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Graph Shotgun Problem

Can one reconstruct a graph from collection of subgraphs?
Reconstruction Conjecture (Kelley, Harary 50s): Any two
graphs on 3 or more vertices that have the same multi-set of
vertex-deleted subgraphs are isomorphic.

Mossel-Ross-15: What if Graphs are Random or have random
labels? (easier)
And given only local neighborhoods of each vertex (harder)?

Figure: From Topology and Combinatorics Blog by Max F. Pitz
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DNA Shotgun Sequencing

Figure: From “Whole genome shotgun sequencing versus Hierarchical
shotgun sequencing” by Commins, Toft, and Fares (2009).
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Q1: Deterministic

Sequence of letters (A, C, G, T or other) of length N.

All “reads” of length r are given.

Example: N = 14, r = 3:

ATGGGCACTGAGCC

Reads:

{ATG ,TGG ,GGG ,GGC ,GCA,CAC ,

ACT ,CTG ,TGA,GAG ,AGC ,GCC}

Combinatorial Question:

When does this multi-set uniquely determine the sequence?

Elchanan Mossel Shotgun Assembly of Labelled Graphs



Q1: Deterministic

Ans (Ukkonen-Pevzner):

Identifiability is possible if and only if none of the following
blocking patterns appear:

Rotation:
xαyβx ⇐⇒ yβxαy

Triple repeat:

· · · xαxβx · · · ⇐⇒ · · · xβxαx · · ·

Interleaved repeat:

· · · xαy · · · xβy · · · ⇐⇒ · · · xβy · · · xαy · · ·

[x , y are (r − 1)-tuples and α, β are non-equal strings]
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Q1: Deterministic

Proof is based on creating a de Bruijn graph:
DNA Physical Mapping and Alternating Eulerian Cycles in Colored Graphs 87 

q-gram composition  9 
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o ,c ~ ~ - -e  o 
AT TG GG CC C CC 

i ( order exchange (~  

GA AG transposition.__ GA AG 

Y= ATGGGCACTGAGCC Y=A:TGAGCACTGGGCC 
Yll zll Y~J z~ Y3 I Zll Yd z~ Y5 Yll zll Y4 z~ Y3 I Zll Y~ z2J Y5 

Fig. 7. All words with given q-gram composition correspond to Eulerian paths in directed graph D. 
D*-bicolored undirected graph obtained from D. Order exchanges in D* correspond to Ukkonen's 
transpositions. 

Figure: From “DNA Physical Mapping and Alternating Eulerian Cycles in
Colored Graphs” by Pevzner (1996).

ATGGGCACTGAGCC
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Identifiability is possible if and only if a unique Eulerian path
(though not circuit).
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Setup Q2: Randomized

Random sequence, entries independent and uniform on q letters.

What is the probability of identifiability?

Criteria on growth of r = rN as N →∞ such that the chance
sequence is identifiable tends to zero or one?

Ukkonen-Pevzner useful – understand the probability of the
appearance of the blocking patterns.

If r/ log(N) > 2/ log(q) eventually, then probability of
identifiability tends to one.

If r/ log(N) < 2/ log(q) eventually, then probability of
identifiability tends to zero.

Dyer-Frieze-Suen-94,....

Still active area of research: e.g.: reads with errors, e.g:
Ganguly-M-Racz-16.

What about other Graphs??
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Graph Shotgun Sequencing

Paninski et al. (2013) : How to reconstruct neural network from
subnetworks?

Figure: wiki commons
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Random Puzzle Problem

Figure: wiki commons

Math Question: For an n × n puzzle with q types of random jigs,
how large should q(n) be so that the puzzle can be assembled
uniquely??
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A general setup

1 G is a (fixed or random) graph,
2 Possibly with random labeling of the vertices,
3 For each vertex v , given a rooted neighborhood Nr (v) of

“radius” r .
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Random jigsaw Puzzle

Puzzle = [n]× [n] grid with uniform q-coloring of the edges of
the grid.
Piece = vertex along with 4 adjacent colored half edges.
Given: n2 pieces.
Goal: Recover the puzzle.
Assume pieces at the edges also have 4 colors (harder).
For presentation purposes: colored edges vs.
Real Puzzle: colored half edges and a compatibility involution.

ι←→

ι←→

ěe

Figure: A puzzle with n = 3, q = 4 and the involution ι.
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The unique Assembly Question

A feasible assembly is a permutation of the pieces such that
adjacent two half-edges have the same color.

A puzzle has unique vertex assembly (UVA) if (up to
rotations) it has only one feasible assembly.

A puzzle has unique edge assembly (UEA) if for every feasible
assembly, every edge has the same color as in the planted
solution (up to rotations).

Question: How large should q be to ensure unique
edge/vertex assembly with high probability (→ 1 as n→∞) ?
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Bounds on puzzle assembly

From M-Ross:

q << n =⇒ P(UVA)→ 0.

q << n2/3 =⇒ P(UEA)→ 0.

q >> n2 =⇒ P(UVA)→ 1.

Intuition: use unique colors.

Theorem (Bordenave-Feige-M)

For all ε > 0, If q ≥ n1+ε then P(UVA)→ 1.

Open Problem 1: Zoom in on threshold?

Open Problem 2: Threshold for UEA.
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Assembly algorithm

We use a simple assembly algorithm:

A feasible k-neighborhood of piece v is map f from
[−k , k]2 → pieces such that f (0) = v and if
x ∼ y ∈ [−k, k]2 then the corresponding half-edges in f (x)
and f (y) have the same color.

Algorithm: find all feasible k-neighborhoods for each vertex v .

Declare piece u to be a neighbor of v if it is its neighbor of v
in each k-neighborhood.

We take k = O(1/ε).

How to analyze?
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Analysis 1

Note: impossible to hope to recover k-neighborhood exactly,
e.g - corners are often wrong.

Fix f : [−k , k]2 → [n]2 with f (0) = v . What is the probability
that f is feasible?

If f (x) = v + x then probability 1.

If f is random then probability q−8k2(1+o(1)).

Elchanan Mossel Shotgun Assembly of Labelled Graphs



Analysis 2

Define a tile of f to be a connected component of f ([−k , k]2).

Let v ∈ T0,T1, . . . ,Tr be the tiles of f .

Then:

P[f feasible ] = q−γ , γ =
1

2
(
∑
|∂Ti | − 8k)

Isoperimetric lemma: If f separates v from its neighbors then:

n2n2rq−γ = n2n2rn−γ(1+ε) << 1

E.g: many small tiles - each contributed at least 2 to γ.

Isoperimetric lemma + union bound =⇒ proof.
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Cheat and Punishment

Sadly boundary events are not independent.

(3, 2) (1, 2)

(1, 1) (3, 1)

Graph theoretic definition of γ(f ), the number of ”unique
constraints”.

Isoperimetric lemma to lower bound γ(f ).

Interesting: lower bound uses both
∑
|∂Ti | and

∑
|∂f (Ti )|
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Some Random Graph Examples

We now look at some random graph examples.

”Guiding principle” (M-Ross): Threshold for assembly

r = min(k : u 6= v =⇒ Bk(u) 6∼ Bk(v))(+1)

Easy direction: ”name” vertex v by Bk(v).

Other direction requires more work per-example.
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Example: Sparse Erdős-Rényi random graph

Each edge present with probability pN = λ/N independently so
Average degree is λ.

Blocking configuration for r -neighborhoods (line graph has is of
length r + 1)

Since has same r-neighborhoods as

if r < logN[λ− log(λ)]−1, then the probability of
identifiability tends to zero.
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Example 1a: Sparse Erdős-Rényi random graph

Diameter

For λ 6= 1, the diameter of the sparse Erdős-Rényi random
graph is of order log(N) (different constants than that above).

Corollary (Mossel-Ross-15): If λ 6= 1 then reconstruction
threshold is r = Θ(logN).

Harder/Open: r = C logN(1 + o(1))?

Critical case?
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Diameter

For λ 6= 1, the diameter of the sparse Erdős-Rényi random
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Example 1b: Less sparse Erdős-Rényi random graph

Structure of the Erdős-Rényi graph depends on behavior of N × pN .

2. The Denser Case

Assume NpN/ log(N)2 →∞.

Mossel-Ross-15: If r = 3, then the probability of identifiability
tends to one.

multiset of degrees of neighbors of each vertex become unique.

Allows to give distinct names to vertices.

Open: when is r = 2 enough?

Distributed computing perspective: unique i.d’s from local
information.
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Example 2: Random Regular Graphs

Theorem (M+Sun)

The threshold for assembly of random d regular graphs is

r =
log n + log log n

2 log(d − 1)
+ Θ(1).
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Happy and Sad neighborhoods

Why?

(Almost) all 0.5 logd−1(n) neighborhoods are happy trees.

Each 0.5(1 + ε) logd−1(n) neighborhoods is unhappy due a
unique cycle structure.
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The Upper Bound

Theorem (Bollobas 82)

For all ε > 0 if r ≥ (0.5 + ε) logd−1 n then for all u 6= v it holds
that (d1(v), . . . , dr (v)) 6= (d1(u), . . . , dr (u)) where di (v) are the
number of nodes at distance i from v.

Theorem (M-Sun)

For all ε > 0 if r ≥ log n+log log n
2 log(d−1) + Θ(1) then for all u 6= v it holds

that Br (v) 6= Br (u).
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Theorem (M-Sun)

For all ε > 0 if r ≥ log n+log log n
2 log(d−1) + Θ(1) then for all u 6= v it holds

that Br (v) 6= Br (u).

Main ideas:

Encode neighborhood by cycle structure.

Compact: only polylog(n) cycles.

Show that each fixed cycle structure is obtained with
probability ≤ n−100.

Cycle structures not independent.

Fix No. 1: For each v , for all u ∼ v , look at cycle structure
around u avoiding (v , u).

Still every two cycle structures intersect a little bit.

Fix No . 2: Define a metric on cycle structures and study
corresponding measure metric space.
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The lower bound

Find the following:

0

1

2

R

1

BFS

2

Figure: Two neighborhoods that are hard to distinguish

Based on second moment argument.

Need to consider cycle structures of 4 vertices.

Uses metric-measure space on cycle structure.
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Conclusion

For your favorite generative model - when do we have unique
asembly?

Are there computationally hard regimes? (note graph
isomorphism is a module).

Applications?

Questions?
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