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 I. Motivation:  
records & their first-passage 

statistics as a data analysis tool



Record & running record

• Record = largest variable in a series	


!

• Running record = largest variable to date	


!

• Independent and identically distributed variables

Statistics of extreme values

XN = max(x1, x2, . . . , xN )

Feller 68	

Gumble 04	


Ellis 05

Z 1

0
dx �(x) = 1

X1  X2  · · ·  XN



Average number of running records

• Probability that Nth variable sets a record	


!

• Average number of records = harmonic number	


!

• Grows logarithmically with number of variables

Behavior is independent of distribution function	

Number of records is quite small

MN = 1 +
1

2
+

1

3
+ · · ·+ 1

N

MN ' lnN + � � = 0.577215

PN =
1

N
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Time series of massive earthquakes

Are massive earthquakes correlated?

Magnitude Annual #

9-9.9 1/20

8-8.9 1

7-7.9 15

6-6.9 134

5-5.9 1300

4-4.9 ~13,000
3-3.9 ~130,000

2-2.9 ~1,300,000

1770 M>7 events	

1900-2013
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Records in inter-event time statistics

records indicate inter-event times uncorrelated	

massive earthquakes are random 

Count number of running records in N consecutive events 

attribute 	

deviation to	

aftershocks 
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• Process by which a fluctuating quantity reaches a threshold for 
the first time	


• First-passage probability: for the random variable to reach the 
threshold as a function of time.	


• Total probability: that threshold is ever reached. May or may 
not equal 1	


• First-passage time: the mean duration of the first-passage 
process. Can be finite or infinite

First-passage processes

S. Redner, A Guide to First-Passage Processes, 2001



 II. Incremental records: 
uncorrelated random variables 



Marathon world record

Incremental sequence of records	


every record improves upon previous record      
by yet smaller amount 

Are incremental sequences of records common?

Year Athlete Country Record Improvement

2002 Khalid Khannuchi USA 2:05:38

2003 Paul Tergat Kenya 2:04:55 0:43

2007 Haile Gebrsellasie Ethiopia 2:04:26 0:29

2008 Haile Gebrsellasie Ethiopia 2:03:59 0:27

2011 Patrick Mackau Kenya 2:03:38 0:21

2013 Wilson Kipsang Kenya 2:03:23 0:15

source: wikipedia



Incremental records

Incremental sequence of records	


every record improves upon previous record      
by yet smaller amount 

y1

y2

y3
y4

random variable = {0.4, 0.4, 0.6, 0.7, 0.5, 0.1}
latest record = {0.4, 0.4, 0.6, 0.7, 0.7, 0.7} �

latest increment = {0.4, 0.4, 0.2, 0.1, 0.1, 0.1} ⇥

What is the probability all records are incremental?
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Power law decay with nontrivial exponent	

Problem is parameter-free

SN ⇠ N�� � = 0.31762101

Miller & EB JSTAT 13
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Earthquake data

Probability all records are incremental



Uniform distribution

• The variable x is randomly distributed in [0:1] 
!

• Probability record is smaller than x	

 	


• Average record

�(x) = 1 for 0  x  1

1/(N + 1) / 1/N

Distribution of records is purely exponential

AN =
N

N + 1
=) 1�AN ' N�1

RN (x) = x

N



Distribution of records
• Probability a sequence is incremental and record < x	


!

• One variable	

!

• Two variables 	

!

• In general, conditions are scale invariant 	


• Distribution of  records for incremental sequences	


!

• Distribution of records for all sequences equals 

Statistics of records are standard

GN (x) =) SN = GN (1)

G1(x) = x =) S1 = 1

G2(x) =
3

4
x

2 =) S2 =
3

4

GN (x) = SN x

N

x ! a x

x

N

x2 = x1

x2 = 2x1

x

x

x/2

Fisher-Tippett 28	

Gumbel 35

x2 � x1 > x1

S1 = 1

S2 = 3/4

S3 = 47/72
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Scaling behavior

• Distribution of  records for incremental sequences	


!

• Scaling variable 

Exponential scaling function

GN (x)/SN = x

N = [1� (1� x)]N ! e

�s

s = (1� x)N



Distribution of increment+records
• Probability density SN(x,y)dxdy that:	


1. Sequence is incremental	

2. Current record is in range (x,x+dx) 
3. Latest increment is in range (y,y+dy) with 0<y<x	


• Gives the probability a sequence is incremental	


!

• Recursion equation incorporates memory               	


!

!

• Evolution equation includes integral, has memory
old record holds a new record is set

S

N+1(x, y) = xS

N

(x, y) +

Z
x�y

y

dy

0
S

N

(x� y, y

0)

�S
N

(x, y)

�N
= �(1� x)S

N

(x, y) +

Z
x�y

y

dy0 S
N

(x� y, y0)

S

N

=

Z 1

0
dx

Z
x

0
dy S

N

(x, y)



Scaling transformation
• Assume record and increment scale similarly	


 	


• Introduce a scaling variable for the increment	


!

• Seek a scaling solution	


!

• Eliminate time out of the master equation

s = (1� x)N and z = yN

y ⇠ 1� x ⇠ N

�1

SN (x, y) = N

2
SN �(s, z)

✓
2� � + s+ s

⇥

⇥s
+ z

⇥

⇥z

◆
�(s, z) =

Z 1

z
dz0 �(s+ z, z0)

Reduce problem from three variables to two



Factorizing solution
• Assume record and increment decouple	


 	


• Substitute into equation for similarity solution	


!

• First order integro-differential equation	


!

• Cumulative distribution of scaled increment	


• Convert into a second order differential equation

zf 0(z) + (2� �)f(z) = e�z

Z 1

z
f(z0)dz0

✓
2� � + s+ s

⇥

⇥s
+ z

⇥

⇥z

◆
�(s, z) =

Z 1

z
dz0 �(s+ z, z0)

�(s, z) = e�s f(z)

g(0) = 1

g0(0) = �1/(2� �)
zg00(z) + (2� �)g0(z) + e�zg(z) = 0

g(z) =

Z 1

z
f(z0)dz0

Reduce problem from two variable to one



Distribution of increment
• Assume record and increment decouple	


 	


• Two independent solutions	


!

• The exponent is determined by the tail behavior 	


!

• The distribution of increment has a broad tail 

g(0) = 1

g0(0) = �1/(2� �)
zg00(z) + (2� �)g0(z) + e�zg(z) = 0

g(z) = z⌫�1
and g(z) = const. as z ! 1

PN (y) ⇠ N�1y��2

Increments can be relatively large	

problem reduced to second order ODE

� = 0.317621014462...
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Numerical confirmation

Increment and record become uncorrelated

hszi
hsihzi ! 1

Monte Carlo simulation versus integration of ODE

g(0) = 1

g0(0) = �1/(2� �)



Recap II

• Probability a sequence of records is incremental	


• Linear evolution equations (but with memory)	


• Dynamic formulation: treat sequence length as time            	


• Similarity solutions for distribution of records	


• Probability a sequence of records is incremental 
decays as power-law with sequence length	


• Power-law exponent is nontrivial, obtained analytically	


• Distribution of record increments is broad

First-passage properties of extreme values are interesting  



 III. Ordered records:	


uncorrelated random variables 



xn
yn

n

Xn
Yn

Ordered records
• Motivation: temperature records:                       

Record high increasing each year	


• Two sequences of random variables	


!

• Independent and identically distributed variables	


• Two corresponding sequences of records	


!

• Probability SN records maintain perfect order 

{X1, X2, . . . , XN} and {Y1, Y2, . . . , YN}

xn = max{X1, X2, . . . , Xn} and yn = max{Y1, Y2, . . . , Yn}

x1 > y1 and x2 > y2 · · · and xN > yN



Two sequences

• Survival probability obeys closed recursion equation	


!

• Solution is immediate	


!

• Large-N: Power-law decay with rational exponent

SN = SN�1

✓
1� 1

2N

◆

SN =

✓
2N

N

◆
2�2N

SN ' ⇡�1/2 N�1/2

Universal behavior: independent of parent distribution!

identical to 	

Sparre Andersen 53!



Ordered random variables
• Probability PN variables are always ordered	


!

• Exponential decay	


!

• Ordered records far more likely than ordered variables!	


• Variables are uncorrelated	


• Records are strongly correlated: each record 
“remembers” entire preceding sequence

X1 > Y1 and X2 > Y2 · · · and XN > YN

PN = 2�N

Ordered records better suited for data analysis



xn
yn
zn

n

Xn
Yn
Zn

• Third sequence of random variables	


!

• Probability SN records maintain perfect order	


• Power-law decay with nontrivial exponent?
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Three sequences

SN ⇠ N�� with � = 1.3029

xn > yn > zn n = 1, 2, . . . , N



Rank of median record

• Closed equations for survival probability not feasible	


• Focus on rank of the median record	


• Rank of the trailing record irrelevant	


• Joint probability PN,j that (i) records are ordered and 
(ii) rank of the median record equals j 	


• Joint probability gives the survival probability 

leader	

median	

laggard | {z }

j

SN =
NX

j=1

PN,j



Closed recursion equations

•Closed recursion equations for joint probability feasible	


!

!

!

•The survival probability for small N

| {z }
j

PN+1,j =
3N + 2� j

3N + 3

3N + 1� j

3N + 2

3N � j

3N + 1
PN,j

+
3N + 2� j

3N + 3

3N + 1� j

3N + 2

j

3N + 1
PN,j�1

+
3N + 2� j

(3N + 3)(3N + 2)(3N + 1)

N+1X

k=j

(3N � k)PN,k

+
3N + 2� j

(3N + 3)(3N + 2)(3N + 1)

N+1X

k=j

k PN,k�1

N SN (3N)!SN

1 1
6 1

2 29
360 58

3 4 597
90 720 18 388

4 5 393
149 688 17 257 600

5 179 828 183
6 538 371 840 35 965 636 600

no new records

two new records

new leading records

new median records

O(N0)

O(N�1)

O(N�1)

O(N�2)
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Key observation

Rank of median record j and N become uncorrelated! 

Pj,N

SN



Scaling exponent     is an eigenvalue

• Rank of median record j and N become uncorrelated! 	


!

• Assume power law decay for the survival probability	


!

• The asymptotic rank distribution is normalized 	


!

• Rank distribution obeys a much simpler recursion 

Asymptotic analysis

� pj = (j + 1) pj �
j

3
pj�1 �

1

3

1X

k=j

pk

1X

j=1

pj = 1

�

SN ⇠ N��

PN,j ' SN pj as N ! 1



• First-order differential equation for generating function 	


!

• Solution	


!

• Behavior near z=3 gives tail of the distribution	


!

• Behavior near z=1 gives the scaling exponent 

The rank distribution

(3� z)
dP (z)

dz
+ P (z)

✓
1

1� z
� 3�

z

◆
=

z

1� z

P (z) =

r
1� z

3� z

✓
z

3� z

◆� Z z

0

du

(1� u)3/2
(3� u)��1/2

u��1

P (z) =
X

j�1

pj z
j+1

pj ⇠ j��1/23�j

2F1

�
� 1

2 ,
1
2 � �; 3

2 � �;� 1
2

�
= 0 =) � = 1.302931 . . .

Three sequences: scaling exponent is nontrivial

EB & Krapivsky PRE 15
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σ

• Probability SN that m records maintain perfect order	


• Expect power-law decay with m-dependent exponent	


!

• Lower and upper bounds	


!

• Exponent grows linearly with number of sequences 
(up to a possible logarithmic correction)

Multiple sequences

In general, scaling exponent is nontrivial

SN ⇠ N��m

0  m� �m  1 +
1

2
+

1

3
+ · · ·+ 1

m

�m ' m



Family of ordering exponents

0 1 2 3 4 5 6m
0

1

2

3

4

5
 δ
 γ
 β
 α
 σ

•One sequence always in the lead: 1>rest	

!

•Two sequences always in the lead: 1>2>rest	

!

•Three sequences always in the lead: 1>2>3>rest

AN ⇠ N�↵m ↵m = 1� 1

m

BN ⇠ N��m
2F1

✓
� 1

m� 1
,
m� 2

m� 1
� �;

2m� 3

m� 1
� �;� 1

m� 1

◆
= 0

CN ⇠ N��m

m ↵ � � �
1 0
2 1/2 1/2
3 2/3 1.302931 1.302931
4 3/4 1.56479 2.255 2.255
5 4/5 1.69144 2.547 3.24
6 5/6 1.76164 2.680 3.53



Recap III

• Probability multiple sequences of records are ordered	


• Uncorrelated random variables	


• Survival probability independent of parent distribution	


• Power-law decay with nontrivial exponent	


• Exact solution for three sequences	


• Scaling exponent grows linearly with number of sequences	


• Key to solution: statistics of median record becomes 
independent of the sequence length (large N limit)	


• Scaling methods allow us to tackle combinatorics



 IV. Ordered records: 
correlated random variables 



x1x2

t

x1 x2 m1m2

t

Brownian recordsBrownian positions



x1x2

t

• Universal probability	


!

•  Asymptotic behavior

First-passage kinetics: brownian positions

Universal first-passage exponent

S ⇠ t�1/2

St =

✓
2t

t

◆
2�t

Sparre 
Andersen 53

Behavior holds for Levy flights, different mobilities, etc 

Probability two Brownian particle do not meet

S. Redner, A guide to First-Passage Processes 2001

Feller 68



x1 x2 m1m2

t

First-passage kinetics: brownian records

Is ¼ exact?  Is exponent universal? 
S ⇠ t�� � = 0.2503± 0.0005

100 101 102 103 104 105 106 107 108
t
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100

P

simulation
t-1/4

Probability running records remain ordered



x1 x2 m1m2

t

m1 > m2 if and only if m1 > x2



From four variables to three

• Four variables: two positions, two records	


!

• The two records must always be ordered	


!

• Key observation: trailing record is irrelevant!	


!

• Three variables: two positions, one record

m1 > x1 and m2 > x2

m1 > m2

m1 > m2 if and only if m1 > x2

m1 > x1 and m1 > x2



From three variables to two
• Introduce two distances from the record	


!

• Both distances undergo Brownian motion 	


!

• Boundary conditions: (i) absorption (ii) advection	


!

• Probability records remain ordered

u = m1 � x1 and v = m1 � x2

P (t) =

Z 1

0

Z 1

0
du dv �(u, v, t)

⇥�(u, v, t)

⇥t
= Dr2�(u, v, t)

�
��
v=0

= 0 and

✓
⇥�

⇥u
�⇥�

⇥v

◆ ���
u=0

= 0



u

v

Diffusion in corner geometry



“Backward” evolution
• Study evolution as function of initial conditions	


!

• Obeys diffusion equation 	


!

• Boundary conditions: (i) absorption (ii) advection	


!

• Advection boundary condition is conjugate!

P ⌘ P (u0, v0, t)

�P (u0, v0, t)

�t
= Dr2P (u0, v0, t)

P
��
v0=0

= 0 and

✓
�P

�u0
+
�P

�v0

◆ ���
u0=0

= 0



Solution

• Use polar coordinates	


!

• Laplace operator	


!

• Boundary conditions: (i) absorption (ii) advection	


!

• Dimensional analysis + power law + separable form

r =
q

u2
0 + v20 and � = arctan

v0
u0

P
��
�=0

= 0 and

✓
r
⇥P

⇥r
�⇥P

⇥�

◆ ���
�=⇥/2

= 0

P (r, �, t) ⇠
✓

r2

Dt

◆�

f(�)

r2 =
⇥2

⇥r2
+

1

r

⇥

⇥r
+

1

r2
⇥2

⇥�2



Selection of exponent

• Exponent related to eigenvalue of angular part of Laplacian	


!

• Absorbing boundary condition selects solution	


!

• Advection boundary condition selects exponent	


!

• First-passage probability

f 00(⇥) + (2�)2f(⇥) = 0

f(⇥) = sin (2�⇥)

tan (�⇡) = 1

P ⇠ t�1/4

EB & Krapivsky PRL 14 



• Particles have diffusion constants D1 and  D2	


!

!

• Condition on records involves ratio of mobilities 	

!

!

• Analysis straightforward to repeat 	


!

• First-passage exponent: nonuniversal, mobility-dependent

General diffusivities

(x1, x2) ! (bx1, bx2) with (bx1, bx2) =

✓
x1p
D1

,

x2p
D2

◆

r
D1

D2
bm1 > bm2

r
D1

D2
tan (�⇥) = 1

� =
1

⇥
arctan

r
D2

D1

ben Avraham 	

Leyvraz  88 
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Properties
• Depends on ratio of diffusion constants	


!

• Bounds: involve one immobile particle	


!

• Rational for special values of diffusion constants	


!

• Duality: between “fast chasing slow” and “slow chasing fast”

�(0) =
1

2
�(1) = 0

�(D1, D2) ⌘ �

✓
D1

D2

◆

�

✓
D1

D2

◆
+ �

✓
D2

D1

◆
=

1

2

�(1/3) = 1/3 �(1) = 1/4 �(3) = 1/6

Alternating kinetics: slow-fast-slow-fast



!

• Probability n Brownian positions are perfectly ordered 	


!

• Records perfectly ordered	


!

• In general, power-law decay

Multiple particles

Fisher & Huse 88

m1 > m2 > m3 > · · · > mn

Sn ⇠ t�⌫n

Pn ⇠ t�↵n ↵n =
n(n� 1)

4

n ⌫n �n/2
2 1/4 1/4
3 0.653 0.651465
4 1.13 1.128
5 1.60 1.62
6 2.01 2.10

Uncorrelated variables provide an excellent approximation	

Suggests some record statistics can be robust



Recap IV
• First-passage kinetics of extremes in Brownian motion	


• Problem reduces to diffusion in a two-dimensional 
corner with mixed boundary conditions	


• First-passage exponent obtained analytically	


• Exponent is continuously varying function of mobilities	


• Relaxation is generally slower compared with positions	


• Open questions: multiple particles, higher dimensions	


• Why do uncorrelated variables represent an excellent 
approximation?



First-passage statistics of 
extreme values

• Survival probabilities decay as power law	


• First-passage exponents are nontrivial	


• Theoretical approach: differs from question to question	


• Concepts of nonequilibrium statistical mechanics are  
powerful: scaling, correlations, large system-size limit	


• Many, many open questions	


• Ordered records as a data analysis tool 
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