First-Passage Statistics of Extreme Values Eli Ben-Naim Los Alamos National Laboratory

with: Paul Krapivsky (Boston University) Nathan Lemons (Los Alamos) Pearson Miller (Yale, MIT)

Talk, publications available @ http://cnls.lanl.gov/~ebn

Random Graph Processes, Austin TX, May 10, 2016

Plan

- Motivation: records & their first-passage statistics as a data analysis tool
- II. Incremental records: uncorrelated random variables
- III. Ordered records: uncorrelated random variables
- IV. Ordered records: correlated random variables

I. Motivation:

records & their first-passage statistics as a data analysis tool

Record & running record

• Record = largest variable in a series

$$X_N = \max(x_1, x_2, \dots, x_N)$$

• Running record = largest variable to date

$$X_1 \le X_2 \le \dots \le X_N$$

Independent and identically distributed variables

$$\int_{0}^{\infty} dx \,\rho(x) = 1$$

Feller 68 Gumble 04 Ellis 05

Statistics of extreme values

Average number of running records

• Probability that Nth variable sets a record

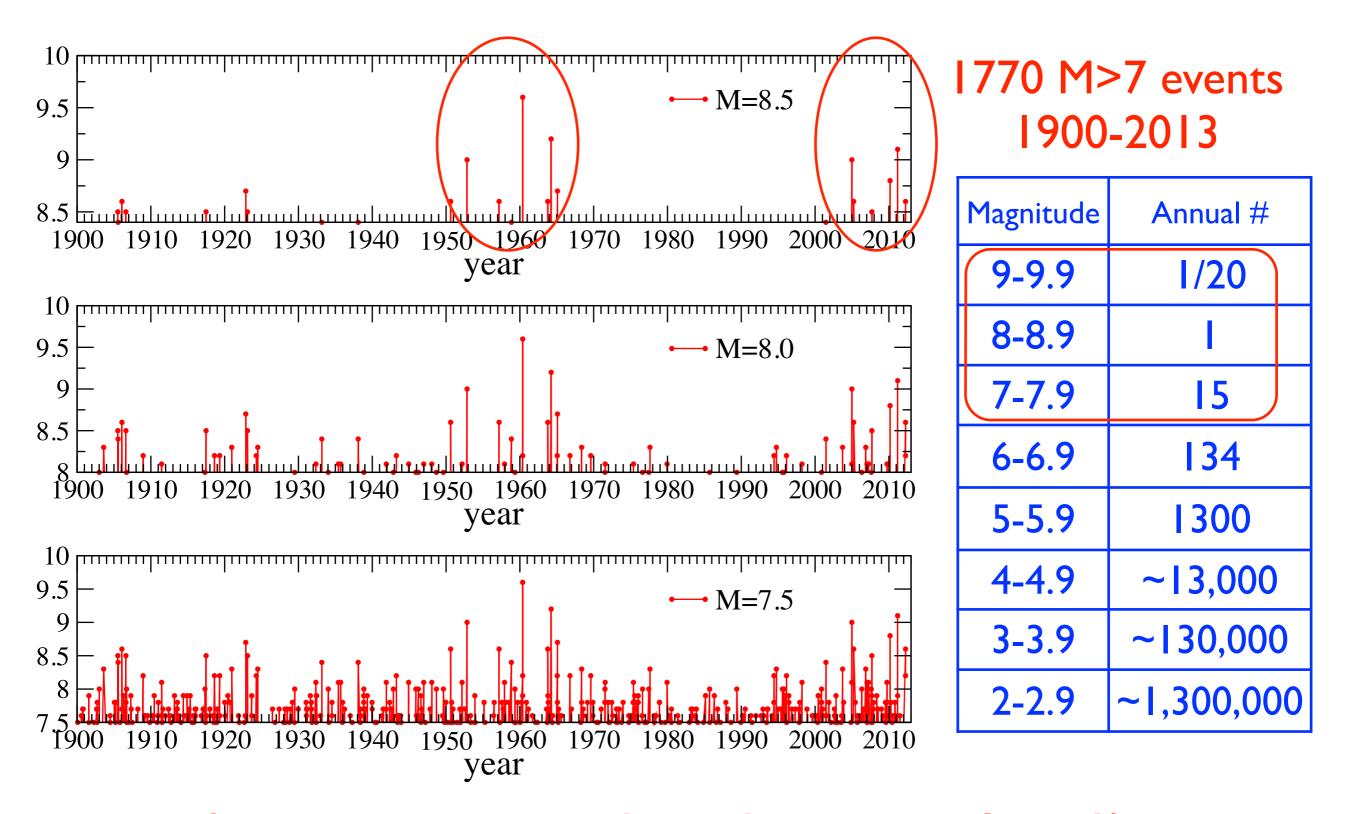
$$P_N = \frac{1}{N}$$

- Average number of records = harmonic number $M_N = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$
- Grows logarithmically with number of variables

$$M_N \simeq \ln N + \gamma \qquad \gamma = 0.577215$$

Behavior is <u>independent</u> of distribution function Number of records is quite small

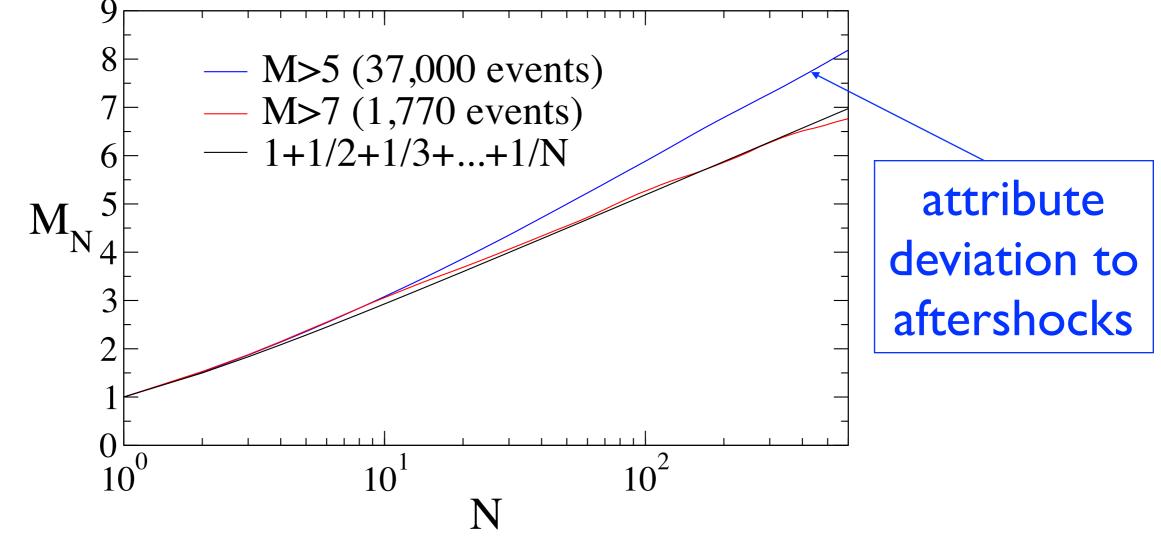
Time series of massive earthquakes



Are massive earthquakes correlated?

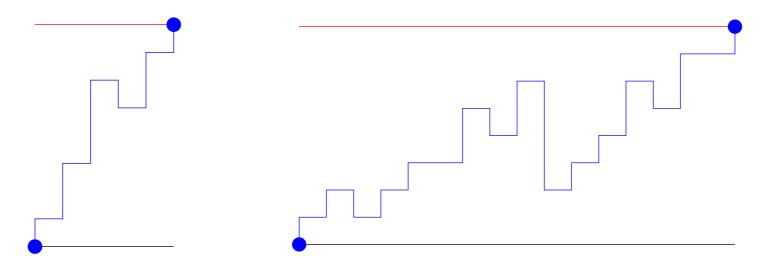
Records in inter-event time statistics t_1 , t_2 , t_3 , t_4 ,

Count number of running records in N consecutive events



records indicate inter-event times uncorrelated massive earthquakes are random EB & Krapivsky PRE 13

First-passage processes



- Process by which a fluctuating quantity reaches a threshold for the <u>first</u> time
- First-passage probability: for the random variable to reach the threshold as a function of time.
- Total probability: that threshold is <u>ever</u> reached. May or may not equal 1
- First-passage time: the mean duration of the first-passage process. Can be <u>finite</u> or <u>infinite</u>

S. Redner, A Guide to First-Passage Processes, 2001

II. Incremental records: uncorrelated random variables

Marathon world record

Year	Athlete	Country	Record	Improvement
2002	Khalid Khannuchi	USA	2:05:38	
2003	Paul Tergat	Kenya	2:04:55	0:43
2007	Haile Gebrsellasie	Ethiopia	2:04:26	0:29
2008	Haile Gebrsellasie	Ethiopia	2:03:59	0:27
2011	Patrick Mackau	Kenya	2:03:38	0:21
2013	Wilson Kipsang	Kenya	2:03:23	0:15

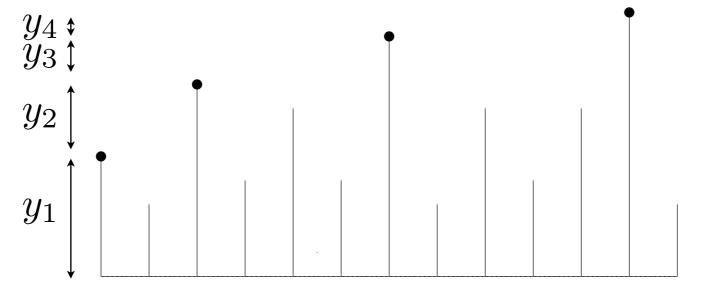
Incremental sequence of records

every record improves upon previous record by yet smaller amount

Are incremental sequences of records common?

source: wikipedia

Incremental records



Incremental sequence of records

every record improves upon previous record by yet smaller amount

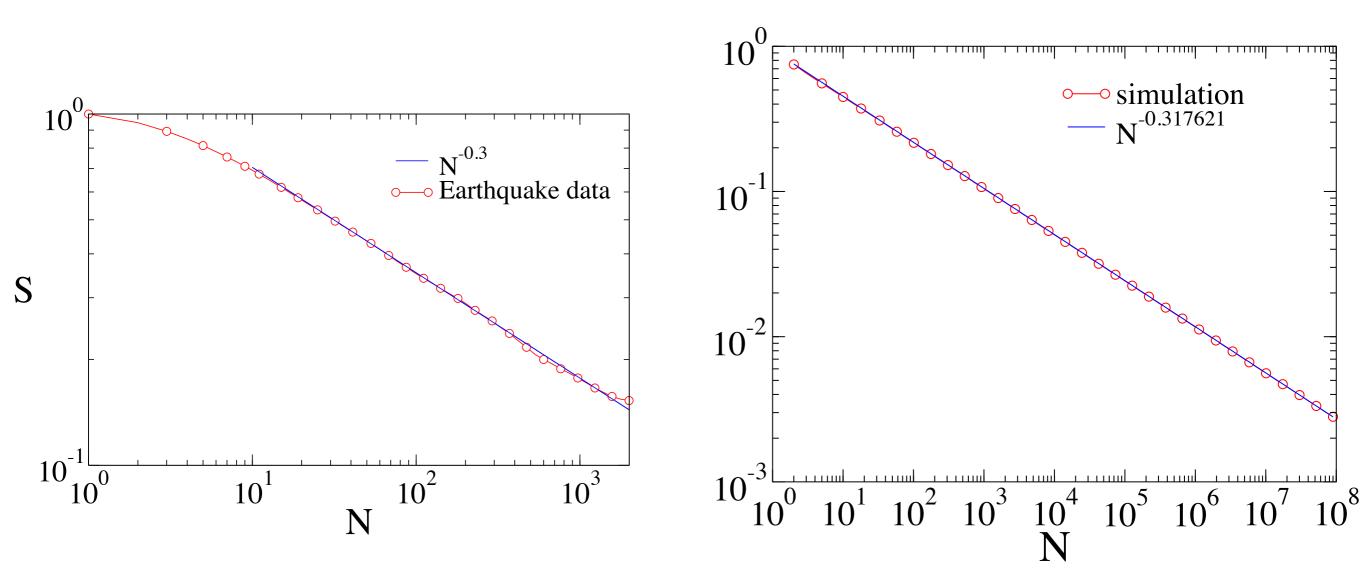
random variable = $\{0.4, 0.4, 0.6, 0.7, 0.5, 0.1\}$

latest record = $\{0.4, 0.4, 0.6, 0.7, 0.7, 0.7\}$ \uparrow

latest increment = $\{0.4, 0.4, 0.2, 0.1, 0.1, 0.1\}$

What is the probability all records are incremental?

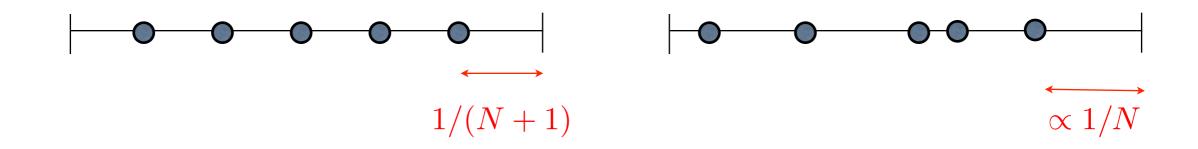
Probability all records are incremental



 $S_N \sim N^{-\nu}$ $\nu = 0.31762101$

Power law decay with nontrivial exponent Problem is parameter-free Miller & EB ISTAT 13

Uniform distribution



- The variable x is randomly distributed in [0:1] $\rho(x) = 1$ for $0 \le x \le 1$
- Probability record is smaller than x

$$R_N(x) = x^N$$

• Average record

$$A_N = \frac{N}{N+1} \qquad \Longrightarrow \qquad 1 - A_N \simeq N^{-1}$$

Distribution of records is purely exponential

Distribution of records

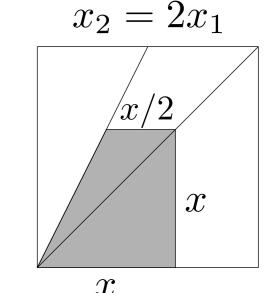
• Probability a sequence is incremental and record < x

$$G_N(x) \implies S_N = G_N(1) \qquad x_2 = x_1$$

One variable

$$G_1(x) = x \quad \Longrightarrow \quad S_1 = 1$$

• Two variables $x_2 - x_1 > x_1$ $G_2(x) = \frac{3}{4}x^2 \implies S_2 = \frac{3}{4}$



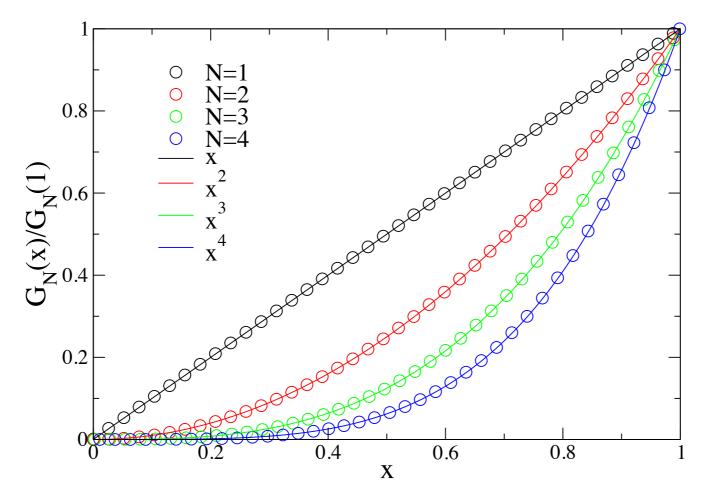
 $S_3 = 47/72$

- In general, conditions are scale invariant $x \rightarrow a x$
- Distribution of records for incremental sequences $G_N(x) = S_N x^N$ $S_1 = 1$ $S_2 = 3/4$
- Distribution of records for all sequences equals x^N

Statistics of records are standard

Fisher-Tippett 28 Gumbel 35

Scaling behavior



• Distribution of records for incremental sequences $G_N(x)/S_N = x^N = [1 - (1 - x)]^N \rightarrow e^{-s}$

Scaling variable

s = (1 - x)NExponential scaling function

Distribution of increment+records

- Probability density $S_N(x,y)dxdy$ that:
 - I. Sequence is incremental
 - 2. Current record is in range (x, x+dx)
 - 3. Latest increment is in range (y,y+dy) with 0 < y < x
- Gives the probability a sequence is incremental $S_N = \int_0^1 dx \int_0^x dy S_N(x, y)$
- Recursion equation incorporates memory e^{x-y}

$$S_{N+1}(x,y) = x S_N(x,y) + \int_y^x \int_y^x dy' S_N(x-y,y')$$

old record holds a new record is set

• Evolution equation includes integral, has memory

$$\frac{\partial S_N(x,y)}{\partial N} = -(1-x)S_N(x,y) + \int_y^{x-y} dy' S_N(x-y,y')$$

Scaling transformation

• Assume record and increment scale similarly

$$y \sim 1 - x \sim N^{-1}$$

• Introduce a scaling variable for the increment

$$s = (1 - x)N$$
 and $z = yN$

Seek a scaling solution

$$S_N(x,y) = N^2 S_N \Psi(s,z)$$

• Eliminate time out of the master equation

$$\left(2-\nu+s+s\frac{\partial}{\partial s}+z\frac{\partial}{\partial z}\right)\Psi(s,z) = \int_{z}^{\infty} dz' \,\Psi(s+z,z')$$

Reduce problem from three variables to two

Factorizing solution

Assume record and increment decouple

 $\Psi(s,z) = e^{-s} f(z)$

Substitute into equation for similarity solution

$$\left(2-\nu+s+s\frac{\partial}{\partial s}+z\frac{\partial}{\partial z}\right)\Psi(s,z) = \int_{z}^{\infty} dz' \,\Psi(s+z,z')$$

• First order integro-differential equation

$$zf'(z) + (2 - \nu)f(z) = e^{-z} \int_{z}^{\infty} f(z')dz'$$

• Cumulative distribution of scaled increment $g(z) = \int_{z}^{\infty} f(z')dz'$

g(0) = 1

 $g'(0) = -1/(2 - \nu)$

• Convert into a second order differential equation

$$zg''(z) + (2-\nu)g'(z) + e^{-z}g(z) = 0$$

Reduce problem from <u>two</u> variable to <u>one</u>

Distribution of increment

• Assume record and increment decouple

$$zg''(z) + (2-\nu)g'(z) + e^{-z}g(z) = 0$$

q(0) = 1

 $q'(0) = -1/(2 - \nu)$

• Two independent solutions

 $g(z) = z^{\nu-1}$ and g(z) = const. as $z \to \infty$

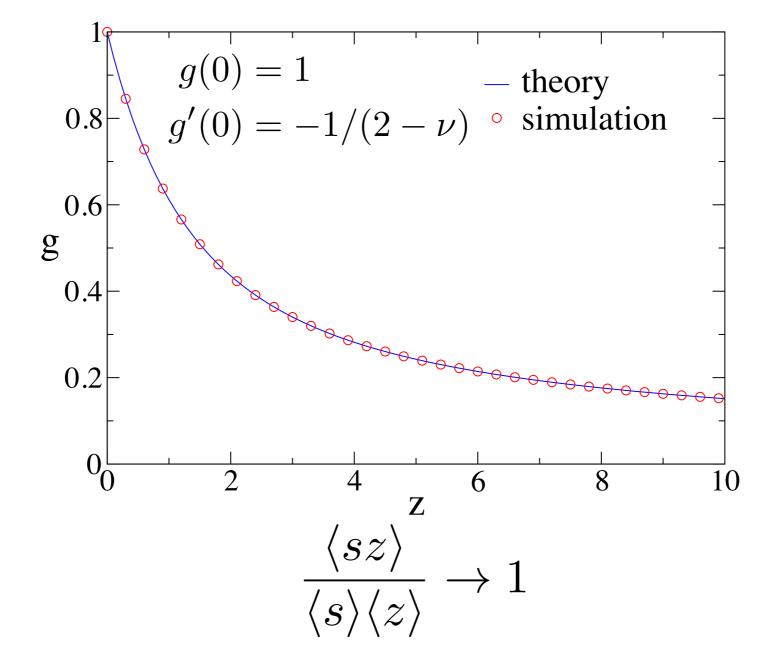
- The exponent is determined by the tail behavior $\beta = 0.317621014462...$
- The distribution of increment has a broad tail

$$P_N(y) \sim N^{-1} y^{\nu-2}$$

Increments can be relatively large problem reduced to second order ODE

Numerical confirmation

Monte Carlo simulation versus integration of ODE



Increment and record become uncorrelated

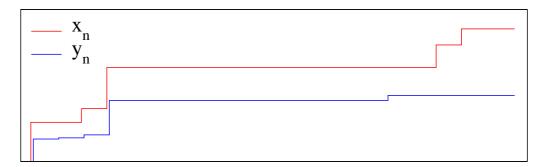
Recap II

- Probability a sequence of records is incremental
- Linear evolution equations (but with memory)
- Dynamic formulation: treat sequence length as time
- Similarity solutions for distribution of records
- Probability a sequence of records is incremental decays as power-law with sequence length
- Power-law exponent is nontrivial, obtained analytically
- Distribution of record increments is broad

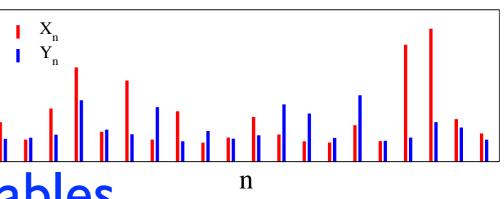
First-passage properties of extreme values are interesting

III. Ordered records: uncorrelated random variables

Ordered records



 Motivation: temperature records: Record high increasing each year



• Two sequences of random variables

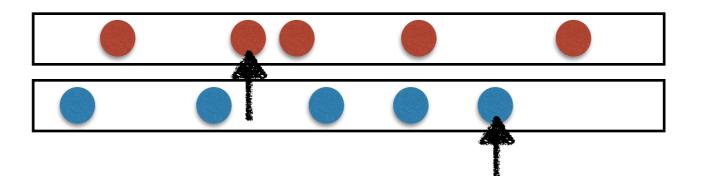
 $\{X_1, X_2, \dots, X_N\}$ and $\{Y_1, Y_2, \dots, Y_N\}$

- Independent and identically distributed variables
- Two corresponding sequences of records

 $x_n = \max\{X_1, X_2, \dots, X_n\}$ and $y_n = \max\{Y_1, Y_2, \dots, Y_n\}$

• Probability S_N records maintain perfect order $x_1 > y_1$ and $x_2 > y_2 \cdots$ and $x_N > y_N$

Two sequences



Survival probability obeys closed recursion equation

$$S_N = S_{N-1} \left(1 - \frac{1}{2N} \right)$$

Solution is immediate

$$S_N = \begin{pmatrix} 2N \\ N \end{pmatrix} 2^{-2N}$$
 identical to Sparre Andersen 53!

• Large-N: Power-law decay with rational exponent

$$S_N \simeq \pi^{-1/2} N^{-1/2}$$

Universal behavior: independent of parent distribution!

Ordered random variables

• Probability P_N variables are always ordered

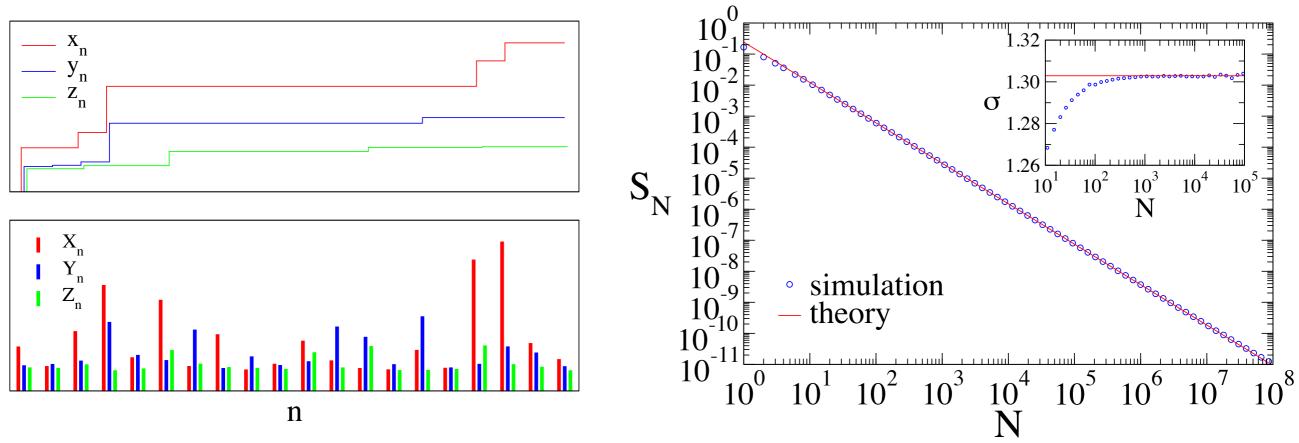
 $X_1 > Y_1$ and $X_2 > Y_2$ \cdots and $X_N > Y_N$

• Exponential decay

$$P_N = 2^{-N}$$

- Ordered records far more likely than ordered variables!
- Variables are uncorrelated
- Records are strongly correlated: each record "remembers" entire preceding sequence
 Ordered records better suited for data analysis

Three sequences



• Third sequence of random variables

$$x_n > y_n > z_n \qquad n = 1, 2, \dots, N$$

• Probability S_N records maintain perfect order

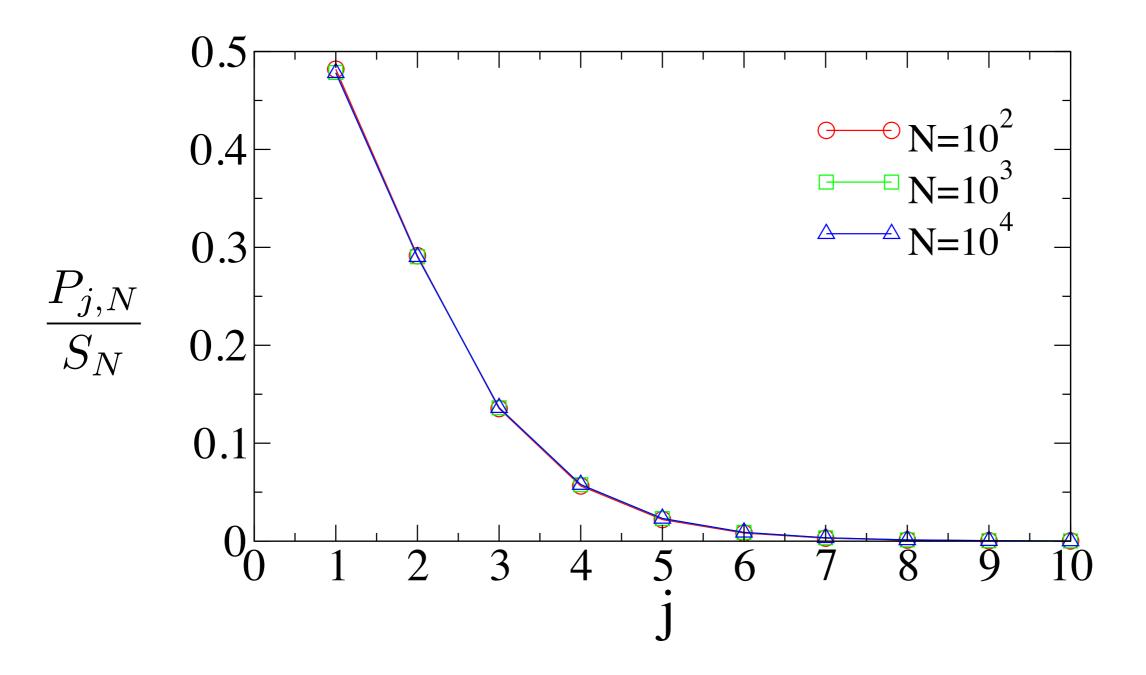
• Power-law decay with nontrivial exponent? $S_N \sim N^{-\sigma}$ with $\sigma = 1.3029$

Rank of median record leader median laggard

- Closed equations for survival probability not feasible
- Focus on rank of the median record
- Rank of the trailing record irrelevant
- Joint probability $P_{N,j}$ that (i) records are ordered and (ii) rank of the median record equals j
- Joint probability gives the survival probability $S_N = \sum_{i=1}^N P_{N,j}$

Closed recursion equations Closed recursion equations for joint probability feasible $P_{N+1,j} = \frac{3N+2-j}{3N+3} \frac{3N+1-j}{3N+2} \frac{3N-j}{3N+1} P_{N,j}$ $\mathcal{O}(N^0)$ no new records $+\frac{3N+2-j}{3N+3}\frac{3N+1-j}{3N+2}\frac{j}{3N+1}P_{N,j-1}$ $\mathcal{O}(N^{-1})$ new leading records + $\frac{3N+2-j}{(3N+3)(3N+2)(3N+1)} \sum_{k=i}^{N+1} (3N-k)P_{N,k}$ $\mathcal{O}(N^{-1})$ new median records $+\frac{3N+2-j}{(3N+3)(3N+2)(3N+1)}\sum_{k=j}^{N+1}kP_{N,k-1} \qquad \mathcal{O}(N^{-2}) \quad \text{two new records}$ • The survival probability for small N

N	S_N	$(3N)! S_N$
1	$\frac{1}{6}$	1
2	$\frac{\overline{6}}{29}$ 360	58
3	$\frac{360}{4597}$	18388
4	$\frac{5393}{149688}$	17257600
5	$\frac{149688}{179828183}\\\overline{6538371840}$	35965636600



Rank of median record j and N become uncorrelated!

Asymptotic analysis

• Rank of median record *j* and *N* become uncorrelated!

$$P_{N,j} \simeq S_N p_j \quad \text{as} \quad N \to \infty$$

• Assume power law decay for the survival probability

$$S_N \sim N^{-\sigma}$$

• The asymptotic rank distribution is normalized

$$\sum_{j=1}^{\infty} p_j = 1$$

• Rank distribution obeys a much simpler recursion

$$\sigma p_j = (j+1) p_j - \frac{j}{3} p_{j-1} - \frac{1}{3} \sum_{k=j}^{\infty} p_k$$

Scaling exponent σ is an eigenvalue

The rank distribution

• First-order differential equation for generating function

$$(3-z)\frac{dP(z)}{dz} + P(z)\left(\frac{1}{1-z} - \frac{3\sigma}{z}\right) = \frac{z}{1-z} \qquad P(z) = \sum_{j \ge 1} p_j z^{j+1}$$

Solution

$$P(z) = \sqrt{\frac{1-z}{3-z}} \left(\frac{z}{3-z}\right)^{\sigma} \int_0^z \frac{du}{(1-u)^{3/2}} \frac{(3-u)^{\sigma-1/2}}{u^{\sigma-1}}$$

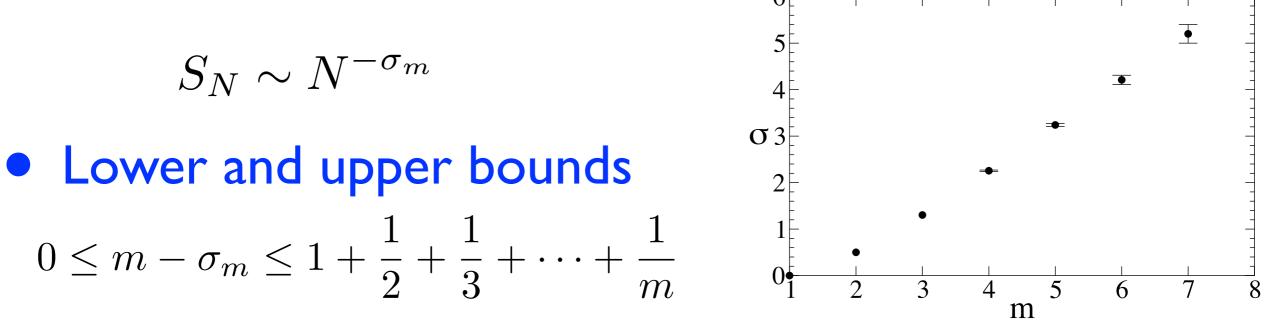
- Behavior near z=3 gives tail of the distribution $p_i \sim j^{\sigma 1/2} 3^{-j}$
- Behavior near z=1 gives the scaling exponent

$$_{2}F_{1}\left(-\frac{1}{2},\frac{1}{2}-\sigma;\frac{3}{2}-\sigma;-\frac{1}{2}\right) = 0 \implies \sigma = 1.302931\dots$$

Three sequences: scaling exponent is nontrivial

Multiple sequences

- Probability S_N that *m* records maintain perfect order
- Expect power-law decay with *m*-dependent exponent

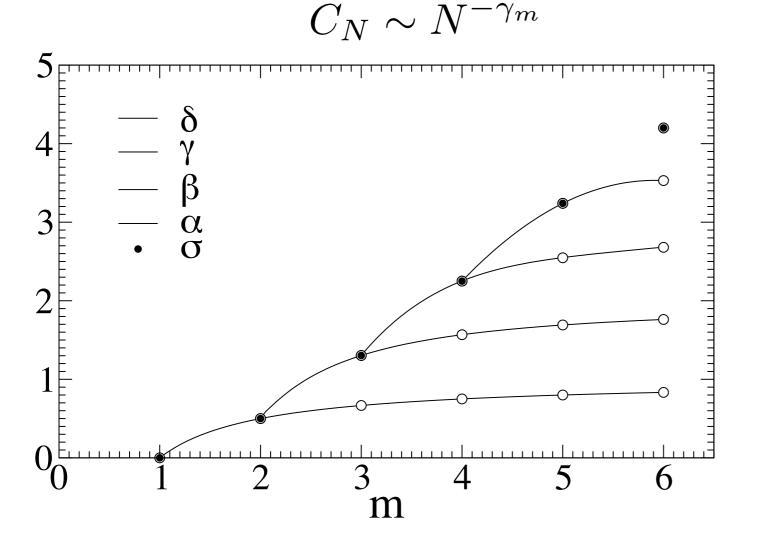


 Exponent grows linearly with number of sequences (up to a possible logarithmic correction)

$$\sigma_m \simeq m$$

In general, scaling exponent is nontrivial

Family of ordering exponents • One sequence always in the lead: I > rest $A_N \sim N^{-\alpha_m}$ $\alpha_m = 1 - \frac{1}{m}$ • Two sequences always in the lead: I > 2> rest $B_N \sim N^{-\beta_m}$ ${}_{2F_1}\left(-\frac{1}{m-1}, \frac{m-2}{m-1} - \beta; \frac{2m-3}{m-1} - \beta; -\frac{1}{m-1}\right) = 0$ • Three sequences always in the lead: I > 2> 3> rest



m	α	β	γ	δ
1	0			
2	1/2	1/2		
3	2/3	1.302931	1.302931	
4	3/4	1.56479	2.255	2.255
5	4/5	1.69144	2.547	3.24
6	5/6	1.76164	2.680	3.53

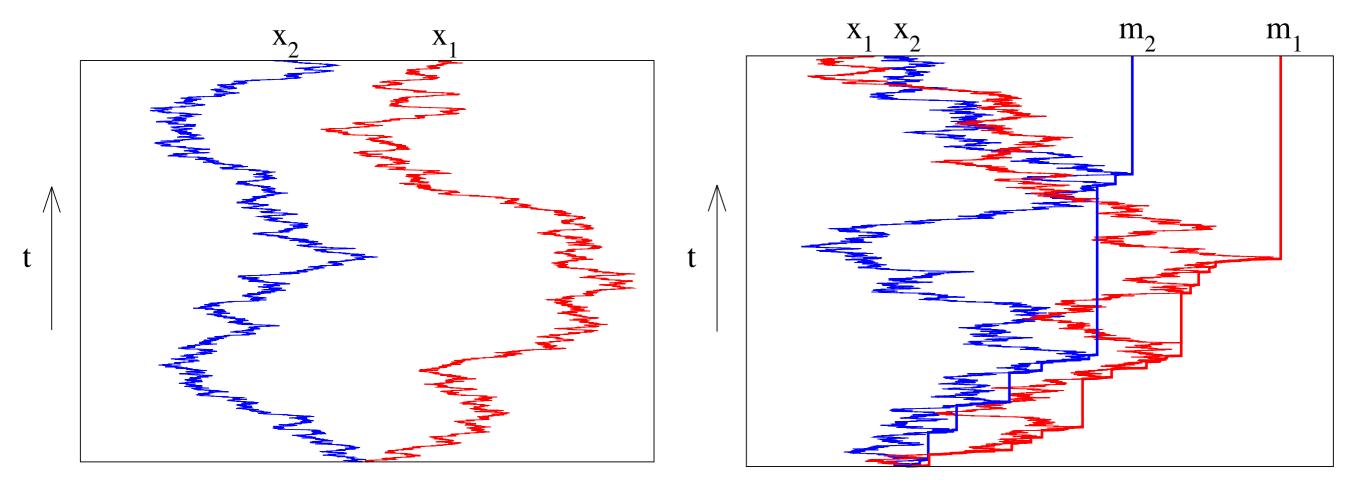
Recap III

- Probability multiple sequences of records are ordered
- Uncorrelated random variables
- Survival probability independent of parent distribution
- Power-law decay with nontrivial exponent
- Exact solution for three sequences
- Scaling exponent grows linearly with number of sequences
- Key to solution: statistics of median record becomes independent of the sequence length (large N limit)
- Scaling methods allow us to tackle combinatorics

IV. Ordered records: correlated random variables

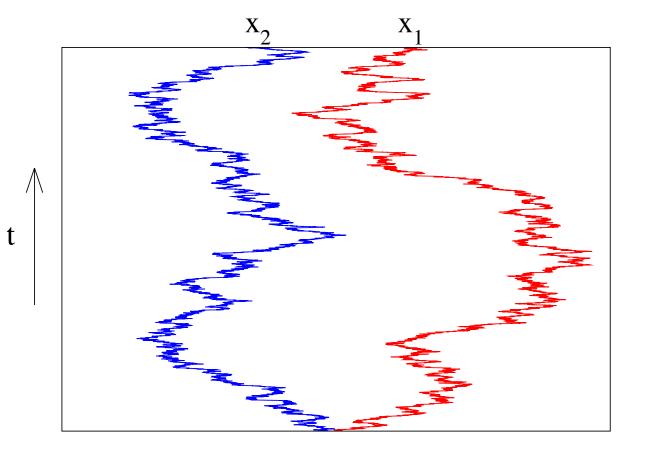
Brownian positions

Brownian records



First-passage kinetics: brownian positions

Probability two Brownian particle do not meet



• Universal probability Sparre Andersen 53 $S_t = \begin{pmatrix} 2t \\ t \end{pmatrix} 2^{-t}$ • Asymptotic behavior Feller 68 $S \sim t^{-1/2}$

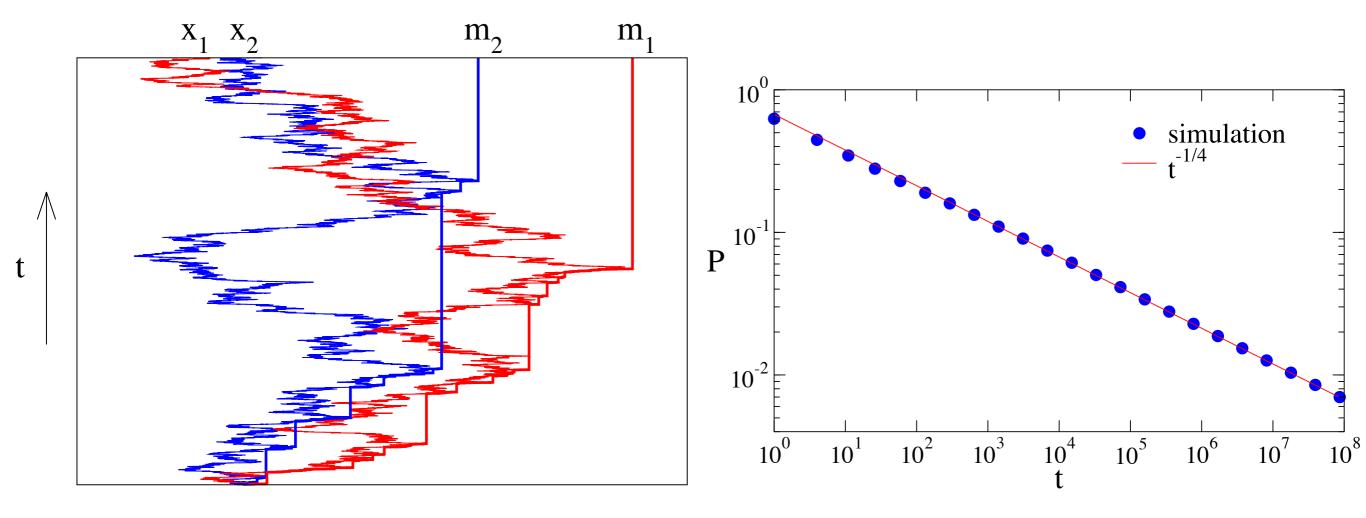
Behavior holds for Levy flights, different mobilities, etc

Universal first-passage exponent

S. Redner, A guide to First-Passage Processes 2001

First-passage kinetics: brownian records

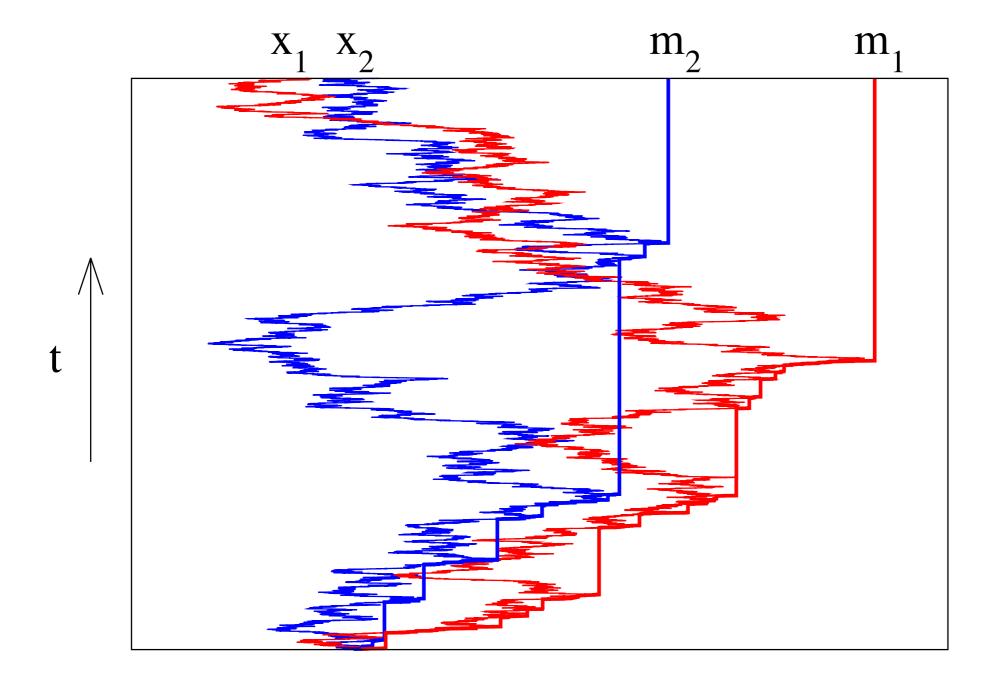
Probability running records remain ordered



 $S \sim t^{-\beta}$ $\beta = 0.2503 \pm 0.0005$

Is 1/4 exact? Is exponent universal?

 $m_1 > m_2$ if and only if $m_1 > x_2$



From four variables to three

• Four variables: two positions, two records

 $m_1 > x_1$ and $m_2 > x_2$

• The two records must always be ordered

 $m_1 > m_2$

• Key observation: trailing record is irrelevant! $m_1 > m_2$ if and only if $m_1 > x_2$

• Three variables: two positions, one record $m_1 > x_1$ and $m_1 > x_2$

From three variables to two

Introduce two distances from the record

$$u = m_1 - x_1$$
 and $v = m_1 - x_2$

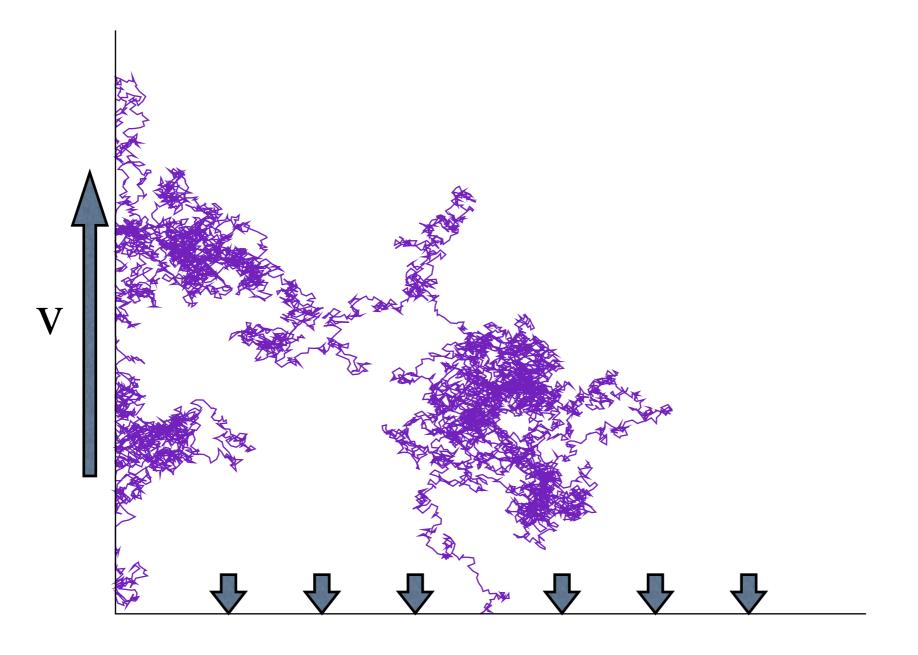
• Both distances undergo Brownian motion $\frac{\partial\rho(u,v,t)}{\partial t} = D\nabla^2\rho(u,v,t)$

Boundary conditions: (i) absorption (ii) advection

$$\rho \Big|_{v=0} = 0$$
 and $\left(\frac{\partial \rho}{\partial u} - \frac{\partial \rho}{\partial v} \right) \Big|_{u=0} = 0$

• Probability records remain ordered $P(t) = \int_0^\infty \int_0^\infty du \, dv \, \rho(u, v, t)$

Diffusion in corner geometry



"Backward" evolution

• Study evolution as function of initial conditions

 $P \equiv P(u_0, v_0, t)$

Obeys diffusion equation

$$\frac{\partial P(u_0, v_0, t)}{\partial t} = D\nabla^2 P(u_0, v_0, t)$$

Boundary conditions: (i) absorption (ii) advection

$$P|_{v_0=0} = 0$$
 and $\left(\frac{\partial P}{\partial u_0} + \frac{\partial P}{\partial v_0}\right)|_{u_0=0} = 0$

• Advection boundary condition is conjugate!

Solution

• Use polar coordinates

$$r = \sqrt{u_0^2 + v_0^2}$$
 and $\theta = \arctan \frac{v_0}{u_0}$

Laplace operator

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}$$

- Boundary conditions: (i) absorption (ii) advection $P|_{\theta=0} = 0$ and $\left(r\frac{\partial P}{\partial r} - \frac{\partial P}{\partial \theta}\right)\Big|_{\theta=\pi/2} = 0$
- Dimensional analysis + power law + separable form $P(r, \theta, t) \sim \left(\frac{r^2}{Dt}\right)^{\beta} f(\theta)$

Selection of exponent

- Exponent related to eigenvalue of angular part of Laplacian $f''(\theta) + (2\beta)^2 f(\theta) = 0$
- Absorbing boundary condition selects solution $f(\theta) = \sin(2\beta\theta)$
- Advection boundary condition selects exponent

 $\tan\left(\beta\pi\right) = 1$

• First-passage probability

 $P \sim t^{-1/4}$

EB & Krapivsky PRL 14

General diffusivities

• Particles have diffusion constants D_1 and D_2

$$(x_1, x_2) \to (\hat{x}_1, \hat{x}_2)$$
 with $(\hat{x}_1, \hat{x}_2) = \left(\frac{x_1}{\sqrt{D_1}}, \frac{x_2}{\sqrt{D_2}}\right)$

ben Avraham

Leyvraz 88

Condition on records involves ratio of mobilities

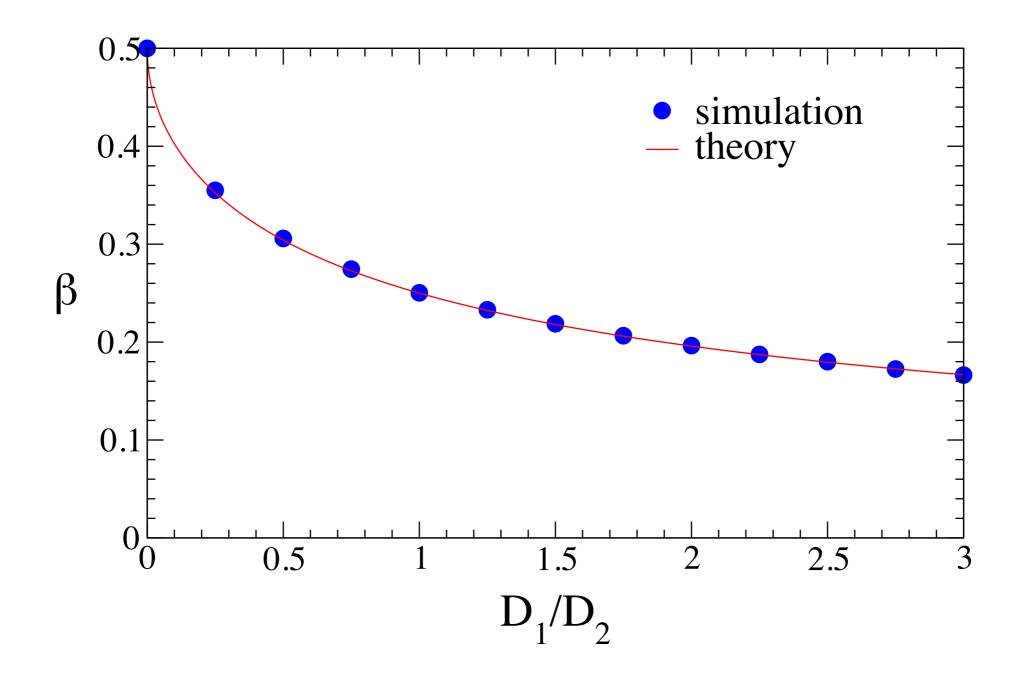
$$\sqrt{\frac{D_1}{D_2}} \ \widehat{m}_1 > \widehat{m}_2$$

Analysis straightforward to repeat

$$\sqrt{\frac{D_1}{D_2}}\tan\left(\beta\pi\right) = 1$$

• First-passage exponent: nonuniversal, mobility-dependent $\beta = \frac{1}{\pi} \arctan \sqrt{\frac{D_2}{D_1}}$

Numerical verification



perfect agreement

Properties

Depends on ratio of diffusion constants

$$\beta(D_1, D_2) \equiv \beta\left(\frac{D_1}{D_2}\right)$$

Bounds: involve one immobile particle

$$\beta(0) = \frac{1}{2} \qquad \beta(\infty) = 0$$

Rational for special values of diffusion constants

$$\beta(1/3) = 1/3$$
 $\beta(1) = 1/4$ $\beta(3) = 1/6$

• Duality: between "fast chasing slow" and "slow chasing fast"

$$\beta\left(\frac{D_1}{D_2}\right) + \beta\left(\frac{D_2}{D_1}\right) = \frac{1}{2}$$

Alternating kinetics: slow-fast-slow-fast

Multiple particles

• Probability *n* Brownian positions are perfectly ordered $P_n \sim t^{-\alpha_n}$ $\alpha_n = \frac{n(n-1)}{4}$ Fisher & Huse 88

 Records perfectly ordered
 m₁ > m₂ > m₃ > ··· > m_n

 In general, power-law decay

$$S_n \sim t^{-\nu_n}$$

n	$ u_n $	$\sigma_n/2$
2	1/4	1/4
3	0.653	0.651465
4	1.13	1.128
5	1.60	1.62
6	2.01	2.10

Uncorrelated variables provide an excellent approximation Suggests some record statistics can be robust

Recap IV

- First-passage kinetics of extremes in Brownian motion
- Problem reduces to diffusion in a two-dimensional corner with mixed boundary conditions
- First-passage exponent obtained analytically
- Exponent is continuously varying function of mobilities
- Relaxation is generally slower compared with positions
- Open questions: multiple particles, higher dimensions
- Why do uncorrelated variables represent an excellent approximation?

First-passage statistics of extreme values

- Survival probabilities decay as power law
- First-passage exponents are nontrivial
- Theoretical approach: differs from question to question
- Concepts of nonequilibrium statistical mechanics are powerful: scaling, correlations, large system-size limit
- Many, many open questions
- Ordered records as a data analysis tool

Publications

- Scaling Exponents for Ordered Maxima, E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 92, 062139 (2015)
- 2. Slow Kinetics of Brownian Maxima,E. Ben-Naim and P.L. Krapivsky,Phys. Rev. Lett. **113**, 030604 (2014)
- 3. Persistence of Random Walk Records,E. Ben-Naim and P.L. Krapivsky,J. Phys. A 47, 255002 (2014)
- 4. Scaling Exponent for Incremental Records, P.W. Miller and E. Ben-Naim, J. Stat. Mech. P10025 (2013)
- 5. Statistics of Superior Records,
 E. Ben-Naim and P.L. Krapivsky,
 Phys. Rev. E 88, 022145 (2013)