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Empirical Observations on the Retweet Graph

Passage from the Retweet Graph to the Superstar Model

Joint work with Shankar Bhamidi (UNC) and Tauhid Zaman (MIT) — genuine
members of the Twitter generation!

Retweet graph: Given a topic and a time frame — form all the (undirected) retweet
arcs and look at the giant component of the graph you get.

Black Entertainment Television (BET) Awards 2010
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Empirical Observations on the Retweet Graph

Reading the Message from Some Empirical Retweet Graphs

Retweet graphs were constructed for 13 different public events 1

I Sports, breaking news stories, and entertainment events
I Time range for each topic was between 4-6 hours

Empirically the graphs are
very tree-like (almost no
cycles)

Empirically the graphs each
have one giant component —
this is what we model

The graphs are taken as
undirected — and the the
degrees tell the whole story

A) Federer,  N = 505 B) England,  N = 1024

C) BET Awards,  N = 1724 D) World Cup,  N = 2847

1Data courtesy of Microsoft Research, Cambridge, MA
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Empirical Observations on the Retweet Graph

BET 2010 Data — with Labels
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Where Preferential Attachment Fails

What Goes Wrong with Plain Vanilla Preferential Attachment?
One finds Max degree in empirically observed retweet graphs have the order of the
graph size, i.e. MaxDeg ∼ pn

Preferential attachment would predict sub-linear max degree

Third adventure: Twitter event networks and the superstar model Retweet Graph

√
n (preferential attachement)

J.M. Steele December 12, 2012 21 / 35
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The Super Star Model: Just One Parameter

The Superstar Model — It’s Completely Determined by p

G2

v0 (superstar)

v1

v2

p

(1− p)deg(v1,G2)

Attach to superstar with probability p

Else with probability 1− p attach to one of the
non-superstar vertices.

Non-SS Attachment Rule: probability proportional to
its degree (preferential attachment rule)

The only model parameter is p: The super star parameter

This is a very simple model: But (1) it has empirical benefits and (2) it is tractable —
though not particularly easy.
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Predictions of the Superstar Model

The Degree of the Superstar Under the Superstar Model

Remark (Built-In Easy Fact)

Let deg(v0,Gn) be the degree of the superstar in Gn. We then have that

deg(v0,Gn)

n
→ p with probability 1 as n→∞

Empirically the Superstar degree is Θ(n) and the Superstar Model “Bakes this into
the Cake”

But that is ALL that is baked in...

The value of p predicts other features of the graph

The Superstar Model is TESTABLE.
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Predictions of the Superstar Model

The Most Starry of the Non-Superstars

Theorem

Let degmax(Gn) be the maximal non-superstar degree in Gn, i.e.

degmax(Gn) = max
1≤i≤n

deg(vi ,Gn)..

If we set

γ =
1− p

2− p
.

then here is a non-degenerate, strictly positive, random variable ∆∗ such that

n−γdegmax(Gn))→ ∆∗ with probability 1 as n→∞

Maximal non-superstar degree is little-oh of the degree of the Superstar

The Super Star Model makes an explicit prediction for the growth rate of maximum
degree of a non-superstar.
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Predictions of the Superstar Model

Realized Degree Distribution in the Superstar Model

Theorem

Let F (k,Gn) be the realized degree distribution of Gn under the Superstar model,

F (k,Gn) = n−1 |{1 ≤ j ≤ n : deg(vj ,Gn) = k}|

and introduce the superstar model probability mass function

fSSM(k, p) =
2− p

1− p
(k − 1)!

k∏
i=1

(
i +

2− p

1− p

)−1

.

We then have

F (k,Gn)→ fSSM(k, p) with probability 1 as n→∞

KEY POINT: The degree distribution scales like k−β , where β = 3 + p/(1− p)

This contrasts with the preferential attachment model which scales like k−3
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Comparison with Preferential Attachment Model

Superstar Model vs Preferential Attachment

Model
Superstar Preferential

Model Attachment

Superstar Degree ∼ pn NA

Maximal non-superstar
degree exponent

1− p

2− p
1

2

Degree distribution
power-law exponent

3 +
p

1− p
3
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Comparison with Preferential Attachment Model

Superstar Model Predictions

Use actual data Ĝn to fit the superstar degree and predict the degree distribution

Consider the observed degree distribution for each empirical retweet graph:

F (k, Ĝn) = n−1 |{1 ≤ j ≤ n : deg(vj ,Gn) = k}|

Consider the theoretical asymptotic degree distribution under the Superstar Model

fSSM(k, p) =
2− p

1− p
(k − 1)!

k∏
i=1

(
i +

2− p

1− p

)−1

.

Bottom Line: We get a pretty impressive fit “observed vs predicted”

F (k, Ĝn) ≈ fSM(k, p̂) where p̂ =
observed superstar degree

n

Basis for Tests: Preferential Attachment always predicts...

fPA(k) =
4

k(k + 1)(k + 2)
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Comparison with Preferential Attachment Model

Degree distribution
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Comparison with Preferential Attachment Model

Degree distribution Comparison

Compare relative error of the Superstar Model and Preferential Attachment for different
degrees k

Model
Superstar Preferential

Model Attachment

Relative Error
|f (k,Gn)− fSM(k, p′)|

fSM(k, p′)

|f (k,Gn)− fSM(k, p′)|
fSM(k, p′)
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Comparison with Preferential Attachment Model

Degree Distribution Comparison
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Comparison with Preferential Attachment Model

The Superstar Model and the Realized Degree Distribution: Bottom Line

The Superstar Model implies a mathematical link between the superstar degree and
the degree distribution of the non-superstars.

When we look at Twitter data for actual events, we see (1) a superstar and (2) a
degree distribution of non-superstars that is more compatible with the superstar
model than with the preferential attachment model.

The first property was “baked” into our model, but the second was not. It’s an
honest discovery.

Next: How Can one Analyze the Superstar Model?
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Superstar Model: Tools for Analysis

Basic Link: Branching Processes

Proto-Idea: Branching processes have a natural role almost anytime one considers a
stochastically evolving tree.

More Concrete Observation: If the birth rates depend on the number of children, the
arithmetic of the Poisson process relates lovingly to the arithmetic of preferential
attachment — this is sweet.

Creating the Superstar: Yule processes don’t come with a superstar. Still, it is not
terribly hard to move to multi-type branching processes. In a world with multiple
types, you have the possibility of doing some surgery that let you build a super star.

Realistic Expectations: The paper is a reasonably dense 35 pages. Some of the
branching process theory is drawn from the dark well of experts; it’s not off-the-shelf
stuff. Still, if you want the deeper parts of the theory (e.g. the distribution of the
maximum degree of the non-superstars) then you have to pay the piper.

News You Can Use? One can see the benefits of using multi-type branching
processes. One can see that the connection between the Yule process and
preferential attachment is natural. This is enough to get you rolling in a variety of
applied probability models (social net works are a good start — but they are not the
only game.)
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Superstar Model: Tools for Analysis

Introduction of a Special Branching Process

Two types of vertices: red and blue

Each vertex gives birth to vertices according to a non-homogeneous Poisson process
that has rate proportional to (1+ number of blue children)

cB(v , t) = number of blue children of v at t time units after the birth of v

At birth vertex is painted red with probability p and painted blue with probability
1− p

v1

v4

v6

v2 v3

v5

cB(v1, t) = 1

cB(v3, t − τ3) = 0

F(t) = Branching process at time t

τn = inf {t : |F(t)| = n}
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Superstar Model: Tools for Analysis

Surgery: From BP Model to Superstar Model

Add an exogenous superstar vertex v0 to the vertex set

For each red vertex remove the edge from parent and create an undirected edge to
the superstar vertex v0

With the surgery done, all edges are made undirected and all colors are erased

v0 (superstar)

v1F(τ6)

v4

v6

v2 v3

v5

v1F(τ6)

v4

v6

v2 v3

v5
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Superstar Model: Tools for Analysis

Relating the BP Construction with the Superstar Model

Claim: S(τn) is “probabilistically the same” as Gn+1

Base case: S(τ1) = G2
v0 v1

Need to show that S(τn) and Gn+1 have same probabilistic evolution

Superstar: probability of joining superstar = probability of red vertex being born = p

Same probability for S and G

Non-superstars: degree of vertex = number of blue children + 1

deg(vk ,Gn+1) = cB(vk , τn − τk) + 1

v1F(τ6) cB(v1, τ6 − τ1) + 1 = 2

G7

v1deg(v1,G7) = 2
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Superstar Model: Tools for Analysis

Further Linking of the BP Model and the Superstar Model

P (vn joins vk |Gn) = P (vn is blue and born to vk |F(τn−1))

=

P (vn joins vk |Gn) = (1− p)
deg(vk ,Gn)∑

vj∈Gn\v0
deg(vj ,Gn)

= (1− p)
deg(vk ,Gn)

2(n − 1)− deg(v0,Gn)
=

P (vn is blue and born to vk |F(τn−1)) = (1− p)
cB(vk , τn − τk) + 1∑

vk∈F(τn−1) cB(vk , τn − τk) + 1

= (1− p)
deg(vk ,Gn)

2(n − 1)− deg(v0,Gn)
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Superstar Model: Tools for Analysis

Non-Superstar Degree

Theorem

There exists a strictly positive, non-degenerate, random variable W such that

|F(t)|e−(2−p)t →W with probability 1 as t →∞

The number of blue children is a Yule process with rate 1− p

cB(vj , t)e−(1−p)t → T where T ∼ Exp(1− p)

deg(vj ,Gn)

n(2−p)−1(1−p)
≈ cB(vj , τn − τj)

|F(τn−1)|(2−p)−1(1−p)

=
cB(vj , τn − τj)e−(1−p)τn

(|F(τn−1)|e−(2−p)τn )
(2−p)−1(1−p)

→ T

W (2−p)−1(1−p)
with probability 1
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Superstar Model: Patterns (or News) You Can Use?

What Did I Learn?

Value of Simple but Honest “Variation”: This is one of the most reliable process in
science. Too old but famous examples: Neyman Scott models and GARCH model.
Nice company for the Superstar Model

Nature of Difficulty: Things are often substantially harder than they look at first
blush. He we took quite an obvious variation on the Preferential Attachment model,
and we were led to quite different mathematics. Still the implications of this work do
tell us something even about the PA model. One can pass from the SS model to the
PA model by letting p → 0.

Using the SS Model:

I The Superstar Model “looks like” perferential attachment with a twist — but the
differences are HUGE!

I It’s easy to use since it is easy to reject. The plain vanilla SS Model is rigid. It if works
it’s great; if it doesn’t you’ll find out quickly.

I This is the charm of a one-parameter model where the parameter is easy to estimate.
I Still, if modeling needs demand changes, further parameters can be introduced.
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Thank you!

Thanks Again to My Co-Authors on This Project

Shankar Bhamidi

Tauhid Zaman
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