Shotgun Assembly of Labelled Graphs

Charles Bordenave ${ }^{3}$, Uri Feige ${ }^{3}$, Elchanan Mossel ${ }^{1,2,3}$, Nathan Ross ${ }^{1}$, Nike Sun ${ }^{2}$
${ }^{1}$ Shotgun assembly of Labelled Graphs (arxiv.org/abs/1504.07682)
${ }^{2}$ Shotgun Assembly of Random Regular Graphs, (arxiv.org/abs/1512.08473)
${ }^{3}$ Shotgun Assembly of Random Jigsaw Puzzles, in progress.
Simons Conference on Random Graph Processes

Graph Shotgun Problem

- Can one reconstruct a graph from collection of subgraphs?
- Reconstruction Conjecture (Kelley, Harary 50s): Any two graphs on 3 or more vertices that have the same multi-set of vertex-deleted subgraphs are isomorphic.

Figure: From Topology and Combinatorics Blog by Max F. Pitz

Graph Shotgun Problem

- Can one reconstruct a graph from collection of subgraphs?
- Reconstruction Conjecture (Kelley, Harary 50s): Any two graphs on 3 or more vertices that have the same multi-set of vertex-deleted subgraphs are isomorphic.
- Mossel-Ross-15: What if Graphs are Random or have random labels? (easier)
- And given only local neighborhoods of each vertex (harder)?

DNA Shotgun Sequencing

Figure: From "Whole genome shotgun sequencing versus Hierarchical shotgun sequencing" by Commins, Toft, and Fares (2009).

Q1: Deterministic

- Sequence of letters (A, C, G, T or other) of length N.
- All "reads" of length r are given.

Example: $N=14, r=3$:
AT GGGCACTGAGCC

Reads:

$$
\begin{aligned}
& \{A T G, T G G, G G G, G G C, G C A, C A C \\
& \quad A C T, C T G, T G A, G A G, A G C, G C C\}
\end{aligned}
$$

Combinatorial Question:
When does this multi-set uniquely determine the sequence?

Q1: Deterministic

Ans (Ukkonen-Pevzner):
Identifiability is possible if and only if none of the following blocking patterns appear:

- Rotation:

$$
x \alpha y \beta x \Longleftrightarrow y \beta x \alpha y
$$

- Triple repeat:

- Interleaved repeat:

[x, y are $(r-1)$-tuples and α, β are non-equal strings]

Q1: Deterministic

Proof is based on creating a de Bruijn graph:

Figure: From "DNA Physical Mapping and Alternating Eulerian Cycles in Colored Graphs" by Pevzner (1996).
AT GGGCACTGAGCC

Q1: Deterministic

Proof is based on creating a de Bruijn graph:

Figure: From "DNA Physical Mapping and Alternating Eulerian Cycles in Colored Graphs" by Pevzner (1996).

Identifiability is possible if and only if a unique Eulerian path (though not circuit).

Setup Q2: Randomized

Random sequence, entries independent and uniform on q letters.

- What is the probability of identifiability?
- Criteria on growth of $r=r_{N}$ as $N \rightarrow \infty$ such that the chance sequence is identifiable tends to zero or one?

Ukkonen-Pevzner useful - understand the probability of the appearance of the blocking patterns.

- If $r / \log (N)>2 / \log (q)$ eventually, then probability of identifiability tends to one.
- If $r / \log (N)<2 / \log (q)$ eventually, then probability of identifiability tends to zero.
- Dyer-Frieze-Suen-94,....
- Still active area of research: e.g.: reads with errors, e.g: Ganguly-M-Racz-16.

What about other Graphs??

Graph Shotgun Sequencing

Paninski et al. (2013) : How to reconstruct neural network from subnetworks?

Figure: wiki commons

Random Puzzle Problem

Figure: wiki commons

Math Question: For an $n \times n$ puzzle with q types of random jigs, how large should $q(n)$ be so that the puzzle can be assembled uniquely??

A general setup

(1) \mathcal{G} is a (fixed or random) graph,
(2) Possibly with random labeling of the vertices,
(3) For each vertex v, given a rooted neighborhood $\mathcal{N}_{r}(v)$ of "radius" r.

Random jigsaw Puzzle

- Puzzle $=[n] \times[n]$ grid with uniform q-coloring of the edges of the grid.
- Piece $=$ vertex along with 4 adjacent colored half edges.
- Given: n^{2} pieces.
- Goal: Recover the puzzle.
- Assume pieces at the edges also have 4 colors (harder).
- For presentation purposes: colored edges vs.
- Real Puzzle: colored half edges and a compatibility involution.

The unique Assembly Question

- A feasible assembly is a permutation of the pieces such that adjacent two half-edges have the same color.
- A puzzle has unique vertex assembly (UVA) if (up to rotations) it has only one feasible assembly.
- A puzzle has unique edge assembly (UEA) if for every feasible assembly, every edge has the same color as in the planted solution (up to rotations).
- Question: How large should q be to ensure unique edge/vertex assembly with high probability $(\rightarrow 1$ as $n \rightarrow \infty)$?

Bounds on puzzle assembly

From M-Ross:

- $q \ll n \Longrightarrow P(U V A) \rightarrow 0$.

Bounds on puzzle assembly

From M-Ross:

- $q \ll n \Longrightarrow P(U V A) \rightarrow 0$.
- $q \ll n^{2 / 3} \Longrightarrow P(U E A) \rightarrow 0$.

Bounds on puzzle assembly

From M-Ross:

- $q \ll n \Longrightarrow P(U V A) \rightarrow 0$.
- $q \ll n^{2 / 3} \Longrightarrow P(U E A) \rightarrow 0$.
- $q \gg n^{2} \Longrightarrow P(U V A) \rightarrow 1$.

Bounds on puzzle assembly

From M-Ross:

- $q \ll n \Longrightarrow P(U V A) \rightarrow 0$.
- $q \ll n^{2 / 3} \Longrightarrow P(U E A) \rightarrow 0$.
- $q \gg n^{2} \Longrightarrow P(U V A) \rightarrow 1$.
- Intuition: use unique colors.

Bounds on puzzle assembly

From M-Ross:

- $q \ll n \Longrightarrow P(U V A) \rightarrow 0$.
- $q \ll n^{2 / 3} \Longrightarrow P(U E A) \rightarrow 0$.
- $q \gg n^{2} \Longrightarrow P(U V A) \rightarrow 1$.
- Intuition: use unique colors.

> Theorem (Bordenave-Feige-M)
> For all $\varepsilon>0$, If $q \geq n^{1+\varepsilon}$ then $P(U V A) \rightarrow 1$.

- Open Problem 1: Zoom in on threshold?
- Open Problem 2: Threshold for UEA.

Assembly algorithm

We use a simple assembly algorithm:

- A feasible k-neighborhood of piece v is map f from $[-k, k]^{2} \rightarrow$ pieces such that $f(0)=v$ and if $x \sim y \in[-k, k]^{2}$ then the corresponding half-edges in $f(x)$ and $f(y)$ have the same color.
- Algorithm: find all feasible k-neighborhoods for each vertex v.
- Declare piece u to be a neighbor of v if it is its neighbor of v in each k-neighborhood.
- We take $k=O(1 / \varepsilon)$.
- How to analyze?

Analysis 1

- Note: impossible to hope to recover k-neighborhood exactly, e.g - corners are often wrong.
- Fix $f:[-k, k]^{2} \rightarrow[n]^{2}$ with $f(0)=v$. What is the probability that f is feasible?
- If $f(x)=v+x$ then probability 1 .
- If f is random then probability $q^{-8 k^{2}(1+o(1))}$.

Analysis 2

- Define a tile of f to be a connected component of $f\left([-k, k]^{2}\right)$.
- Let $v \in T_{0}, T_{1}, \ldots, T_{r}$ be the tiles of f.

Analysis 2

- Define a tile of f to be a connected component of $f\left([-k, k]^{2}\right)$.
- Let $v \in T_{0}, T_{1}, \ldots, T_{r}$ be the tiles of f.
- Then:

$$
P[f \text { feasible }]=q^{-\gamma}, \quad \gamma=\frac{1}{2}\left(\sum\left|\partial T_{i}\right|-8 k\right)
$$

Analysis 2

- Define a tile of f to be a connected component of $f\left([-k, k]^{2}\right)$.
- Let $v \in T_{0}, T_{1}, \ldots, T_{r}$ be the tiles of f.
- Then:

$$
P[f \text { feasible }]=q^{-\gamma}, \quad \gamma=\frac{1}{2}\left(\sum\left|\partial T_{i}\right|-8 k\right)
$$

- Isoperimetric lemma: If f separates v from its neighbors then:

$$
n^{2} n^{2 r} q^{-\gamma}=n^{2} n^{2 r} n^{-\gamma(1+\varepsilon)} \ll 1
$$

- E.g: many small tiles - each contributed at least 2 to γ.

Analysis 2

- Define a tile of f to be a connected component of $f\left([-k, k]^{2}\right)$.
- Let $v \in T_{0}, T_{1}, \ldots, T_{r}$ be the tiles of f.
- Then:

$$
P[f \text { feasible }]=q^{-\gamma}, \quad \gamma=\frac{1}{2}\left(\sum\left|\partial T_{i}\right|-8 k\right)
$$

- Isoperimetric lemma: If f separates v from its neighbors then:

$$
n^{2} n^{2 r} q^{-\gamma}=n^{2} n^{2 r} n^{-\gamma(1+\varepsilon)} \ll 1
$$

- E.g: many small tiles - each contributed at least 2 to γ.
- Isoperimetric lemma + union bound \Longrightarrow proof.

Cheat and Punishment

Sadly boundary events are not independent.

$$
\begin{aligned}
& (3,2)(1,2) \\
& (1,1)(3,1)
\end{aligned}
$$

Cheat and Punishment

Sadly boundary events are not independent.

$$
\begin{aligned}
& (3,2)(1,2) \\
& (1,1)(3,1)
\end{aligned}
$$

- Graph theoretic definition of $\gamma(f)$, the number of "unique constraints".

Cheat and Punishment

Sadly boundary events are not independent.
$(3,2)(1,2)$
$(1,1)(3,1)$

- Graph theoretic definition of $\gamma(f)$, the number of "unique constraints".
- Isoperimetric lemma to lower bound $\gamma(f)$.

Cheat and Punishment

Sadly boundary events are not independent.
$(3,2)(1,2)$
$(1,1)(3,1)$

- Graph theoretic definition of $\gamma(f)$, the number of "unique constraints".
- Isoperimetric lemma to lower bound $\gamma(f)$.
- Interesting: lower bound uses both $\sum\left|\partial T_{i}\right|$ and $\sum\left|\partial f\left(T_{i}\right)\right|$

Some Random Graph Examples

- We now look at some random graph examples.

Some Random Graph Examples

- We now look at some random graph examples.
- "Guiding principle" (M-Ross): Threshold for assembly

$$
r=\min \left(k: u \neq v \Longrightarrow B_{k}(u) \nsim B_{k}(v)\right)(+1)
$$

Some Random Graph Examples

- We now look at some random graph examples.
- "Guiding principle" (M-Ross): Threshold for assembly

$$
r=\min \left(k: u \neq v \Longrightarrow B_{k}(u) \nsim B_{k}(v)\right)(+1)
$$

- Easy direction: "name" vertex v by $B_{k}(v)$.

Some Random Graph Examples

- We now look at some random graph examples.
- "Guiding principle" (M-Ross): Threshold for assembly

$$
r=\min \left(k: u \neq v \Longrightarrow B_{k}(u) \nsim B_{k}(v)\right)(+1)
$$

- Easy direction: "name" vertex v by $B_{k}(v)$.
- Other direction requires more work per-example.

Example: Sparse Erdős-Rényi random graph

Each edge present with probability $p_{N}=\lambda / N$ independently so Average degree is λ.

Example: Sparse Erdős-Rényi random graph

Each edge present with probability $p_{N}=\lambda / N$ independently so Average degree is λ.
Blocking configuration for r-neighborhoods (line graph has is of length $r+1$)

Since has same r-neighborhoods as

- if $r<\log N[\lambda-\log (\lambda)]^{-1}$, then the probability of identifiability tends to zero.

Example 1a: Sparse Erdős-Rényi random graph

Diameter

- For $\lambda \neq 1$, the diameter of the sparse Erdős-Rényi random graph is of order $\log (N)$ (different constants than that above).
- Corollary (Mossel-Ross-15): If $\lambda \neq 1$ then reconstruction threshold is $r=\Theta(\log N)$.

Example 1a: Sparse Erdős-Rényi random graph

Diameter

- For $\lambda \neq 1$, the diameter of the sparse Erdős-Rényi random graph is of order $\log (N)$ (different constants than that above).
- Corollary (Mossel-Ross-15): If $\lambda \neq 1$ then reconstruction threshold is $r=\Theta(\log N)$.
- Harder/Open: $r=C \log N(1+o(1))$?

Example 1a: Sparse Erdős-Rényi random graph

Diameter

- For $\lambda \neq 1$, the diameter of the sparse Erdős-Rényi random graph is of order $\log (N)$ (different constants than that above).
- Corollary (Mossel-Ross-15): If $\lambda \neq 1$ then reconstruction threshold is $r=\Theta(\log N)$.
- Harder/Open: $r=C \log N(1+o(1))$?
- Critical case?

Example 1b: Less sparse Erdős-Rényi random graph

Structure of the Erdős-Rényi graph depends on behavior of $N \times p_{N}$.
2. The Denser Case

- Assume $N p_{N} / \log (N)^{2} \rightarrow \infty$.

Example 1b: Less sparse Erdős-Rényi random graph

Structure of the Erdős-Rényi graph depends on behavior of $N \times p_{N}$.
2. The Denser Case

- Assume $N p_{N} / \log (N)^{2} \rightarrow \infty$.
- Mossel-Ross-15: If $r=3$, then the probability of identifiability tends to one.
- multiset of degrees of neighbors of each vertex become unique.
- Allows to give distinct names to vertices.

Example 1b: Less sparse Erdős-Rényi random graph

Structure of the Erdős-Rényi graph depends on behavior of $N \times p_{N}$.
2. The Denser Case

- Assume $N p_{N} / \log (N)^{2} \rightarrow \infty$.
- Mossel-Ross-15: If $r=3$, then the probability of identifiability tends to one.
- multiset of degrees of neighbors of each vertex become unique.
- Allows to give distinct names to vertices.
- Open: when is $r=2$ enough?
- Distributed computing perspective: unique i.d's from local information.

Example 2: Random Regular Graphs

Theorem (M+Sun)
The threshold for assembly of random d regular graphs is

$$
r=\frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)
$$

Happy and Sad neighborhoods

Why?

- (Almost) all $0.5 \log _{d-1}(n)$ neighborhoods are happy trees.

Happy and Sad neighborhoods

Why?

- (Almost) all $0.5 \log _{d-1}(n)$ neighborhoods are happy trees.
- Each $0.5(1+\epsilon) \log _{d-1}(n)$ neighborhoods is unhappy due a unique cycle structure.

The Upper Bound

Theorem (Bollobas 82)

For all $\varepsilon>0$ if $r \geq(0.5+\varepsilon) \log _{d-1} n$ then for all $u \neq v$ it holds that $\left(d_{1}(v), \ldots, d_{r}(v)\right) \neq\left(d_{1}(u), \ldots, d_{r}(u)\right)$ where $d_{i}(v)$ are the number of nodes at distance i from v.

Theorem (M-Sun)

For all $\varepsilon>0$ if $r \geq \frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)$ then for all $u \neq v$ it holds that $B_{r}(v) \neq B_{r}(u)$.

Theorem (M-Sun)

For all $\varepsilon>0$ if $r \geq \frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)$ then for all $u \neq v$ it holds that $B_{r}(v) \neq B_{r}(u)$.

Main ideas:

- Encode neighborhood by cycle structure.

Theorem (M-Sun)

For all $\varepsilon>0$ if $r \geq \frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)$ then for all $u \neq v$ it holds that $B_{r}(v) \neq B_{r}(u)$.

Main ideas:

- Encode neighborhood by cycle structure.
- Compact: only polylog(n) cycles.

Theorem (M-Sun)

For all $\varepsilon>0$ if $r \geq \frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)$ then for all $u \neq v$ it holds that $B_{r}(v) \neq B_{r}(u)$.

Main ideas:

- Encode neighborhood by cycle structure.
- Compact: only polylog(n) cycles.
- Show that each fixed cycle structure is obtained with probability $\leq n^{-100}$.

Theorem (M-Sun)

For all $\varepsilon>0$ if $r \geq \frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)$ then for all $u \neq v$ it holds that $B_{r}(v) \neq B_{r}(u)$.

Main ideas:

- Encode neighborhood by cycle structure.
- Compact: only polylog(n) cycles.
- Show that each fixed cycle structure is obtained with probability $\leq n^{-100}$.
- Cycle structures not independent.

Theorem (M-Sun)

For all $\varepsilon>0$ if $r \geq \frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)$ then for all $u \neq v$ it holds that $B_{r}(v) \neq B_{r}(u)$.

Main ideas:

- Encode neighborhood by cycle structure.
- Compact: only polylog(n) cycles.
- Show that each fixed cycle structure is obtained with probability $\leq n^{-100}$.
- Cycle structures not independent.
- Fix No. 1: For each v, for all $u \sim v$, look at cycle structure around u avoiding (v, u).

Theorem (M-Sun)

For all $\varepsilon>0$ if $r \geq \frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)$ then for all $u \neq v$ it holds that $B_{r}(v) \neq B_{r}(u)$.

Main ideas:

- Encode neighborhood by cycle structure.
- Compact: only polylog(n) cycles.
- Show that each fixed cycle structure is obtained with probability $\leq n^{-100}$.
- Cycle structures not independent.
- Fix No. 1: For each v, for all $u \sim v$, look at cycle structure around u avoiding (v, u).
- Still every two cycle structures intersect a little bit.

Theorem (M-Sun)

For all $\varepsilon>0$ if $r \geq \frac{\log n+\log \log n}{2 \log (d-1)}+\Theta(1)$ then for all $u \neq v$ it holds that $B_{r}(v) \neq B_{r}(u)$.

Main ideas:

- Encode neighborhood by cycle structure.
- Compact: only polylog(n) cycles.
- Show that each fixed cycle structure is obtained with probability $\leq n^{-100}$.
- Cycle structures not independent.
- Fix No. 1: For each v, for all $u \sim v$, look at cycle structure around u avoiding (v, u).
- Still every two cycle structures intersect a little bit.
- Fix No. 2: Define a metric on cycle structures and study corresponding measure metric space.

The lower bound

Find the following:

Figure: Two neighborhoods that are hard to distinguish

- Based on second moment argument.

The lower bound

Find the following:

Figure: Two neighborhoods that are hard to distinguish

- Based on second moment argument.
- Need to consider cycle structures of 4 vertices.

The lower bound

Find the following:

Figure: Two neighborhoods that are hard to distinguish

- Based on second moment argument.
- Need to consider cycle structures of 4 vertices.
- Uses metric-measure space on cycle structure.

Conclusion

- For your favorite generative model - when do we have unique asembly?

Conclusion

- For your favorite generative model - when do we have unique asembly?
- Are there computationally hard regimes? (note graph isomorphism is a module).

Conclusion

- For your favorite generative model - when do we have unique asembly?
- Are there computationally hard regimes? (note graph isomorphism is a module).
- Applications?

Conclusion

- For your favorite generative model - when do we have unique asembly?
- Are there computationally hard regimes? (note graph isomorphism is a module).
- Applications?
- Questions?

