox point processes
- A point process X is called a Cox process with random intensity measure Λ if

$$
\mathbb{P}(X(B_1) = k_1, \ldots, X(B_n) = k_n) = \mathbb{E} \left(\prod_{i=1}^{n} \frac{\Lambda(B_i)^{k_i}}{k_i!} e^{-\Lambda(B_i)} \right),
$$

for all pairwise disjoint, bounded $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R}^2)$ and $k_1, \ldots, k_n \geq 0$.
- Conditioning on $\Lambda = \eta$, a Cox process X is a Poisson process with intensity measure η.

Marked point processes

- Let \mathbb{M} be a Polish space with Borel σ-algebra $\mathcal{B}(\mathbb{M})$
- **Examples:**
 - $\mathbb{M} = \mathbb{R}$ and $\mathcal{B}(\mathbb{M}) = \mathcal{B}(\mathbb{R})$,

Marked point processes

- Let \mathbb{M} be a Polish space with Borel σ-algebra $\mathcal{B}(\mathbb{M})$

Examples:

- $\mathbb{M} = \mathbb{R}$ and $\mathcal{B}(\mathbb{M}) = \mathcal{B}(\mathbb{R})$,
- $\mathbb{M} = \mathcal{P}^o = \text{family of all convex and compact polytopes in } \mathbb{R}^2 \text{ with their centre of gravity at } o$
Marked point processes

- Let \mathbb{M} be a Polish space with Borel σ-algebra $\mathcal{B}(\mathbb{M})$.

- **Examples:**
 - $\mathbb{M} = \mathbb{R}$ and $\mathcal{B}(\mathbb{M}) = \mathcal{B}(\mathbb{R})$,
 - $\mathbb{M} = \mathcal{P}^o = \text{family of all convex and compact polytopes in } \mathbb{R}^2 \text{ with their centre of gravity at } o$ and the hitting-σ-algebra $\mathcal{B}(\mathbb{M}) = \mathcal{B}(\mathcal{F}) \cap \mathcal{P}^o$, where
 - \mathcal{F} family of closed sets in \mathbb{R}^2, and
 - $\mathcal{B}(\mathcal{F}) = \sigma(\{F \in \mathcal{F} : F \cap K \neq \emptyset\}, K \text{ compact})$.

Marked point processes

- Let \mathbb{M} be a Polish space with Borel σ-algebra $\mathcal{B}(\mathbb{M})$.
- **Examples:**
 - $\mathbb{M} = \mathbb{R}$ and $\mathcal{B}(\mathbb{M}) = \mathcal{B}(\mathbb{R})$,
 - $\mathbb{M} = \mathcal{P}^o$ = family of all convex and compact polytopes in \mathbb{R}^2 with their centre of gravity at o and the hitting-σ-algebra $\mathcal{B}(\mathbb{M}) = \mathcal{B}(\mathcal{F}) \cap \mathcal{P}^o$, where
 - \mathcal{F} family of closed sets in \mathbb{R}^2, and
 - $\mathcal{B}(\mathcal{F}) = \sigma(\{F \in \mathcal{F} : F \cap K \neq \emptyset\}, K$ compact).
- Let $\mathcal{N}_\mathbb{M}$ be the set of all counting measures $\psi : \mathcal{B} \otimes \mathcal{B}(\mathbb{M}) \to \{0, 1, \ldots\} \cup \{\infty\}$ which are locally finite in the first component, i.e., $\psi(B \times \mathbb{M}) < \infty$ for bounded $B \in \mathcal{B}(\mathbb{R}^2)$,
Marked point processes

- Let \mathbb{M} be a Polish space with Borel σ-algebra $\mathcal{B}(\mathbb{M})$.

- **Examples:**
 - $\mathbb{M} = \mathbb{R}$ and $\mathcal{B}(\mathbb{M}) = \mathcal{B}(\mathbb{R})$,
 - $\mathbb{M} = \mathcal{P}^o = \text{family of all convex and compact polytopes in } \mathbb{R}^2 \text{ with their centre of gravity at } o$ and the hitting-σ-algebra $\mathcal{B}(\mathbb{M}) = \mathcal{B}(\mathcal{F}) \cap \mathcal{P}^o$, where
 - \mathcal{F} family of closed sets in \mathbb{R}^2, and
 - $\mathcal{B}(\mathcal{F}) = \sigma(\{F \in \mathcal{F} : F \cap K \neq \emptyset\}, K \text{ compact })$.

- Let $\mathcal{N}_\mathbb{M}$ be the set of all counting measures $\psi : \mathcal{B} \otimes \mathcal{B}(\mathbb{M}) \to \{0, 1, \ldots\} \cup \{\infty\}$ which are locally finite in the first component, i.e., $\psi(B \times \mathbb{M}) < \infty$ for bounded $B \in \mathcal{B}(\mathbb{R}^2)$,

- and $\mathcal{N}_\mathbb{M}$ the smallest σ-algebra on $\mathcal{N}_\mathbb{M}$ such that $\psi \to \psi(B \times G)$ is measurable for each bounded $B \in \mathcal{B}(\mathbb{R}^2)$ and $G \in \mathcal{B}(\mathbb{M})$.

Marked point processes

Definition

Let

- $(\Omega, \mathcal{A}, \mathbb{P})$ some probability space,
- $X_1, X_2, \cdots : \Omega \mapsto \mathbb{R}^2$ and $M_1, M_2, \cdots : \Omega \mapsto \mathbb{M}$ two sequences of \mathbb{R}^2- and \mathbb{M}-valued random variables, respectively, such that

$$\#\{X_n \in B\} < \infty \quad \text{for each bounded} \quad B \in \mathcal{B}(\mathbb{R}^2).$$
Marked point processes

Definition

Let

- $(\Omega, \mathcal{A}, \mathbb{P})$ some probability space,
- $X_1, X_2, \cdots : \Omega \mapsto \mathbb{R}^2$ and $M_1, M_2, \cdots : \Omega \mapsto \mathbb{M}$ two sequences of \mathbb{R}^2- and \mathbb{M}-valued random variables, respectively, such that
 \[
 \# \{ X_n \in B \} < \infty \quad \text{for each bounded} \quad B \in \mathcal{B}(\mathbb{R}^2).
 \]
- The measurable mapping $X_M : \Omega \mapsto N_M$ defined by $X_M = \sum_{n=1}^{\infty} \delta(X_n, M_n)$ is called a marked point process and M_n is called the mark (or label) of X_n.
Marked point processes

Definition

Let

- $(\Omega, \mathcal{A}, \mathbb{P})$ some probability space,
- $X_1, X_2, \ldots : \Omega \mapsto \mathbb{R}^2$ and $M_1, M_2, \ldots : \Omega \mapsto \mathcal{M}$ two sequences of \mathbb{R}^2- and \mathcal{M}-valued random variables, respectively, such that

$$\# \{ X_n \in B \} < \infty \quad \text{for each bounded} \quad B \in \mathcal{B}(\mathbb{R}^2).$$

- The measurable mapping $X_M : \Omega \mapsto \mathcal{N}_\mathcal{M}$ defined by $X_M = \sum_{n=1}^{\infty} \delta_{(X_n, M_n)}$ is called a marked point process and M_n is called the mark (or label) of X_n.
- The intensity measure $\mu : \mathcal{B}(\mathbb{R}^2) \otimes \mathcal{B}(\mathcal{M}) \to [0, \infty]$ of X_M is defined as

$$\mu(B \times C) = \mathbb{E}X_M(B \times C), \quad B \in \mathcal{B}(\mathbb{R}^2), C \in \mathcal{B}(\mathcal{M}).$$
Example: Poisson-Voronoi tessellation

Let \(X = \{X_n\} \) be a stationary Poisson process and consider the Voronoi cell \(\Xi_n \) of \(X_n \):

\[
\Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \ \forall k \neq n \}
\]

Then, \(\{(X_n, M_n)\} \), where \(M_n = \Xi_n - X_n \), is a (stationary) marked point process with mark space \(\mathcal{P}^o \).

Realization of a Poisson process \(\{X_n\} \)
Example: Poisson-Voronoi tessellation

- Let $X = \{X_n\}$ be a stationary Poisson process and consider the Voronoi cell Ξ_n of X_n:
 \[
 \Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \forall k \neq n \}
 \]
- Then, $\{(X_n, M_n)\}$, where $M_n = \Xi_n - X_n$, is a (stationary) marked point process with mark space \mathcal{P}^o
Example: Poisson-Voronoi tessellation

Further (stationary) marked point processes associated with \(\{(X_n, \Xi_n - X_n)\} \):

- \(\{(X_n, \nu_2(\Xi_n))\} \) with mark space \([0, \infty)\)
- \(\{(X_n, \nu_1(\partial \Xi_n))\} \) with mark space \([0, \infty)\)

Realization of a Poisson-Voronoi tessellation \(\{(X_n, \Xi_n - X_n)\} \)
Palm mark distribution and Palm distribution

Definition

- X_M is called stationary if $\{(X_n - x, M_n)\} \overset{D}{=} \{(X_n, M_n)\}$ for each $x \in \mathbb{R}^2$.

Note that $P^*_X(M)({C}) = P^*_{X,M}({N_M \times C})$ for any $C \in B(M)$.
Palm mark distribution and Palm distribution

Definition

- X_M is called stationary if $\{ (X_n - x, M_n) \} \overset{D}{=} \{ (X_n, M_n) \}$ for each $x \in \mathbb{R}^2$.
- If X_M is stationary, then

\[
\mu(B \times C) = \lambda \nu_2(B) P_{X_M}^*(C), \quad B \in \mathcal{B}(\mathbb{R}^2),
\]
Palm mark distribution and Palm distribution

Definition

- X_M is called **stationary** if $\{(X_n - x, M_n)\} \overset{D}{=} \{(X_n, M_n)\}$ for each $x \in \mathbb{R}^2$.
- If X_M is stationary, then

\[\mu(B \times C) = \lambda \nu_2(B) P^*_X(C), \quad B \in \mathcal{B}(\mathbb{R}^2), \]

for some $\lambda > 0$, which is called the **intensity** of X_M, for any $C \in \mathcal{B}(M)$.
Palm mark distribution and Palm distribution

Definition

- X_M is called stationary if $\{(X_n - x, M_n)\} \overset{D}{=} \{(X_n, M_n)\}$ for each $x \in \mathbb{R}^2$.
- If X_M is stationary, then

$$\mu(B \times C) = \lambda \nu_2(B) P_{X_M}^*(C), \quad B \in \mathcal{B}(\mathbb{R}^2),$$

for some $\lambda > 0$, which is called the intensity of X_M.
- and some probability measure $P_{X_M}^*$ on $\mathcal{B}(\mathcal{M})$, which is called the Palm mark distribution of X_M.
Palm mark distribution and Palm distribution

Definition

- X_M is called stationary if $\{(X_n - x, M_n)\} \overset{D}{=} \{(X_n, M_n)\}$ for each $x \in \mathbb{R}^2$.
- If X_M is stationary, then

$$
\mu(B \times C) = \lambda\nu_2(B) P_{X_M}^*(C), \quad B \in \mathcal{B}(\mathbb{R}^2),
$$

- for some $\lambda > 0$, which is called the intensity of X_M,
- and some probability measure $P_{X_M}^*$ on $\mathcal{B}(\mathbb{M})$, which is called the Palm mark distribution of X_M.

- For any stationary X_M with intensity $\lambda \in (0, \infty)$, the Palm distribution $P_{X_M}^o$ of X_M on $\mathcal{N}_M \otimes \mathcal{B}(\mathbb{M})$ is defined as

$$
P_{X_M}^o(A \times C) = \frac{\mathbb{E}\#\{k : X_k \in [0, 1]^2, M_k \in C, \{(X_n - X_k, M_n)\} \in A\}}{\lambda}
$$

for $A \in \mathcal{N}_M$, $C \in \mathcal{B}(\mathbb{M})$.

Palm mark distribution and Palm distribution

Definition

▶ **X_M is called stationary if** $(X_n - x, M_n) \overset{D}{=} (X_n, M_n)$ **for each** $x \in \mathbb{R}^2$.

▶ **If** X_M **is stationary, then**

\[
\mu(B \times C) = \lambda \nu_2(B) P^*_X(C), \quad B \in \mathcal{B}(\mathbb{R}^2),
\]

▶ **for some** $\lambda > 0$, **which is called the intensity of** X_M,

▶ **and some probability measure** P^*_X **on** $\mathcal{B}(M)$, **which is called the Palm mark distribution of** X_M.

▶ **For any stationary** X_M **with intensity** $\lambda \in (0, \infty)$, **the Palm distribution** P^o_X **of** X_M **on** $\mathcal{N}_M \otimes \mathcal{B}(M)$ **is defined as**

\[
P^o_X(A \times C) = \frac{\mathbb{E} \# \{ k : X_k \in [0, 1]^2, M_k \in C, \{(X_n - X_k, M_n)\} \in A \}}{\lambda}
\]

for $A \in \mathcal{N}_M, C \in \mathcal{B}(M)$.

▶ **Note that** $P^*_X(C) = P^o_X(\mathcal{N}_M \times C)$ **for any** $C \in \mathcal{B}(M)$.
Typical mark

Definition

Let X_M be a stationary marked point process with Palm mark distribution $\mathbb{P}_{X_M}^*$.

A random variable $M^* : \Omega \rightarrow \mathbb{M}$ distributed according to $\mathbb{P}_{X_M}^*$ is called the **typical mark** of X_M.

\[\text{E} h (M^*) = \lim_{r \to \infty} \frac{\# \{ n : X_n \in [−r, r]^2 \} \sum_{i : X_i \in [−r, r]^2} h (M_i) \}} {r^2} \text{ almost surely for each measurable } h : M \to [0, \infty). \]
Typical mark

Definition

Let X_M be a stationary marked point process with Palm mark distribution $\mathbb{P}_{X_M}^\star$.

- A random variable $M^\star : \Omega \rightarrow \mathbb{M}$ distributed according to $\mathbb{P}_{X_M}^\star$ is called the **typical mark** of X_M.

- If X_M is **ergodic**, then M^\star can be regarded as the mark at a point chosen purely at random out of $\{X_n\}$, i.e.,

$$\mathbb{E} h(M^\star) = \lim_{r \to \infty} \frac{1}{\# \{ n : X_n \in [-r, r]^2 \}} \sum_{i : X_i \in [-r, r]^2} h(M_i)$$

almost surely for each measurable $h : \mathbb{M} \mapsto [0, \infty)$.
Example: Independent marking

- Let \(X = \{X_N\} \) be a point process and
- \(M_1, M_2, \cdots : \Omega \to \mathbb{R} \) i.i.d. random variables with some distribution \(P \), which are independent of \(\{X_n\} \).
Example: Independent marking

- Let $X = \{X_N\}$ be a point process and
- $M_1, M_2, \cdots : \Omega \rightarrow \mathbb{R}$ i.i.d. random variables with some distribution P, which are independent of $\{X_n\}$.
- Then, $X_M = \{(X_n, M_n)\}$ is called an independently marked point process.
Example: Independent marking

Let $X = \{X_N\}$ be a point process and

$M_1, M_2, \cdots : \Omega \to \mathbb{R}$ i.i.d. random variables with some distribution P, which are independent of $\{X_n\}$.

Then, $X_M = \{(X_n, M_n)\}$ is called an independently marked point process.

Palm version of independently marked point processes

Let $X = \{X_n\}$ be stationary and $X^o = \{X_n^o\}$ a Palm version of X (with distribution P_X^o).
Example: Independent marking

- Let \(X = \{X_N \} \) be a point process and
- \(M_1, M_2, \cdots : \Omega \to \mathbb{R} \) i.i.d. random variables with some distribution \(P \), which are independent of \(\{X_n\} \).
- Then, \(X_M = \{(X_n, M_n)\} \) is called an independently marked point process.

Palm version of independently marked point processes

- Let \(X = \{X_n\} \) be stationary and \(X^o = \{X^o_n\} \) a Palm version of \(X \) (with distribution \(P^o_X \)).
- If \(X^o \) is independent of \(\{M_n\} \), then
 - the distribution of the marked point process \(X^o_M = \{(X^o_n, M_n)\} \) is given by \(P^o_{X_M} \), i.e., \(X^o_M \) is a Palm version of \(X_M = \{(X_n, M_n)\} \),
Example: Independent marking

- Let \(X = \{X_n\} \) be a point process and
- \(M_1, M_2, \ldots : \Omega \to \mathbb{R} \) i.i.d. random variables with some distribution \(P \), which are independent of \(\{X_n\} \).
- Then, \(X_M = \{(X_n, M_n)\} \) is called an independently marked point process.

Palm version of independently marked point processes

- Let \(X = \{X_n\} \) be stationary and \(X^o = \{X^o_n\} \) a Palm version of \(X \) (with distribution \(P^o_X \)).
- If \(X^o \) is independent of \(\{M_n\} \), then
 - the distribution of the marked point process \(X^o_M = \{(X^o_n, M_n)\} \) is given by \(P^o_{X^o_M} \), i.e., \(X^o_M \) is a Palm version of \(X_M = \{(X_n, M_n)\} \),
 - and the typical mark \(M^* \) of \(X_M = \{(X_n, M_n)\} \) has distribution \(P^*_{X^o_M} = P \).
Example: Poisson-Voronoi tessellation

- Let $X = \{X_n\}$ be a stationary Poisson process.
Example: Poisson-Voronoi tessellation

Let $X = \{X_n\}$ be a stationary Poisson process.

Consider the Voronoi cells $\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \forall k \neq n\}$,
Example: Poisson-Voronoi tessellation

- Let $X = \{X_n\}$ be a stationary Poisson process.
- Consider the Voronoi cells $\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \, \forall k \neq n\}$,
- and the stationary marked point process $X_M = \{(X_n, \Xi_n - X_n)\}$

Realization of the Poisson-Voronoi tessellation $\{(X_n, \Xi_n - X_n)\}$
Example: Poisson-Voronoi tessellation

- Let $X = \{X_n\}$ be a stationary Poisson process.
- Consider the Voronoi cells $\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \forall k \neq n\}$,
- and the stationary marked point process $X_M = \{(X_n, \Xi_n - X_n)\}$

Realization of the Poisson-Voronoi tessellation $\{(X_n, \Xi_n - X_n)\}$

Palm version of the Poisson-Voronoi tessellation $\{(X_n, \Xi_n - X_n)\}$

- Add the origin $X_0 = o$ to the stationary Poisson process $X = \{X_n\}$.
Example: Poisson-Voronoi tessellation

Then, by Slivnyak’s theorem, the point process $X^o = \{X_n^o\}$, where $\{X_n^o\} = \{X_0, X_1, X_2, \ldots\}$, is a Palm version of $X = \{X_1, X_2, \ldots\}$.

Realization of the Palm version $\{(X_n^o, \Xi_n^o - X_n^o)\}$

The typical mark Ξ^* of X_M is given by $\Xi^* = \Xi_{o0}$.

Example: Poisson-Voronoi tessellation

Then, by Slivnyak’s theorem, the point process $X^o = \{ X^o_n \}$, where $\{ X^o_n \} = \{ X_0, X_1, X_2, \ldots \}$, is a Palm version of $X = \{ X_1, X_2, \ldots \}$.

Consider the Voronoi cells Ξ^o_n induced by X^o, where

$$\Xi^o_n = \{ x \in \mathbb{R}^2 : |x - X^o_n| \leq |x - X^o_k| \ \forall k \in \{0, 1, 2, \ldots \}, \ k \neq n \}.$$
Example: Poisson-Voronoi tessellation

Then, by Slivnyak’s theorem, the point process $X^o = \{X^o_n\}$, where $\{X^o_n\} = \{X_0, X_1, X_2, \ldots\}$, is a Palm version of $X = \{X_1, X_2, \ldots\}$.

Consider the Voronoi cells Ξ^o_n induced by X^o, where

$$\Xi^o_n = \{x \in \mathbb{R}^2 : |x - X^o_n| \leq |x - X^o_k| \forall k \in \{0, 1, 2, \ldots\}, k \neq n\}.$$

Then, the marked point process $X^o_M = \{(X^o_n, \Xi^o_n - X^o_n)\}$ is a Palm version of $X_M = \{(X_n, \Xi_n - X_n)\}$.

Realization of the Palm version $\{(X^o_n, \Xi^o_n - X^o_n)\}$
Example: Poisson-Voronoi tessellation

- Then, by Slivnyak’s theorem, the point process $X^o = \{X^o_n\}$, where $\{X^o_n\} = \{X_0, X_1, X_2, \ldots\}$, is a Palm version of $X = \{X_1, X_2, \ldots\}$.

- Consider the Voronoi cells Ξ^o_n induced by X^o, where

$$\Xi^o_n = \{x \in \mathbb{R}^2 : |x - X^o_n| \leq |x - X^o_k| \forall k \in \{0, 1, 2, \ldots\}, k \neq n\}.$$

- Then, the marked point process $X^o_M = \{(X^o_n, \Xi^o_n - X^o_n)\}$ is a Palm version of $X_M = \{(X_n, \Xi_n - X_n)\}$.

Realization of the Palm version $\{(X^o_n, \Xi^o_n - X^o_n)\}$

- The typical mark Ξ^* of X_M is given by $\Xi^* = \Xi^o_0$
Contents

Introduction

Point processes and Palm calculus

Random tessellations

Local simulation of typical Voronoi cells

Cox processes on random tessellations

Multiscale network modeling (Outlook to part II)
Random tessellations

General idea

- Tessellation
 - countable (locally finite) subdivision of \mathbb{R}^2
Random tessellations

General idea

- Tessellation
 - countable (locally finite) subdivision of \mathbb{R}^2
 - into non-overlapping closed sets (with non-empty interiors), called cells
Random tessellations

General idea

▷ Tessellation
 ▷ countable (locally finite) subdivision of \mathbb{R}^2
 ▷ into non-overlapping closed sets (with non-empty interiors), called **cells**

▷ Random tessellation
 ▷ Random marked point process $T = \{X_n, M_n\}$ with mark space $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$, ...
Random tessellations

General idea

- **Tessellation**
 - countable (locally finite) subdivision of \mathbb{R}^2
 - into non-overlapping closed sets (with non-empty interiors), called *cells*

- **Random tessellation**
 - Random marked point process $T = \{X_n, M_n\}$ with mark space $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$,
 - where \mathcal{F} = the family of all closed sets in \mathbb{R}^2, and
Random tessellations

General idea

- **Tessellation**
 - countable (locally finite) subdivision of \mathbb{R}^2
 - into non-overlapping closed sets (with non-empty interiors), called **cells**

- **Random tessellation**
 - **Random marked point process** $T = \{X_n, M_n\}$ with mark space $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$,
 - where \mathcal{F} = the family of all closed sets in \mathbb{R}^2, and
 - the hitting-σ-algebra $\mathcal{B}(\mathcal{F}) = \sigma(\{F \in \mathcal{F} : F \cap K \neq \emptyset\}, K \text{ compact})$.
Random tessellations

General idea

- **Tessellation**
 - countable (locally finite) **subdivision** of \mathbb{R}^2
 - into non-overlapping closed sets (with non-empty interiors), called **cells**

- **Random tessellation**
 - Random marked point process $T = \{X_n, M_n\}$ with mark space $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$,
 - where $\mathcal{F} =$ the family of all closed sets in \mathbb{R}^2, and
 - the hitting-σ-algebra $\mathcal{B}(\mathcal{F}) = \sigma(\{F \in \mathcal{F} : F \cap K \neq \emptyset\}, K \text{ compact})$.

Examples

- **Tessellations with convex cells**
 - Voronoi tessellations
 - Laguerre tessellations (generalization of Voronoi tessellations)
 - Delaunay tessellations
 - line tessellations
Random tessellations

General idea

- **Tessellation**
 - countable (locally finite) **subdivision** of \mathbb{R}^2
 - into non-overlapping closed sets (with non-empty interiors), called **cells**

- **Random tessellation**
 - Random marked point process $T = \{X_n, M_n\}$ with mark space $(\mathcal{F}, \mathcal{B}(\mathcal{F}))$,
 - where \mathcal{F} = the family of all closed sets in \mathbb{R}^2, and
 - the hitting-σ-algebra $\mathcal{B}(\mathcal{F}) = \sigma(\{F \in \mathcal{F} : F \cap K \neq \emptyset\}, K$ compact).

Examples

- **Tessellations with convex cells**
 - Voronoi tessellations
 - Laguerre tessellations (generalization of Voronoi tessellations)
 - Delaunay tessellations
 - line tessellations

- **Tessellations with general (not necessarily convex) cells**
 - aggregate tessellations
 - generalized Laguerre tessellations
 - β-skeletons (thinnings of Delaunay tessellations)
Poisson-Voronoi tessellation

- Cells are generated by a point process \(\{X_n\} \)
Poisson-Voronoi tessellation

- Cells are generated by a point process \(\{X_n\}\)
- Cell \(\Xi_n\) of point \(X_n\) is given by
 \[
 \Xi_n = \{x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \text{ for all } k \neq n\}
 \]
Poisson-Voronoi tessellation

- Cells are generated by a point process \(\{X_n\} \)
- Cell \(\Xi_n \) of point \(X_n \) is given by
 \[
 \Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \text{ for all } k \neq n \}\]

- If \(\{X_n\} \) stationary Poisson point process
 \(\Rightarrow \) Poisson-Voronoi tessellation (PVT)

Realization of a PVT \(\{(X_n, \Xi_n - X_n)\} \)
Poisson-Laguerre tessellation

Let $X_R = \{(X_n, R_n)\}$ a marked point process with non-negative marks R_n.
Poisson-Laguerre tessellation

Let $X_R = \{(X_n, R_n)\}$ a marked point process with non-negative marks R_n.

The Laguerre cell Ξ_n of X_n is given by

$$\Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n|^2 - R_n^2 \leq |x - X_k|^2 - R_k^2, \forall k \neq n \}$$
Poisson-Laguerre tessellation

Let $X_R = \{(X_n, R_n)\}$ a marked point process with non-negative marks R_n.

The Laguerre cell Ξ_n of X_n is given by

$$\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n|^2 - R_n^2 \leq |x - X_k|^2 - R_k^2, \forall k \neq n\}$$

Then, $T = \{(X_n, \Xi_n - X_n) \text{ such that } \text{int}(\Xi_n) \neq \emptyset\}$ is called a Laguerre tessellation induced by $X_R = \{(X_n, R_n)\}$,
Poisson-Laguerre tessellation

- Let \(X_R = \{(X_n, R_n)\} \) a marked point process with non-negative marks \(R_n \).
- The Laguerre cell \(\Xi_n \) of \(X_n \) is given by
 \[
 \Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n|^2 - R_n^2 \leq |x - X_k|^2 - R_k^2, \forall k \neq n \}
 \]

- Then, \(T = \{(X_n, \Xi_n - X_n) : \text{int}(\Xi_n) \neq \emptyset \} \) is called
 - a Laguerre tessellation induced by \(X_R = \{(X_n, R_n)\} \),
 - which specifies to a Voronoi tessellation if \(R_1 = R_2 = \ldots \)
Poisson-Laguerre tessellation

Let $X_R = \{(X_n, R_n)\}$ a marked point process with non-negative marks R_n.

The Laguerre cell Ξ_n of X_n is given by

$$\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n|^2 - R_n^2 \leq |x - X_k|^2 - R_k^2, \forall k \neq n\}$$

Then, $T = \{(X_n, \Xi_n - X_n) \text{ such that } \text{int}(\Xi_n) \neq \emptyset\}$ is called

- a Laguerre tessellation induced by $X_R = \{(X_n, R_n)\}$,
- which specifies to a Voronoi tessellation if $R_1 = R_2 = \ldots$

Note that

- the generating point X_n is not necessarily inside the cell Ξ_n, and
Poisson-Laguerre tessellation

- Let $X_R = \{(X_n, R_n)\}$ a marked point process with non-negative marks R_n.
- The Laguerre cell Ξ_n of X_n is given by
 \[\Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n|^2 - R_n^2 \leq |x - X_k|^2 - R_k^2, \forall k \neq n \} \]
- Then, $T = \{(X_n, \Xi_n - X_n) \text{ such that } \text{int}(\Xi_n) \neq \emptyset \}$ is called
 - a Laguerre tessellation induced by $X_R = \{(X_n, R_n)\}$,
 - which specifies to a Voronoi tessellation if $R_1 = R_2 = \ldots$
- Note that
 - the generating point X_n is not necessarily inside the cell Ξ_n, and
 - a point X_n does not necessarily generate a cell (because $\text{int}(\Xi_n)$ can be empty)
Poisson-Laguerre tessellation

Let $X_R = \{(X_n, R_n)\}$ a marked point process with non-negative marks R_n.

The Laguerre cell Ξ_n of X_n is given by

$$\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n|^2 - R_n^2 \leq |x - X_k|^2 - R_k^2, \forall k \neq n\}$$

Then, $T = \{(X_n, \Xi_n - X_n) \text{ such that } \operatorname{int}(\Xi_n) \neq \emptyset\}$ is called

- a Laguerre tessellation induced by $X_R = \{(X_n, R_n)\}$,
- which specifies to a Voronoi tessellation if $R_1 = R_2 = \ldots$

Note that

- the generating point X_n is not necessarily inside the cell Ξ_n, and
- a point X_n does not necessarily generate a cell (because $\operatorname{int}(\Xi_n)$ can be empty)

If $X_R = \{(X_n, R_n)\}$ is an independently marked (stationary) Poisson process, then

$$T = \{(X_n, \Xi_n - X_n) \text{ such that } \operatorname{int}(\Xi_n) \neq \emptyset\}$$

is called a Poisson-Laguerre tessellation.
Poisson-Laguerre tessellation

Cutout of Voronoi tessellation (left) and cutout of Laguerre tessellation on the same set of seed points (right)
Poisson-Delaunay tessellation

- Consider a Voronoi tessellation \(T = \{ (X_n, \Xi_n - X_n) \} \) induced by a stationary Poisson process \(\{X_n\} \)
Poisson-Delaunay tessellation

Consider a Voronoi tessellation $T = \{(X_n, \Xi_n - X_n)\}$ induced by a stationary Poisson process $\{X_n\}$.

For each vertex X'_n of T construct the cell Ξ'_n as the triangle formed by the nuclei $X_{i_1}, X_{i_2}, X_{i_3}$ of the three neighboring Voronoi cells.
Poisson-Delaunay tessellation

Consider a Voronoi tessellation $T = \{(X_n, \Xi_n - X_n)\}$ induced by a stationary Poisson process $\{X_n\}$.

For each vertex X'_n of T construct the cell Ξ'_n as the triangle formed by the nuclei $X_{i_1}, X_{i_2}, X_{i_3}$ of the three neighboring Voronoi cells.

Then $T' = \{(X'_n, \Xi'_n - X'_n)\}$ is called a Poisson-Delaunay tessellation.
Poisson line tessellation

Let

- $\{R_n\}$ a stationary Poisson process on the real line \mathbb{R}
Poisson line tessellation

Let

- $\{R_n\}$ a stationary Poisson process on the real line \mathbb{R}
- $\{\Phi_n\}$ i.i.d. r.v.'s, independent of $\{R_n\}$, with $\Phi_n \sim U[0, \pi)$, and
Poisson line tessellation

Let

- \(\{ R_n \} \) a stationary Poisson process on the real line \(\mathbb{R} \)
- \(\{ \Phi_n \} \) i.i.d. r.v.’s, independent of \(\{ R_n \} \), with \(\Phi_n \sim \mathbb{U}[0, \pi) \), and
- \(\ell(\Phi_n, R_n) = \{(x, y) \in \mathbb{R}^2 : x \sin \Phi_n - y \cos \Phi_n = R_n \} \) the line with direction \(\Phi_n \) and signed distance \(R_n \) to the origin \(o \in \mathbb{R}^2 \).
Poisson line tessellation

Let

- \{R_n\} a stationary Poisson process on the real line \(\mathbb{R}\)
- \{\Phi_n\} i.i.d. r.v.'s, independent of \{R_n\}, with \(\Phi_n \sim \mathcal{U}[0, \pi]\), and
- \(\ell(\Phi_n, R_n) = \{(x, y) \in \mathbb{R}^2 : x \sin \Phi_n - y \cos \Phi_n = R_n\}\) the line with direction \(\Phi_n\) and signed distance \(R_n\) to the origin \(o \in \mathbb{R}^2\)

Then, \{\ell(\Phi_n, R_n)\} is called a Poisson line process, where
Poisson line tessellation

Let

- \{R_n\} a stationary Poisson process on the real line \(\mathbb{R} \)
- \{\Phi_n\} i.i.d. r.v.’s, independent of \{R_n\}, with \(\Phi_n \sim \mathcal{U}[0, \pi) \), and
- \(\ell(\Phi_n, R_n) = \{(x, y) \in \mathbb{R}^2 : x \sin \Phi_n - y \cos \Phi_n = R_n\} \) the line with direction \(\Phi_n \) and signed distance \(R_n \) to the origin \(o \in \mathbb{R}^2 \)

Then, \(\{\ell(\Phi_n, R_n)\} \) is called a Poisson line process, where \(T^{(1)} = \bigcup_{n \in \mathbb{Z}} \ell(\Phi_n, R_n) \) is the edge set of a Poisson line tessellation (PLT).

Realization of a Poisson line tessellation
Tessellations with general (not necessarily convex) cells

- Aggregate Voronoi tessellations

Construction principle (left) and cutout of an aggregate tessellation (right)
Generalized Laguerre tessellations

Let $X = \{(X_n, [R_n, A_n])\}$ be a marked point process, where

- the R_n are non-negative r.v.'s, and
Generalized Laguerre tessellations

Let \(X_R = \{ (X_n, [R_n, A_n]) \} \) be a marked point process, where
- the \(R_n \) are non-negative r.v.’s, and
- the \(A_n \) are positive definite random \(2 \times 2 \)-matrices.
Generalized Laguerre tessellations

Let $X_R = \{(X_n, [R_n, A_n])\}$ be a marked point process, where

- the R_n are non-negative r.v.’s, and
- the A_n are positive definite random 2×2-matrices.

The generalized Laguerre cell Ξ_n of X_n is given by

$$
\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n|_{A_n}^2 - R_n^2 \leq |x - X_k|_{A_n}^2 - R_k^2, \forall k \neq n\},
$$

where $|x|_A = \sqrt{x^T A x}$ for all $x \in \mathbb{R}^2$.

Note that

- the generating point X_n is not necessarily inside the cell Ξ_n, and
- a point X_n does not necessarily generate a cell (because $\text{int}(\Xi_n)$ can be empty)
- the cells Ξ_n are not necessarily convex.
Generalized Laguerre tessellations

Let $X_R = \{(X_n, [R_n, A_n])\}$ be a marked point process, where
- the R_n are non-negative r.v.'s, and
- the A_n are positive definite random 2×2-matrices.

The generalized Laguerre cell Ξ_n of X_n is given by

$$\Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n|_{A_n}^2 - R_n^2 \leq |x - X_k|_{A_n}^2 - R_k^2, \forall k \neq n \},$$

where $|x|_A = \sqrt{x^\top A x}$ for all $x \in \mathbb{R}^2$.

Then, $T = \{(X_n, \Xi_n - X_n) \text{ such that } \text{int}(\Xi_n) \neq \emptyset \}$ is called
- a generalized Laguerre tessellation induced by $X_R = \{(X_n, [R_n, A_n])\}$,
Generalized Laguerre tessellations

Let $X_R = \{(X_n, [R_n, A_n])\}$ be a marked point process, where
 - the R_n are non-negative r.v.’s, and
 - the A_n are positive definite random 2×2-matrices.

The generalized Laguerre cell Ξ_n of X_n is given by

$$\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n|^2_{A_n} - R_n^2 \leq |x - X_k|^2_{A_n} - R_k^2, \forall k \neq n\},$$

where $|x|_A = \sqrt{x^\top A x}$ for all $x \in \mathbb{R}^2$.

Then, $T = \{(X_n, \Xi_n - X_n) \text{ such that } \text{int}(\Xi_n) \neq \emptyset\}$ is called
 - a generalized Laguerre tessellation induced by $X_R = \{(X_n, [R_n, A_n])\}$,
 - which specifies to a Laguerre tessellation if $A_1 = A_2 = \ldots = I$ and to a
 Voronoi tessellation if $A_1 = A_2 = \ldots = I$ and $R_1 = R_2 = \ldots$.
Generalized Laguerre tessellations

Let \(X_R = \{(X_n, [R_n, A_n])\} \) be a marked point process, where

- the \(R_n \) are non-negative r.v.’s, and
- the \(A_n \) are positive definite random \(2 \times 2 \)-matrices.

The generalized Laguerre cell \(\Xi_n \) of \(X_n \) is given by

\[
\Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n|^2_{A_n} - R_n^2 \leq |x - X_k|^2_{A_n} - R_k^2, \forall k \neq n \},
\]

where \(|x|_A = \sqrt{x^\top A x} \) for all \(x \in \mathbb{R}^2 \).

Then, \(T = \{(X_n, \Xi_n - X_n) \text{ such that } \text{int}(\Xi_n) \neq \emptyset \} \) is called

- a generalized Laguerre tessellation induced by \(X_R = \{(X_n, [R_n, A_n])\} \),
- which specifies to a Laguerre tessellation if \(A_1 = A_2 = \ldots = I \) and to a Voronoi tessellation if \(A_1 = A_2 = \ldots = I \) and \(R_1 = R_2 = \ldots \)

Note that

- the generating point \(X_n \) is not necessarily inside the cell \(\Xi_n \), and
Generalized Laguerre tessellations

- Let $X_R = \{(X_n, [R_n, A_n])\}$ be a marked point process, where
 - the R_n are non-negative r.v.'s, and
 - the A_n are positive definite random 2×2-matrices.

- The generalized Laguerre cell Ξ_n of X_n is given by
 \[
 \Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n|_{A_n}^2 - R_n^2 \leq |x - X_k|_{A_n}^2 - R_k^2, \forall k \neq n \},
 \]
 where $|x|_A = \sqrt{x^\top A x}$ for all $x \in \mathbb{R}^2$.

- Then, $T = \{(X_n, \Xi_n - X_n) \text{ such that } \text{int}(\Xi_n) \neq \emptyset\}$ is called
 - a generalized Laguerre tessellation induced by $X_R = \{(X_n, [R_n, A_n])\}$,
 - which specifies to a Laguerre tessellation if $A_1 = A_2 = \ldots = I$ and to a
 Voronoi tessellation if $A_1 = A_2 = \ldots = I$ and $R_1 = R_2 = \ldots$

- Note that
 - the generating point X_n is not necessarily inside the cell Ξ_n, and
 - a point X_n does not necessarily generate a cell (because $\text{int}(\Xi_n)$ can be empty)
Generalized Laguerre tessellations

Let \(X_R = \{(X_n, [R_n, A_n])\} \) be a marked point process, where
- the \(R_n \) are non-negative r.v.'s, and
- the \(A_n \) are positive definite random \(2 \times 2 \)-matrices.

The generalized Laguerre cell \(\Xi_n \) of \(X_n \) is given by

\[
\Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n|^2_{A_n} - R_n^2 \leq |x - X_k|^2_{A_n} - R_k^2, \forall k \neq n \},
\]

where \(|x|_A = \sqrt{x^\top A x} \) for all \(x \in \mathbb{R}^2 \).

Then, \(T = \{(X_n, \Xi_n - X_n) \text{ such that } \text{int}(\Xi_n) \neq \emptyset \} \) is called
- a generalized Laguerre tessellation induced by \(X_R = \{(X_n, [R_n, A_n])\} \),
- which specifies to a Laguerre tessellation if \(A_1 = A_2 = \ldots = I \) and to a Voronoi tessellation if \(A_1 = A_2 = \ldots = I \) and \(R_1 = R_2 = \ldots \).

Note that
- the generating point \(X_n \) is not necessarily inside the cell \(\Xi_n \), and
- a point \(X_n \) does not necessarily generate a cell (because \(\text{int}(\Xi_n) \) can be empty)
- the cells \(\Xi_n \) are not necessarily convex.
Generalized Laguerre tessellations

Seed points X_n, radii R_n, ellipse-representation of matrices A_n (left), and cutout of generalized Laguerre tessellation (right)
β-skeletons

- Let $\beta \in [1, 2]$ any fixed number.
\textbf{\(\beta\)-skeletons}

\begin{itemize}
 \item Let \(\beta \in [1, 2]\) any fixed number.
 \item For \(x, y \in \mathbb{R}^2\) consider the \textit{weighted means}
\end{itemize}

\[
m_{xy}^{(1)} = \frac{\beta}{2} x + (1 - \frac{\beta}{2}) y, \quad m_{xy}^{(2)} = (1 - \frac{\beta}{2}) x + \frac{\beta}{2} y,
\]
β-skeletons

- Let $\beta \in [1, 2]$ any fixed number.
- For $x, y \in \mathbb{R}^2$ consider the **weighted means**

 $$m_{xy}^{(1)} = \frac{\beta}{2} x + \left(1 - \frac{\beta}{2}\right) y, \quad \ m_{xy}^{(2)} = \left(1 - \frac{\beta}{2}\right) x + \frac{\beta}{2} y,$$

 and the **intersection of two balls**

 $$A_\beta(x, y) = B(m_{xy}^{(1)}, |m_{xy}^{(1)} - y|) \cap B(m_{xy}^{(2)}, |m_{xy}^{(2)} - x|).$$
β-skeletons

- Let $\beta \in [1, 2]$ any fixed number.
- For $x, y \in \mathbb{R}^2$ consider the weighted means

$$m_{xy}^{(1)} = \frac{\beta}{2} x + \left(1 - \frac{\beta}{2}\right) y , \quad m_{xy}^{(2)} = \left(1 - \frac{\beta}{2}\right) x + \frac{\beta}{2} y ,$$

and the intersection of two balls

$$A_\beta(x, y) = B(m_{xy}^{(1)}, |m_{xy}^{(1)} - y|) \cap B(m_{xy}^{(2)}, |m_{xy}^{(2)} - x|).$$

Illustration of the intersection $A_\beta(x, y)$ of the two balls:
\(\beta\)-skeletons

- Let \(\beta \in [1, 2]\) any fixed number.
- For \(x, y \in \mathbb{R}^2\) consider the weighted means

\[
m_{xy}^{(1)} = \frac{\beta}{2} x + \left(1 - \frac{\beta}{2}\right) y,
\quad m_{xy}^{(2)} = \left(1 - \frac{\beta}{2}\right) x + \frac{\beta}{2} y,
\]

and the intersection of two balls

\[
A_\beta(x, y) = B(m_{xy}^{(1)}, |m_{xy}^{(1)} - y|) \cap B(m_{xy}^{(2)}, |m_{xy}^{(2)} - x|).
\]

Illustration of the intersection \(A_\beta(x, y)\) of the two balls:
for \(\beta = 1\) (dotted), \(\beta = 1.5\) (dashed) and \(\beta = 2\) (solid)
β-skeletons

- Let $\beta \in [1, 2]$ any fixed number and $X = \{X_n\}$ a point process in \mathbb{R}^2. Then, the edge set $G(\beta, X) = \bigcup_{x, y \in X} X \cap A_\beta(x, y)$ is called a β-skeleton induced by $X = \{X_n\}$. Examples of β-skeletons for $\beta = 1$, $\beta = 1.5$ and $\beta = 2$ (left to right). Note that the edge set $G(\beta, I)$ is monotonously decreasing in β, and for $\beta = 1$, β-skeletons specify to the edge sets of Delaunay tessellations.
β-skeletons

Let $\beta \in [1, 2]$ any fixed number and $X = \{X_n\}$ a point process in \mathbb{R}^2. Then, the edge set

$$G(\beta, X) = \bigcup_{x, y \in X: X \cap A_\beta(x, y) = \emptyset} [x, y]$$

is called a β-skeleton induced by $X = \{X_n\}$. Note that the edge set $G(\beta, X)$ is monotonously decreasing in β, and for $\beta = 1$, β-skeletons specify to the edge sets of Delaunay tessellations.
\(\beta\)-skeletons

- Let \(\beta \in [1, 2]\) any fixed number and \(X = \{X_n\}\) a point process in \(\mathbb{R}^2\).
- Then, the edge set

\[
G(\beta, X) = \bigcup_{x, y \in X: X \cap A_\beta(x, y) = \emptyset} [x, y]
\]

is called a \(\beta\)-skeleton induced by \(X = \{X_n\}\).

Examples of \(\beta\)-skeletons for \(\beta = 1\), \(\beta = 1.5\) and \(\beta = 2\) (left to right)
\(\beta\)-skeletons

- Let \(\beta \in [1, 2]\) any fixed number and \(X = \{X_n\}\) a point process in \(\mathbb{R}^2\).
- Then, the edge set

\[
G(\beta, X) = \bigcup_{x, y \in X: X \cap A_\beta(x, y) = \emptyset} [x, y]
\]

is called a \(\beta\)-skeleton induced by \(X = \{X_n\}\).

Examples of \(\beta\)-skeletons for \(\beta = 1\), \(\beta = 1.5\) and \(\beta = 2\) (left to right)

- Note that the edge set \(G(\beta, I)\) is monotonously decreasing in \(\beta\), and
\(\beta\)-skeletons

- Let \(\beta \in [1, 2]\) any fixed number and \(X = \{X_n\}\) a point process in \(\mathbb{R}^2\).
- Then, the edge set
 \[
 G(\beta, X) = \bigcup_{x, y \in X: X \cap A_\beta(x, y) = \emptyset} [x, y]
 \]

is called a \(\beta\)-skeleton induced by \(X = \{X_n\}\).

Examples of \(\beta\)-skeletons for \(\beta = 1\), \(\beta = 1.5\) and \(\beta = 2\) (left to right)

- Note that the edge set \(G(\beta, I)\) is monotonously decreasing in \(\beta\), and
- for \(\beta = 1\), \(\beta\)-skeletons specify to the edge sets of Delaunay tessellations.
Contents

Introduction

Point processes and Palm calculus

Random tessellations

Local simulation of typical Voronoi cells

Cox processes on random tessellations

Multiscale network modeling (Outlook to part II)
Local simulation of the typical Poisson-Voronoi cell

General idea

- Consider a stationary Poisson process X with some intensity $\lambda > 0$.

Local simulation of the typical Poisson-Voronoi cell

General idea

- Consider a stationary Poisson process \(X \) with some intensity \(\lambda > 0 \).
- Use Slivnyak’s theorem, which says that the Palm version \(X^0 \) of \(X \) is given by

\[
X^0 = X \cup \{o\}
\]
Local simulation of the typical Poisson-Voronoi cell

General idea

- Consider a stationary Poisson process X with some intensity $\lambda > 0$.
- Use Slivnyak’s theorem, which says that the Palm version X^0 of X is given by
 \[X^0 = X \cup \{o\} \]
- Simulate n points X_1, X_2, \ldots, X_n of X radially and
Local simulation of the typical Poisson-Voronoi cell

General idea

- Consider a stationary Poisson process X with some intensity $\lambda > 0$.
- Use Slivnyak’s theorem, which says that the Palm version X^0 of X is given by
 \[X^0 = X \cup \{o\} \]
- Simulate n points X_1, X_2, \ldots, X_n of X radially and
- compute the zero cell of the Voronoi tessellation corresponding to $\{X_1, X_2, \ldots, X_n\} = X \cup \{o\}$.
Local simulation of the typical Poisson-Voronoi cell

General idea

- Consider a stationary Poisson process X with some intensity $\lambda > 0$.
- Use Slivnyak’s theorem, which says that the Palm version X^0 of X is given by
 \[X^0 = X \cup \{o\} \]
- Simulate n points X_1, X_2, \ldots, X_n of X radially and
- compute the zero cell of the Voronoi tessellation corresponding to
 \[\{X_1, X_2, \ldots, X_n\} = X \cup \{o\}. \]
- Use a suitable stopping rule to reduce runtime.
Radial simulation of Poisson processes

Theorem

Let
- \(\lambda > 0 \) be an arbitrary, but fixed number,
- \(Y_1, Y_2, \ldots \) i.i.d. \(\text{Exp}(1) \)-distributed,
- \(R_n = \sqrt{\sum_{k=1}^{n} \frac{Y_k}{\pi \lambda}} \) for \(n = 1, 2, \ldots \),
- \(U_1, U_2, \ldots \) i.i.d. \(\text{U}[0, 2\pi) \)-distributed and
- \(X_n = (R_n \cos U_n, R_n \sin U_n) \) for \(n = 1, 2, \ldots \).
Radial simulation of Poisson processes

Theorem

Let

\(\lambda > 0 \) be an arbitrary, but fixed number,
\(Y_1, Y_2, \ldots \) i.i.d. \(\text{Exp}(1) \)-distributed,
\(R_n = \sqrt{\sum_{k=1}^{n} \frac{Y_k}{\pi \lambda}} \) for \(n = 1, 2, \ldots \),
\(U_1, U_2, \ldots \) i.i.d. \(\text{U}[0, 2\pi) \)-distributed and
\(X_n = (R_n \cos U_n, R_n \sin U_n) \) for \(n = 1, 2, \ldots \).

Then \(\{X_n\} \) is a stationary Poisson process in \(\mathbb{R}^2 \) with intensity \(\lambda \).
Radial simulation of Poisson processes

Theorem

Let

- \(\lambda > 0 \) be an arbitrary, but fixed number,
- \(Y_1, Y_2, \ldots \) i.i.d. Exp(1)–distributed,
- \(R_n = \sqrt{\sum_{k=1}^{n} \frac{Y_k}{\pi \lambda}} \) for \(n = 1, 2, \ldots \),
- \(U_1, U_2, \ldots \) i.i.d. \(U[0, 2\pi) \)-distributed and
- \(X_n = (R_n \cos U_n, R_n \sin U_n) \) for \(n = 1, 2, \ldots \).

Then \(\{X_n\} \) is a **stationary Poisson process** in \(\mathbb{R}^2 \) with intensity \(\lambda \).

Proof Idea: Show that \(X(B) \sim \text{Poi}(\lambda \nu_2(B)) \) and \(X(B_1), \ldots, X(B_n) \) are independent for \(B_1, \ldots, B_n \in \mathcal{B} \) with \(B_i \cap B_j = \emptyset \) for \(i \neq j \), e.g.,
Radial simulation of Poisson processes

Theorem

Let

- $\lambda > 0$ be an arbitrary, but fixed number,
- Y_1, Y_2, \ldots i.i.d. Exp(1)–distributed,
- $R_n = \sqrt{\sum_{k=1}^{n} \frac{Y_k}{\pi \lambda}}$ for $n = 1, 2, \ldots$,
- U_1, U_2, \ldots i.i.d. $U[0, 2\pi)$-distributed and
- $X_n = (R_n \cos U_n, R_n \sin U_n)$ for $n = 1, 2, \ldots$.

Then $\{X_n\}$ is a stationary Poisson process in \mathbb{R}^2 with intensity λ.

Proof Idea: Show that $X(B) \sim Pois(\lambda \nu_2(B))$ and $X(B_1), \ldots, X(B_n)$ are independent for $B_1, \ldots, B_n \in \mathcal{B}$ with $B_i \cap B_j = \emptyset$ for $i \neq j$, e.g.,

$X(B(o, r)) = \#\{n : R_n \leq r\} = \#\{n : \sum_{k=1}^{n} Y_k \leq \lambda \pi r^2\} \sim Pois(\lambda \pi r^2)$.
Radial simulation of Poisson processes

Algorithm:

- Simulate $Y_n \sim \text{Exp}(1), U_n \sim U[0, 2\pi)$ independent of $Y_1, \ldots, Y_{n-1}, U_1, \ldots, U_{n-1}$
- Construct $X_n = (R_n \cos U_n, R_n \sin U_n)$ with $R_n = \sqrt{\sum_{k=1}^{n} Y_k / (\pi \lambda)}$
Radial simulation of Poisson processes

▶ Algorithm:
 ▶ Simulate $Y_n \sim \text{Exp}(1), U_n \sim U[0, 2\pi)$ independent of $Y_1, \ldots, Y_{n-1}, U_1, \ldots, U_{n-1}$
 ▶ Construct $X_n = (R_n \cos U_n, R_n \sin U_n)$ with $R_n = \sqrt{\sum_{k=1}^{n} Y_k / (\pi \lambda)}$
Radial simulation of Poisson processes

Algorithm:

- Simulate $Y_n \sim \text{Exp}(1)$, $U_n \sim U[0, 2\pi)$ independent of $Y_1, \ldots, Y_{n-1}, U_1, \ldots, U_{n-1}$
- Construct $X_n = (R_n \cos U_n, R_n \sin U_n)$ with $R_n = \sqrt{\sum_{k=1}^{n} Y_k / (\pi \lambda)}$
Radial simulation of Poisson processes

- Algorithm:
 - Simulate $Y_n \sim \text{Exp}(1), U_n \sim U[0, 2\pi]$ independent of $Y_1, \ldots, Y_{n-1}, U_1, \ldots, U_{n-1}$
 - Construct $X_n = (R_n \cos U_n, R_n \sin U_n)$ with $R_n = \sqrt{\sum_{k=1}^{n} \frac{Y_k}{\pi \lambda}}$
Radial simulation of Poisson processes

- **Algorithm:**
 - Simulate $Y_n \sim \text{Exp}(1)$, $U_n \sim U[0, 2\pi)$ independent of $Y_1, \ldots, Y_{n-1}, U_1, \ldots, U_{n-1}$
 - Construct $X_n = (R_n \cos U_n, R_n \sin U_n)$ with $R_n = \sqrt{\sum_{k=1}^{n} Y_k / (\pi \lambda)}$

- Stop if $R_n > a/\sqrt{2}$, where a is the side length of the sampling window
Slivnyak’s theorem

Theorem

Let X be a stationary Poisson process with some intensity $\lambda > 0$. Then

$$
P(X^0 \in A) = P(X \cup \{o\} \in A),
$$

*where X^0 is the Palm version of X, i.e., X^0 is distributed according to the Palm distribution P_X^0 of X.***
Slovinak’s theorem

Theorem

Let X be a stationary Poisson process with some intensity $\lambda > 0$. Then

$$P(X^0 \in A) = P(X \cup \{o\} \in A),$$

where X^0 is the **Palm version** of X, i.e., X^0 is distributed according to the Palm distribution P^0_X of X.

Proof Consider void probabilities $P(X^0(C) = 0), C \subset \mathbb{R}^2$ compact. Then $P(X^0(\{o\}) = 1) = P(X(\{o\}) = 0) = 1$ by definition. Furthermore, if $o \notin C$, then

$$P(X^0 \cap C = 0) = \lim_{\varepsilon \searrow 0} P(X(C) = 0 \mid X(B(o, \varepsilon)) = 1)$$
Slivnyak’s theorem

Theorem

Let X be a stationary Poisson process with some intensity \(\lambda > 0 \). Then

\[
P(X^0 \in A) = P(X \cup \{o\} \in A) ,
\]

where \(X^0 \) is the Palm version of X, i.e., \(X^0 \) is distributed according to the Palm distribution \(P^0_X \) of X.

Proof Consider void probabilities \(P(X^0(C) = 0), C \subset \mathbb{R}^2 \) compact. Then \(P(X^0(\{o\}) = 1) = P(X(\{o\}) = 0) = 1 \) by definition. Furthermore, if \(o \notin C \), then

\[
P(X^0C) = 0) = \lim_{\varepsilon \searrow 0} P(X(C) = 0 \mid X(B(o, \varepsilon)) = 1)
\]

\[
= \lim_{\varepsilon \searrow 0} \frac{P(X(C) = 0)P(X(B(o, \varepsilon) \setminus C) = 1)}{P(X(B(o, \varepsilon)) = 1)
\]

\[
= P(X(C) = 0) .
\]
The typical Voronoi cell

Let

\[\{X_n\} \text{ be a stationary Poisson process and } T = \{\Xi_n\} \text{ the induced Poisson-Voronoi tessellation (PVT), i.e.,} \]

\[\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \forall k \neq n\} \]

\[= \bigcap_{k \in \mathbb{N} : k \neq n} H(X_n, X_k) \]

with half planes \(H(X_n, X_k) = \{x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k|\} \)
The typical Voronoi cell

Let

\[
\{X_n\} \text{ be a stationary Poisson process and } T = \{\Xi_n\} \text{ the induced Poisson-Voronoi tessellation (PVT), i.e.,}
\]

\[
\Xi_n = \{x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \quad \forall k \neq n\}
\]

\[
= \bigcap_{k \in \mathbb{N} : k \neq n} H(X_n, X_k)
\]

with half planes \(H(X_n, X_k) = \{x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k|\}\)

\(\Xi^*\) be the typical cell of \(T\), i.e., \(\Xi^*\) is the typical mark of \(\{(X_n, \Xi_n - X_n)\}\)
The typical Voronoi cell

- Let
 - \(\{ X_n \} \) be a stationary Poisson process and \(T = \{ \Xi_n \} \) the induced Poisson-Voronoi tessellation (PVT), i.e.,
 \[
 \Xi_n = \{ x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \quad \forall k \neq n \}
 \]
 \[
 = \bigcap_{k \in \mathbb{N} : k \neq n} H(X_n, X_k)
 \]
 with half planes \(H(X_n, X_k) = \{ x \in \mathbb{R}^2 : |x - X_n| \leq |x - X_k| \} \)

- \(\Xi^* \) be the typical cell of \(T \), i.e., \(\Xi^* \) is the typical mark of \(\{(X_n, \Xi_n - X_n)\} \)

- Slivnyak’s theorem yields

\[
\Xi^* = \bigcap_{n=1}^{\infty} H(o, X_n)
\]
Local simulation of the typical cell of PVT

Algorithm:
- Place point at o
- Simulate points X_1, X_2, X_3 of Poisson process X radially
Local simulation of the typical cell of PVT

- **Algorithm:**
 - Intersect halfplanes $H(o, X_1)$, $H(o, X_2)$ and $H(o, X_3)$
Local simulation of the typical cell of PVT

Algorithm:

- Simulate further points of X and intersect halfplanes \Rightarrow initial cell
Local simulation of the typical cell of PVT

Algorithm:
- Simulate further points of X and intersect initial cell with halfplanes
Local simulation of the typical cell of PVT

- **Algorithm:**
 - Simulate further points of X and intersect initial cell with halfplanes
Local simulation of the typical cell of PVT

Algorithm:

- Stop if $|X_n| > 2 \max_{1 \leq i \leq m} |V_m|$, where V_1, \ldots, V_m are the vertices of the current modification of the initial cell.
Contents

Introduction

Point processes and Palm calculus

Random tessellations

Local simulation of typical Voronoi cells

Cox processes on random tessellations

Multiscale network modeling (Outlook to part II)
Cox processes on random tessellations

Let

- $\lambda_\ell > 0$ any fixed number,
- T a random tessellation with edge set $T^{(1)}$.

Then, X is called a Cox process on $T^{(1)}$ with linear intensity λ_ℓ.

If T is stationary with $\gamma = \nu_1(T^{(1)} \cap [0,1)^2)$, then X is stationary with intensity $\lambda = \lambda_\ell \gamma$.

Let X be a Cox process on $T^{(1)}$.

Then, X is a (conditional) Poisson process with intensity measure $\mu(\cdot) = \lambda_\ell \nu_1(\cdot \cap T^{(1)})$ given $T^{(1)}$ and the points of X are placed as linear Poisson processes of intensity λ_ℓ on the edges of $T^{(1)}$.
Cox processes on random tessellations

Let

- $\lambda_\ell > 0$ any fixed number,
- T a random tessellation with edge set $T^{(1)}$.
- Λ a random measure with $\Lambda(B) = \lambda_\ell \nu_1(B \cap T^{(1)})$ for $B \in \mathcal{B}(\mathbb{R}^2)$.
Cox processes on random tessellations

Let

- \(\lambda_\ell > 0 \) any fixed number,
- \(T \) a random tessellation with edge set \(T^{(1)} \).
- \(\Lambda \) a random measure with \(\Lambda(B) = \lambda_\ell \nu_1(B \cap T^{(1)}) \) for \(B \in \mathcal{B}(\mathbb{R}^2) \).
- \(X \) the Cox process with random intensity measure \(\Lambda \).
Cox processes on random tessellations

Let

- \(\lambda \ell > 0 \) any fixed number,
- \(T \) a random tessellation with edge set \(T^{(1)} \).
- \(\Lambda \) a random measure with \(\Lambda(B) = \lambda \ell \nu_1(B \cap T^{(1)}) \) for \(B \in \mathcal{B}(\mathbb{R}^2) \).
- \(X \) the Cox process with random intensity measure \(\Lambda \)

Then, \(X \) is called a Cox process on \(T^{(1)} \) with linear intensity \(\lambda \ell \).
Cox processes on random tessellations

Let

- $\lambda_\ell > 0$ any fixed number,
- T a random tessellation with edge set $T^{(1)}$.
- Λ a random measure with $\Lambda(B) = \lambda_\ell \nu_1(B \cap T^{(1)})$ for $B \in \mathcal{B}(\mathbb{R}^2)$.
- X the Cox process with random intensity measure Λ

Then, X is called a Cox process on $T^{(1)}$ with linear intensity λ_ℓ.

If T is stationary with $\gamma = \nu_1(T^{(1)} \cap [0, 1]^2)$, then X is stationary with intensity $\lambda = \lambda_\ell \gamma$.
Cox processes on random tessellations

- Let
 - $\lambda_\ell > 0$ any fixed number,
 - T a random tessellation with edge set $T^{(1)}$.
 - Λ a random measure with $\Lambda(B) = \lambda_\ell \nu_1(B \cap T^{(1)})$ for $B \in \mathcal{B}(\mathbb{R}^2)$.
 - X the Cox process with random intensity measure Λ.

 Then, X is called a Cox process on $T^{(1)}$ with linear intensity λ_ℓ.

- If T is stationary with $\gamma = \nu_1(T^{(1)} \cap [0, 1)^2)$, then X is stationary with intensity $\lambda = \lambda_\ell \gamma$.

- Let X be a Cox process on $T^{(1)}$
 - Then, X is a (conditional) Poisson process with intensity measure $\mu(\cdot) = \lambda_\ell \nu_1(\cdot \cap T^{(1)})$ given $T^{(1)}$.
Cox processes on random tessellations

Let

- $\lambda_\ell > 0$ any fixed number,
- T a random tessellation with edge set $T^{(1)}$.
- Λ a random measure with $\Lambda(B) = \lambda_\ell \nu_1(B \cap T^{(1)})$ for $B \in \mathcal{B}(\mathbb{R}^2)$.
- X the Cox process with random intensity measure Λ

Then, X is called a Cox process on $T^{(1)}$ with linear intensity λ_ℓ.

If T is stationary with $\gamma = \nu_1(T^{(1)} \cap [0, 1)^2)$, then X is stationary with intensity $\lambda = \lambda_\ell \gamma$.

Let X be a Cox process on $T^{(1)}$

- Then, X is a (conditional) Poisson process with intensity measure $\mu(\cdot) = \lambda_\ell \nu_1(\cdot \cap T^{(1)})$ given $T^{(1)}$
- and the points of X are placed as linear Poisson processes of intensity λ_ℓ on the edges of $T^{(1)}$
Cox processes on random tessellations

Examples

Realizations of Cox processes on the edge sets of various random tessellations
Local simulation of typical Cox-Voronoï cells

General idea
Local simulation of typical Cox-Voronoï cells

General idea

- Consider a stationary Cox process X whose random intensity measure Λ is concentrated on the edge set $T^{(1)}$ of a stationary tessellation T.
Local simulation of typical Cox-Voronoi cells

General idea

► Consider a stationary Cox process X whose random intensity measure Λ is concentrated on the edge set $T^{(1)}$ of a stationary tessellation T.
► Use Slivnyak’s theorem, which stays that
 ► the Palm version X^0 of X is a Cox process
Local simulation of typical Cox-Voronoï cells

General idea

- Consider a stationary Cox process X whose random intensity measure Λ is concentrated on the edge set $T^{(1)}$ of a stationary tessellation T.
- Use **Slivnyak’s theorem**, which stays that
 - the Palm version X^0 of X is a Cox process
 - whose random intensity measure Λ^0 is concentrated on the edge set $\tilde{T}^{(1)}$ of a conditional version \tilde{T} of T, given that $o \in T^{(1)}$.
Local simulation of typical Cox-Voronoï cells

General idea

- Consider a stationary Cox process X whose random intensity measure Λ is concentrated on the edge set $T^{(1)}$ of a stationary tessellation T.
- Use Slivnyak’s theorem, which stays that
 - the Palm version X^0 of X is a Cox process
 - whose random intensity measure Λ^0 is concentrated on the edge set $\tilde{T}^{(1)}$ of a conditional version \tilde{T} of T, given that $o \in T^{(1)}$.
- Use a suitable representation of \tilde{T}.
Local simulation of typical Cox-Voronoï cells

General idea

- Consider a stationary Cox process X whose random intensity measure Λ is concentrated on the edge set $T^{(1)}$ of a stationary tessellation T.
- Use Slivnyak’s theorem, which stays that
 - the Palm version X^0 of X is a Cox process
 - whose random intensity measure Λ^0 is concentrated on the edge set $\tilde{T}^{(1)}$ of a conditional version \tilde{T} of T, given that $o \in T^{(1)}$.
- Use a suitable representation of \tilde{T}.

Then,

- simulate the underlying tessellation \tilde{T} (under the condition that $o \in T^{(1)}$) and points of the Cox process on $\tilde{T}^{(1)}$ (approximatively) radially,
Local simulation of typical Cox-Voronoï cells

General idea

- Consider a stationary Cox process X whose random intensity measure Λ is concentrated on the edge set $T^{(1)}$ of a stationary tessellation T.
- Use Slivnyak’s theorem, which stays that
 - the Palm version X^0 of X is a Cox process
 - whose random intensity measure Λ^0 is concentrated on the edge set $\tilde{T}^{(1)}$ of a conditional version \tilde{T} of T, given that $o \in T^{(1)}$.
- Use a suitable representation of \tilde{T}.

Then,

- simulate the underlying tessellation \tilde{T} (under the condition that $o \in T^{(1)}$) and points of the Cox process on $\tilde{T}^{(1)}$ (approximatively) radially,
- add new edges of \tilde{T} and new points of the Cox process on $\tilde{T}^{(1)}$ in an alternating fashion.
Local simulation of typical Cox-Voronoi cells

General idea

- Consider a stationary Cox process X whose random intensity measure Λ is concentrated on the edge set $T^{(1)}$ of a stationary tessellation T.
- Use Slivnyak’s theorem, which stays that
 - the Palm version X^0 of X is a Cox process
 - whose random intensity measure Λ^0 is concentrated on the edge set $\tilde{T}^{(1)}$ of a conditional version \tilde{T} of T, given that $o \in T^{(1)}$.
- Use a suitable representation of \tilde{T}.

Then,

- simulate the underlying tessellation \tilde{T} (under the condition that $o \in T^{(1)}$) and points of the Cox process on $\tilde{T}^{(1)}$ (approximatively) radially,
- add new edges of \tilde{T} and new points of the Cox process on $\tilde{T}^{(1)}$ in an alternating fashion
- Find a good stopping rule to reduce runtime.
Slivnyak’s theorem for Cox processes

Theorem

Let X be a Cox process with stationary random intensity measure Λ. Then,

$$P(X_0 \in A) = P(\tilde{X}_0 \cup \{o\} \in A),$$

where \tilde{X} is a Cox process whose driving measure is the Palm version Λ_0 of Λ.

Example: Let $\Lambda(\cdot) = \lambda \ell \nu_1(\cdot \cap T(1))$ be concentrated on the edge set $T(1)$ of some stationary tessellation T with (length) intensity $\gamma > 0$. Then,

$$P(\Lambda_0(A)) = \frac{1}{\gamma} \mathbb{E} \int_{T(1) \cap [0,1]} I_A(\Lambda(\cdot) + x) \nu_1(dx),$$

$A \in \mathbb{N}$.

Thus, Λ_0 is given by $\Lambda_0(\cdot) = \lambda \ell \nu_1(\cdot \cap \tilde{T}(1))$, where \tilde{T} can be regarded as the conditional version of T under the condition that $o \in T(1)$.
Slivnyak’s theorem for Cox processes

Theorem

Let X be a Cox process with stationary random intensity measure Λ. Then, the distribution of the Palm version X^0 of X is given by

$$
P(X^0 \in A) = P(\tilde{X} \cup \{o\} \in A),$$

where \tilde{X} is a Cox process whose driving measure is the Palm version Λ^0 of Λ.

Example: Let $\Lambda(\cdot) = \lambda \ell \nu_1(\cdot \cap T(1))$ be concentrated on the edge set $T(1)$ of some stationary tessellation T with (length) intensity $\gamma > 0$. Then, the distribution P_{Λ^0} of Λ^0 is given by

$$
P_{\Lambda^0}(A) = \frac{1}{\gamma} E \int_{T(1) \cap [0,1)^2} 1_A(\Lambda(\cdot + x)) \nu_1(dx),$$

$A \in \mathbb{N}$. Thus, Λ^0 is given by $\Lambda^0(\cdot) = \lambda \ell \nu_1(\cdot \cap \tilde{T}(1))$, where \tilde{T} can be regarded as conditional version of T under the condition that $o \in T(1)$.
Slivnyak’s theorem for Cox processes

Theorem

Let X be a **Cox process** with stationary random intensity measure Λ. Then, the distribution of the **Palm version** X^0 of X is given by

$$
\mathbb{P}(X^0 \in A) = \mathbb{P}(\tilde{X} \cup \{o\} \in A),
$$

where \tilde{X} is a Cox process whose driving measure is the Palm version Λ^0 of Λ.

Slivnyak’s theorem for Cox processes

Theorem

Let X be a **Cox process** with stationary random intensity measure Λ. Then, the distribution of the **Palm version** X^0 of X is given by

$$\mathbb{P}(X^0 \in A) = \mathbb{P}(\tilde{X} \cup \{o\} \in A),$$

where \tilde{X} is a Cox process whose driving measure is the Palm version Λ^0 of Λ.

Example: Let $\Lambda(\cdot) = \lambda \ell \nu_1(\cdot \cap T^{(1)})$ be concentrated on the edge set $T^{(1)}$ of some stationary tessellation T with (length) intensity $\gamma > 0$.
Slivnyak’s theorem for Cox processes

Theorem

Let X be a Cox process with stationary random intensity measure Λ. Then, the distribution of the Palm version X^0 of X is given by

$$P(X^0 \in A) = P(\tilde{X} \cup \{o\} \in A),$$

where \tilde{X} is a Cox process whose driving measure is the Palm version Λ^0 of Λ.

Example: Let $\Lambda(\cdot) = \lambda \ell \nu_1(\cdot \cap T^{(1)})$ be concentrated on the edge set $T^{(1)}$ of some stationary tessellation T with (length) intensity $\gamma > 0$. Then,

\triangleright the distribution P_{Λ^0} of Λ^0 is given by

$$P_{\Lambda^0}(A) = \frac{1}{\gamma} \mathbb{E} \int_{T^{(1)} \cap [0,1)^2} \mathbb{1}_A(\Lambda(\cdot + x)) \nu_1(dx), \quad A \in \mathcal{N}.$$
Slivnyak’s theorem for Cox processes

Theorem

Let X be a Cox process with stationary random intensity measure Λ. Then, the distribution of the Palm version X^0 of X is given by

$$\mathbb{P}(X^0 \in A) = \mathbb{P}(\tilde{X} \cup \{o\} \in A),$$

where \tilde{X} is a Cox process whose driving measure is the Palm version Λ^0 of Λ.

Example: Let $\Lambda(\cdot) = \lambda\nu_1(\cdot \cap T^{(1)})$ be concentrated on the edge set $T^{(1)}$ of some stationary tessellation T with (length) intensity $\gamma > 0$. Then,

- the distribution P_{Λ^0} of Λ^0 is given by

$$P_{\Lambda^0}(A) = \frac{1}{\gamma} \mathbb{E} \int_{T^{(1)} \cap [0,1)^2} \mathbb{1}_A(\Lambda(\cdot + x)) \nu_1(dx), \quad A \in \mathcal{N}.$$

- Thus, Λ^0 is given by $\Lambda^0(\cdot) = \lambda\nu_1(\cdot \cap \tilde{T}^{(1)})$, where \tilde{T} can be regarded as conditional version of T under the condition that $o \in T^{(1)}$.

- ▶
Cox processes on Poisson-Voronoi tessellations

Cox process on PVT and its Voronoi tessellation
Representation of \tilde{T} for Poisson-Voronoi tessellations

Theorem

Let T be a PVT with intensity $\gamma = 2\sqrt{\lambda}$ induced by a stationary Poisson process with intensity λ. Theorem

Let T be a PVT with intensity $\gamma = 2\sqrt{\lambda}$ induced by a stationary Poisson process with intensity λ. Proof

See Baumstark & Last (2007)
Representation of \tilde{T} for Poisson-Voronoi tessellations

Theorem

Let T be a PVT with intensity $\gamma = 2\sqrt{\lambda}$ induced by a stationary Poisson process with intensity λ. Let R^2, \tilde{R}^2, and Φ be independent random variables, where

- R^2 **gamma distributed** with parameters 1.5 (shape) and $1/(\lambda \pi)$ (scale),
- \tilde{R}^2 **beta distributed** with parameters 1 and $1/2$,
- Φ **uniformly distributed** on $[0, 2\pi)$.

Proof: See Baumstark & Last (2007)
Representation of \tilde{T} for Poisson-Voronoi tessellations

Theorem

Let T be a PVT with intensity $\gamma = 2\sqrt{\lambda}$ induced by a stationary Poisson process with intensity λ. Let R^2, \tilde{R}^2 and Φ be independent random variables, where

- R^2 gamma distributed with parameters 1.5 (shape) and $1/(\lambda \pi)$ (scale),
- \tilde{R}^2 beta distributed with parameters 1 and 1/2,
- Φ uniformly distributed on $[0, 2\pi)$.

Then \tilde{T} is the Voronoi tessellation induced by $\{X_n\}_{n=1}^{\infty}$, where
Representation of \(\tilde{T} \) for Poisson-Voronoi tessellations

Theorem

Let \(T \) be a PVT with intensity \(\gamma = 2\sqrt{\lambda} \) induced by a stationary Poisson process with intensity \(\lambda \). Let \(R^2, \tilde{R}^2 \) and \(\Phi \) be independent random variables, where

- \(R^2 \) gamma distributed with parameters 1.5 (shape) and \(1/(\lambda \pi) \) (scale),
- \(\tilde{R}^2 \) beta distributed with parameters 1 and \(1/2 \),
- \(\Phi \) uniformly distributed on \([0, 2\pi)\).

Then \(\tilde{T} \) is the Voronoi tessellation induced by \(\{X_n\}_{n=1}^{\infty} \), where

- \(X_1 \) and \(X_2 \) are given by the points \(X_1 = (\sqrt{R^2 - \tilde{R}^2 R^2}, \tilde{R} R) \) and \(X_2 = (\sqrt{R^2 - \tilde{R}^2 R^2}, -\tilde{R} R) \), respectively, rotated around \(o \) with angle \(\Phi \),

Proof

See Baumstark & Last (2007)
Representation of \tilde{T} for Poisson-Voronoi tessellations

Theorem

Let T be a PVT with intensity $\gamma = 2\sqrt{\lambda}$ induced by a stationary Poisson process with intensity λ. Let R^2, \tilde{R}^2 and Φ be independent random variables, where

- R^2 **gamma distributed** with parameters 1.5 (shape) and $1/(\lambda \pi)$ (scale),
- \tilde{R}^2 **beta distributed** with parameters 1 and 1/2,
- Φ **uniformly distributed** on $[0, 2\pi)$.

Then \tilde{T} is the **Voronoi tessellation** induced by $\{X_n\}_{n=1}^{\infty}$, where

- X_1 and X_2 are given by the points $X_1 = (\sqrt{R^2 - \tilde{R}^2 R^2}, \tilde{R} R)$ and $X_2 = (\sqrt{R^2 - \tilde{R}^2 R^2}, -\tilde{R} R)$, respectively, rotated around o with angle Φ,
- $\{X_n\}_{n=3}^{\infty}$ is distributed according to a stationary Poisson process in $\mathbb{R}^2 \setminus B(o, r)$ with intensity λ given $R = r$.

Proof

See Baumstark & Last (2007)
Representation of \tilde{T} for Poisson-Voronoi tessellations

Theorem

Let T be a PVT with intensity $\gamma = 2\sqrt{\lambda}$ induced by a stationary Poisson process with intensity λ. Let R^2, \tilde{R}^2 and Φ be independent random variables, where

- R^2 **gamma distributed** with parameters 1.5 (shape) and $1/(\lambda\pi)$ (scale),
- \tilde{R}^2 **beta distributed** with parameters 1 and $1/2$,
- Φ **uniformly distributed** on $[0, 2\pi)$.

Then \tilde{T} is the **Voronoi tessellation** induced by $\{X_n\}_{n=1}^{\infty}$, where

- X_1 and X_2 are given by the points $X_1 = (\sqrt{R^2 - \tilde{R}^2 R^2}, \tilde{R} R)$ and $X_2 = (\sqrt{R^2 - \tilde{R}^2 R^2}, -\tilde{R} R)$, respectively, rotated around 0 with angle Φ,
- $\{X_n\}_{n=3}^{\infty}$ is distributed according to a stationary Poisson process in $\mathbb{R}^2 \setminus B(o, r)$ with intensity λ given $R = r$.

Proof See Baumstark & Last (2007)
Typical Voronoi cell of Cox processes on PVT

Line segment through the origin with the generating points X_1 and X_2, where $R_1 = R\tilde{R}$
Typical Voronoi cell of Cox processes on PVT

- Simulate two points X_1 and X_2 (grey) generating the segment through o, ...
Typical Voronoi cell of Cox processes on PVT

- Simulate two points X_1 and X_2 (grey) generating the segment through o,
- Simulate points X_3, X_4, \ldots of a stationary Poisson process in $\mathbb{R}^2 \setminus B(o, r)$ with intensity λ given $R = r$.
Typical Voronoi cell of Cox processes on PVT

Place points on the edges of underlying Voronoi cells and construct Initial cell.
Typical Voronoi cell of Cox processes on PVT

Intersect initial cell by bisectors
Typical Voronoi cell of Cox processes on PVT
Typical Voronoi cell of Cox processes on PVT

Stopping criterion
General representation of \tilde{T} for stationary tessellations

Theorem

Let T be an arbitrary stationary tessellation,

\[E_{\tilde{T}} = E_{\nu_1}(E_{\tilde{T}} h(T_{\ast} - Z)), \]

*where the random variable Z is uniformly distributed on $E_{\tilde{T}}$ given T_{\ast}.***
General representation of \tilde{T} for stationary tessellations

Theorem

Let T be an arbitrary stationary tessellation,

- T^* the conditional version of T under the Palm distribution with respect to the vertices of T,

Then, for any measurable function $h: \mathbb{N} \rightarrow [0, \infty)$,

$$E[h(\tilde{T})] = E[\nu_1(E^*)] E[h(T^* - Z)],$$

where the random variable Z is uniformly distributed on E^* given T^*.

Application to Poisson-Delaunay tessellations

- The distribution of \tilde{T} can be expressed by the distribution of (T^*, E^*).

- If T is a PDT, then the vertices of T form a stationary Poisson process and (T^*, E^*) can be easily simulated using Slivnyak's theorem.
General representation of \tilde{T} for stationary tessellations

Theorem

Let T be an arbitrary stationary tessellation,

- T^* the conditional version of T under the Palm distribution with respect to the vertices of T,
- E^* the edge star of T^* at o, and

$$E h(\tilde{T}) = \mathbb{E} \nu_1(E^*) \mathbb{E}(\nu_1(E^*-Z)),$$

where the random variable Z is uniformly distributed on E^* given T^*.

Application to Poisson-Delaunay tessellations

- The distribution of \tilde{T} can be expressed by the distribution of (T^*, E^*).
- If T is a PDT, then the vertices of T form a stationary Poisson process and (T^*, E^*) can be easily simulated using Slivnyak’s theorem.
General representation of \tilde{T} for stationary tessellations

Theorem

Let T be an arbitrary stationary tessellation,

- T^* the conditional version of T under the Palm distribution with respect to the vertices of T,
- E^* the *edge star* of T^* at o, and
- \tilde{T} the conditional version of T given that $o \in T^{(1)}$.

Then, for any measurable function $h: N \rightarrow [0, \infty)$,

$$E_h(\tilde{T}) = \frac{1}{E(\nu_1(E^* - Z))} E(\nu_1(E^* h(T^* - Z)))$$

where the random variable Z is uniformly distributed on E^* given T^*.
General representation of \tilde{T} for stationary tessellations

Theorem

Let T be an arbitrary stationary tessellation,

- T^* the conditional version of T under the Palm distribution with respect to the vertices of T,
- E^* the edge star of T^* at o, and
- \tilde{T} the conditional version of T given that $o \in T^{(1)}$.

Then, for any measurable function $h : \mathbb{N}_F \to [0, \infty)$,

$$
\mathbb{E} h(\tilde{T}) = \frac{1}{\mathbb{E} \nu_1(E^*)} \mathbb{E} \left(\nu_1(E^*) \cdot h(T^* - Z) \right),
$$

where the random variable Z is uniformly distributed on E^* given T^*.

Application to Poisson-Delaunay tessellations

- The distribution of \tilde{T} can be expressed by the distribution of (T^*, E^*).

- If T is a PDT, then the vertices of T form a stationary Poisson process and (T^*, E^*) can be easily simulated using Slivnyak's theorem.
General representation of \tilde{T} for stationary tessellations

Theorem

Let T be an arbitrary stationary tessellation,

- T^* the conditional version of T under the Palm distribution with respect to the vertices of T,
- E^* the edge star of T^* at o, and
- \tilde{T} the conditional version of T given that $o \in T^{(1)}$.

Then, for any measurable function $h : \mathbb{N}_F \rightarrow [0, \infty)$,

$$
\mathbb{E} h(\tilde{T}) = \frac{1}{\mathbb{E} \nu_1(E^*)} \mathbb{E} \left(\nu_1(E^*) h(T^* - Z) \right),
$$

where the random variable Z is uniformly distributed on E^* given T^*.

Application to Poisson-Delaunay tessellations

- The distribution of \tilde{T} can be expressed by the distribution of (T^*, E^*).
General representation of \tilde{T} for stationary tessellations

Theorem

Let T be an arbitrary stationary tessellation,

- T^* the conditional version of T under the Palm distribution with respect to the vertices of T,
- E^* the edge star of T^* at o, and
- \tilde{T} the conditional version of T given that $o \in T^{(1)}$.

Then, for any measurable function $h : \mathbb{N}_F \to [0, \infty)$,

$$\mathbb{E} h(\tilde{T}) = \frac{1}{\mathbb{E} \nu_1(E^*)} \mathbb{E} \left(\nu_1(E^*) h(T^* - Z) \right),$$

where the random variable Z is uniformly distributed on E^* given T^*.

Application to Poisson-Delaunay tessellations

- The distribution of \tilde{T} can be expressed by the distribution of (T^*, E^*).
- If T is a PDT, then the vertices of T form a stationary Poisson process.
Theorem

Let T be an arbitrary stationary tessellation,

- T^* the conditional version of T under the Palm distribution with respect to the vertices of T,
- E^* the edge star of T^* at o, and
- \tilde{T} the conditional version of T given that $o \in T^{(1)}$.

Then, for any measurable function $h : \mathbb{N} \rightarrow [0, \infty)$,

$$
\mathbb{E}h(\tilde{T}) = \frac{1}{\mathbb{E} \nu_1(E^*)} \mathbb{E} \left(\nu_1(E^*) h(T^* - Z) \right),
$$

where the random variable Z is uniformly distributed on E^* given T^*.

Application to Poisson-Delaunay tessellations

- The distribution of \tilde{T} can be expressed by the distribution of (T^*, E^*).
- If T is a PDT, then the vertices of T form a stationary Poisson process and (T^*, E^*) can be easily simulated using Slivnyak’s theorem.
Cox processes on Poisson-Delaunay tessellations

Cox process on PDT and its Voronoi tessellation
Typical Voronoi cell of Cox processes on PDT

Start: Simulate typical edge star E^* using Slivnyak’s theorem
Typical Voronoi cell of Cox processes on PDT

Initial cell
Typical Voronoi cell of Cox processes on PDT

Cell cut by bisectors
Typical Voronoi cell of Cox processes on PDT

Stop: Weight cell characteristic by $\nu_1(E^*)/\mathbb{E}\nu_1(E^*) = \nu_1(E^*)/(64/(3\pi \sqrt{\lambda}))$
Cox processes on Poisson line tessellations

Cox process on PLT and its Voronoi tessellation
Typical Voronoi cell of Cox processes on PLT

Theorem

Let

1. $T^{(1)}$ the edge set of a stationary PLT of intensity γ,
2. $\ell(\Phi)$ the line with $o \in \ell(\Phi)$ and direction $\Phi \sim U[0, \pi]$ independent of $T^{(1)}$,
3. \tilde{T} the conditional version of T given that $o \in T^{(1)}$,

Proof

Slivnyak's theorem

Remark:

Note that $T^{(1)} = \bigcup n \in \mathbb{Z} \ell(\Phi_n, R_n)$, where

1. $\{R_n\}$ a stationary Poisson process in \mathbb{R},
2. $\{\Phi_n\}$ an i.i.d. sequence independent of $\{R_n\}$ with $\Phi_n \sim U[0, \pi]$,
3. $\ell(\Phi_n, R_n) = \{(x, y) \in \mathbb{R}^2: x \sin \Phi_n - y \cos \Phi_n = R_n\}$.

Typical Voronoi cell of Cox processes on PLT

Theorem

Let

- $T^{(1)}$ the edge set of a stationary PLT of intensity γ,
- $\ell(\Phi)$ the line with $o \in \ell(\Phi)$ and direction $\Phi \sim U[0, \pi)$ independent of $T^{(1)}$,
- \tilde{T} the conditional version of T given that $o \in T^{(1)}$,

then $\tilde{T}^{(1)} \overset{D}{=} T^{(1)} \cup \ell(\Phi)$.

Proof

Slivnyak's theorem

Remark: Note that $T^{(1)} = \bigcup_{n \in \mathbb{Z}} \ell(\Phi_n, R_n)$, where

- $\{R_n\}$ a stationary Poisson process in \mathbb{R},
- $\{\Phi_n\}$ an i.i.d. sequence independent of $\{R_n\}$ with $\Phi_n \sim U[0, \pi)$, and

$\ell(\Phi_n, R_n) = \{(x, y) \in \mathbb{R}^2 : x \sin \Phi_n - y \cos \Phi_n = R_n\}$.

Typical Voronoi cell of Cox processes on PLT

Theorem

Let

- \(T^{(1)} \) the edge set of a stationary PLT of intensity \(\gamma \),
- \(\ell(\Phi) \) the line with \(o \in \ell(\Phi) \) and direction \(\Phi \sim U[0, \pi) \) independent of \(T^{(1)} \),
- \(\tilde{T} \) the conditional version of \(T \) given that \(o \in T^{(1)} \),

then \(\tilde{T}^{(1)} \mathrel{\overset{D}{=}} T^{(1)} \cup \ell(\Phi) \).

Proof Slivnyak’s theorem

Remark : Note that \(T^{(1)} = \bigcup_{n \in \mathbb{Z}} \ell(\Phi_n, R_n) \), where
Typical Voronoi cell of Cox processes on PLT

Theorem

Let

1. $T^{(1)}$ the edge set of a stationary PLT of intensity γ,
2. $\ell(\Phi)$ the line with $o \in \ell(\Phi)$ and direction $\Phi \sim U[0, \pi)$ independent of $T^{(1)}$,
3. \tilde{T} the conditional version of T given that $o \in T^{(1)}$,

then $\tilde{T}^{(1)} \overset{D}{=} T^{(1)} \cup \ell(\Phi)$.

Proof Slivnyak’s theorem

Remark : Note that $T^{(1)} = \bigcup_{n \in \mathbb{Z}} \ell(\Phi_n, R_n)$, where

1. $\{R_n\}$ a stationary Poisson process in \mathbb{R},
Typical Voronoi cell of Cox processes on PLT

Theorem

Let

- $T^{(1)}$ the edge set of a stationary PLT of intensity γ,
- $\ell(\Phi)$ the line with $o \in \ell(\Phi)$ and direction $\Phi \sim U[0, \pi)$ independent of $T^{(1)}$,
- \tilde{T} the conditional version of T given that $o \in T^{(1)}$,

then $\tilde{T}^{(1)} \overset{D}{=} T^{(1)} \cup \ell(\Phi)$.

Proof Slivnyak’s theorem

Remark : Note that $T^{(1)} = \bigcup_{n \in \mathbb{Z}} \ell(\Phi_n, R_n)$, where

- $\{R_n\}$ a stationary Poisson process in \mathbb{R},
- $\{\Phi_n\}$ an i.i.d. sequence independent of $\{R_n\}$ with $\Phi_n \sim U[0, \pi)$, and
Typical Voronoi cell of Cox processes on PLT

Theorem

Let

- $T^{(1)}$ the edge set of a stationary PLT of intensity γ,
- $\ell(\Phi)$ the line with $o \in \ell(\Phi)$ and direction $\Phi \sim U[0, \pi)$ independent of $T^{(1)}$,
- \tilde{T} the conditional version of T given that $o \in T^{(1)}$,

then $\tilde{T}^{(1)} \overset{D}{=} T^{(1)} \cup \ell(\Phi)$.

Proof Slivnyak’s theorem

Remark: Note that $T^{(1)} = \bigcup_{n \in \mathbb{Z}} \ell(\Phi_n, R_n)$, where

- $\{R_n\}$ a stationary Poisson process in \mathbb{R},
- $\{\Phi_n\}$ an i.i.d. sequence independent of $\{R_n\}$ with $\Phi_n \sim U[0, \pi)$, and
- $\ell(\Phi_n, R_n) = \{(x, y) \in \mathbb{R}^2 : x \sin \Phi_n - y \cos \Phi_n = R_n\}$.
Contents

Introduction

Point processes and Palm calculus

Random tessellations

Local simulation of typical Voronoi cells

Cox processes on random tessellations

Multiscale network modeling (Outlook to part II)
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells
Multiscale Modeling and Simulation of Networks

Consider random tessellations with **inner structure** of cells

- Insert **random graphs** into cells (wired networks) and compute the distribution of
Multiscale Modeling and Simulation of Networks

Consider random tessellations with **inner structure** of cells

- Insert *random graphs* into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells

- Insert random graphs into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.

- Insert full-dimensional random sets into cells (wireless networks) and compute the distribution of
 - uncovered cell area (e.g., the area where the signal-to-interference ratio is below a given threshold)
 - uncovered boundary length of cells (e.g., regions where handover of mobile users might be problematic), etc.

- Develop a virtual network testing tool by
 - providing a formula library of analytical (simulation-based, parametric) approximation formulas
 - which express the distributions of network performance characteristics in terms of model parameters for
 - a wide spectrum of multiscale tessellation models, and
 - a wide spectrum of model parameters
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells

- Insert random graphs into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.
- Insert full-dimensional random sets into cells (wireless networks) and compute the distribution of
Multiscale Modeling and Simulation of Networks

Consider random tessellations with **inner structure** of cells

- Insert **random graphs** into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.

- Insert **full-dimensional random sets** into cells (wireless networks) and compute the distribution of
 - uncovered cell area (e.g., the area where the signal-to-interference ratio is below a given threshold)
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells

- Insert random graphs into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.

- Insert full-dimensional random sets into cells (wireless networks) and compute the distribution of
 - uncovered cell area (e.g., the area where the signal-to-interference ratio is below a given threshold)
 - uncovered boundary length of cells (e.g., regions where handover of mobile users might be problematic), etc.
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells

- Insert random graphs into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.

- Insert full-dimensional random sets into cells (wireless networks) and compute the distribution of
 - uncovered cell area (e.g., the area where the signal-to-interference ratio is below a given threshold)
 - uncovered boundary length of cells (e.g., regions where handover of mobile users might be problematic), etc.

- Develop a virtual network testing tool by
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells

- Insert random graphs into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.

- Insert full-dimensional random sets into cells (wireless networks) and compute the distribution of
 - uncovered cell area (e.g., the area where the signal-to-interference ratio is below a given threshold)
 - uncovered boundary length of cells (e.g., regions where handover of mobile users might be problematic), etc.

- Develop a virtual network testing tool by
 - providing a formula library of analytical (simulation-based, parametric) approximation formulas
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells

- Insert **random graphs** into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.

- Insert **full-dimensional random sets** into cells (wireless networks) and compute the distribution of
 - uncovered cell area (e.g., the area where the signal-to-interference ratio is below a given threshold)
 - uncovered boundary length of cells (e.g., regions where handover of mobile users might be problematic), etc.

- Develop a **virtual network testing tool** by
 - providing a **formula library** of analytical (simulation-based, parametric) approximation formulas
 - which express the distributions of network performance characteristics in terms of model parameters for
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells

- Insert random graphs into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.

- Insert full-dimensional random sets into cells (wireless networks) and compute the distribution of
 - uncovered cell area (e.g., the area where the signal-to-interference ratio is below a given threshold)
 - uncovered boundary length of cells (e.g., regions where handover of mobile users might be problematic), etc.

- Develop a virtual network testing tool by
 - providing a formula library of analytical (simulation-based, parametric) approximation formulas
 - which express the distributions of network performance characteristics in terms of model parameters for
 - a wide spectrum of multiscale tessellation models, and
Multiscale Modeling and Simulation of Networks

Consider random tessellations with inner structure of cells

- Insert random graphs into cells (wired networks) and compute the distribution of
 - shortest-path lengths along the edge system
 - number of hops to the root, etc.
- Insert full-dimensional random sets into cells (wireless networks) and compute the distribution of
 - uncovered cell area (e.g., the area where the signal-to-interference ratio is below a given threshold)
 - uncovered boundary length of cells (e.g., regions where handover of mobile users might be problematic), etc.
- Develop a virtual network testing tool by
 - providing a formula library of analytical (simulation-based, parametric) approximation formulas
 - which express the distributions of network performance characteristics in terms of model parameters for
 - a wide spectrum of multiscale tessellation models, and
 - a wide spectrum of model parameters
Thank you for your attention!