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Two papers

• On large girth regular graphs and random processes

on trees, ArXiv

• On the almost eigenvectors of random regular graphs, In

preparation

These papers fit into a longer research project: We

examine random d-regular graphs using graph limit

techniques.



On random regular graphs

• Let d be a fixed number and let G = G(n, d) be a

random regular graph on n vertices. We will think

of n as a big number.

• G looks like a tree locally but it has an interest-

ing and mysterious global geometry. Later in this

talk I will make it precise what we mean by global

structure.

• G a good expander: J. Fiedman: G is almost Ra-

manujan, |λ2| ∼ 2
√
d− 1.



Random matrix theory

• A Wiegner matrix is a random symmetric matrix
with i.i.d entries in the upper half.

• Wiegner conjectured that spacings between the lines
in the spectrum of a complicated quantum system
(say a heavy atom) should resemble the spacings
between the eigenvalues of a random matrix. Later
it was conjectured that the zeros of the Riemann
zeta function on the 1/2 line have a similar distri-
bution.

• Random matrix theory is a very active area recently:
Erdős, Knowles, Tao, Vu, Yau, Yin, etc...



• Two major questions: Eigenvalue distribution (glob-

ally and locally) and structure of eigenvectors.



Random regular graphs as random matrices

• We can think of G = G(n, d) as a random symmetric

0 − 1 matrix in which row sums and column sums

are conditioned to be d. It is interesting to compare

the spectral properties of Wiegner matrices (general

random matrices) and the spectral properties of G.

• Wiegner semicircle Law ←→ Kesten MacKay mea-

sure (uses only local structure of G)

• Eigenvalue spacing: Not known for random regular

graphs



• Main conjecture about eigenvectors: If v is an

eigenvector of G and normalized such that ‖v‖2 =
√
n then the entry distribution of v is close to N(0,1)

in the weak topology

• Despite of significant effort very little was known

about the entry distribution of eigenvectors

• The most interesting results are due to Brooks and

Lindenstrauss (some weak localization), Ananthara-

man (quantum unique ergodicity)



Main result

• Corollary of our main theorem: If v is an eigen-
vector of G and normalized such that ‖v‖2 =

√
n

then the entry distribution of v is close to N(0, σ)
with 0 ≤ σ ≤ in the weak topology.

• Our result is stronger in two ways:

• 1.) It holds for almost eigenvectors: If ‖v‖2 = 1
then ‖(A− λI)v‖2 ∼ 0

• 2.) It implies Gaussianity of joint distributions of
entries in small neighborhoods



• Nice fact: Our result is best possible for almost

eigenvectors! All 0 ≤ σ ≤ 1 can occur!



Motivation

• Spectral properties of G(n, d) are interesting on their
own right but the problem about the eigenvectors
falls into a similar class of problems as maximal in-
dependent sets, maximal cuts etc... (See the talk
of N. Wormald!)

• In all of these problems we try to construct
a labeling of the vertices of G satisfying some
local rule!!!

• We can hope that the solution of any of these prob-
lems will lead to the development of general meth-
ods to study random regular graphs. For example:



Differential equation method (Wormald). In our

case we develop a graph limit (ergodic theoretic)

approach combined with information theory. We

believe that this method will find other applications

in random regular graphs! (Part of our proof is

rather general)



Limits of random regular graphs

• Let d be a fixed number. Is there some nice and

interesting infinite structure which is the limit object

of random d-regular graphs on a growing number of

vertices?

• Note that random regular graphs converge to the

the infinite d-regular tree Td in the Benjamini-Schramm

metric but this is a boring fact.

• Local-global metric (Hatami-Lovász-Sz): Two graphs

G and H are similar if 1.) they are similar in the



Benjamini-Schramm metric 2.) If we put any extra

structure on one of the graphs (which can be ex-

pressed by a coloring of the vertices) then there is

a similar structure on the other graph.

• Example: If G and H are close in this metric and G

is close to be bipartite then so is H. (This similarity

can not be seen from local statistics. )



Convergence of random d-regular graphs

• Is it true that a growing sequence of random d-

regular graphs {Gi}∞i=1 (where Gi is defined on i

vertices) is local-global convergent with probability

1? We don’t know.

• Theorem: From every growing sequnce {ni}∞i=1 of

natural numbers we can choose a sub sequence such

that the above statement becomes true.

• Reason: If n is large enough then random d-regular

graphs on n-vertices are highly concentrated in the

local-global metric



• Note that limit objects are certain measurable graphs

called graphings.



How does ergodic theory enter the picture?

• Classical ergodic theory (Furstenberg) deals with
probability measures on {0,1}Z that are invariant
under the shift operation.

• More generally, if G is a group and it acts on Ω
then we can study G invariant Borel measures on
CΩ where C is some topological space. For us the
interesting case is when Ω = Td (d-regular tree) and
G = Aut(Td).

• if {Gi}∞i=1 is a large girth sequence of d-regular
graphs and {ci : V (Gi) → C}∞i=1 is a B-S conver-
gent sequence of colorings then the B-S limit ob-
ject is an invariant measure on CTd. (This is similar



to Furstenberg’s correspondence principle that was

the starting point of the ergodic theoretic proof of

Szemerédi’s famous theorem)

• Informal definition: We call a process on Td typi-

cal if it comes from sequences of random d-regular

graphs.

• More precise definition: µ is typical if there is a

sequence of natural numbers {ni}∞i=1 with the prop-

erty that with probability one the sequence {G(ni, d)}∞i=1
of random d-regular graphs has a coloring with limit

µ.



• Note that invariant processes on Td can be looked at

as a joint distributions {Xv}v∈Td of random variables

labeled by the vertices of Td.

• Every factor of i.i.d process is typical, but there are

typical processes that are not even in the weak clo-

sure of factor of i.i.d processes (Gamarnik-Sudan)



Basic philosophy

• We study the structure of random d-regular graphs

by studying the properties of typical processes

• Final goal: give a useful characterization of typical

processes (leads to some kind of structure theorem

for random d-regular graphs)

• We collect necessary conditions



Entropy

• The first such necessary conditions follow from an

earlier paper by Backhausz-Sz-Virág as correlation

inequalities.

• The two papers, this talk is based on, study entropy

inequalities. (Information theoretic approach)

• Theorem: Assume that C is a finite set and µ is

a C-valued typical process then (d/2)H(µ|e) ≥ (d −
1)H(µ|o) where e is an edge in Td and o is a vertex

in Td.



• Theorem: H(µ|S) ≥ (d − 2)H(µ|e) where S is a star

in Td

• An invariant process {Xv}v∈Td is an eigenvector pro-

cess with eigenvalue λ if
∑
w∈N(v)Xw = λXv holds

for every v ∈ Td with probability 1.

• Theorem: If µ is a typical process, C ⊂ R is finite

then µ can not be an eigenvector process.

• The above theorem gives some weak restriction

on the structure of eigenvectors of random regu-

lar graphs.



Gaussian eigenvector processes on the tree

• Let X = {Xv}v∈Td be an invariant R valued process

on Td such that it satisfies the eigenvector equation

with λ. If X is jointly Gaussian then X is called a

Gaussian eigenvector process or Gaussian wave.

• History: The theory of Gaussian eigenvector pro-

cesses (or Gaussian waves) is rooted implicitly in

the theory of spherical representations of Aut(Td).

There is a unique Gaussian wave φλ for every |λ| ≤ d.

There is a 2009 paper by Yehonatan Elon with ti-

tle ”Gaussian Waves on the regular Tree” using ex-

plicit probabilistic language.The probabilistic theory



was further developed by Harangi and Virág. They

proved that if |λ| ≤ 2
√
d− 1 then φλ is in the weak

limit of factor of i.i.d processes (but it is not a factor

of i.i.d process).

• Corollary (Harangi, Virág): If |λ| ≤ 2
√
d− 1 then φλ

is typical. In particular every large girth d-regular

graph has many completely delocalized approxima-

tive eigenvectors.



Difficulties and methods of the proof

• The proof can be broken down into parts that are

interesting on their own right.

• First difficulty: Entropy does not work for infinite

probability distributions. Our previous entropy in-

equalities become useless. We can try to discretize.

However it turns out that discretization leads to un-

wanted, uncontrollable error terms. Solution: We

formulate a finer entropy inequality that is designed

to swallow the uncontrollable error terms (magic

cancellation of infinities!). What we obtain is a

quite nice differential entropy inequality.



• Dsp(C) ≥ (d/2)D(e)

• Bad news: This is not tight for Gaussian so it seems

to be useless for Gaussianity.

• Blow up trick gives: Dsp(Bk(C)) ≥ (d/2)Dsp(Bk(e)).

• This becomes tighter and tighter for a Gaussian as

k → ∞!!! (another magic cancellation of infinities)

We needed a description of the eigenvalues of the

covariance operator on large subsets of Td. (Area

law for Gaussian processes)



• Reduction: We use the inequality for all k to obtain

a tight statement for k = 0. This says that among

typical eigenvector processes corresponding to an

eigenvalue λ the expression Dsp(C) − (d/2)D(e) is

at least as big as for the corresponding Gaussian

wave .

• Last step: Above inequality+symmetries imply that

µ is Gaussian. (Extremal problem for finite di-

mensional distributions) Method: Heat equation in-

creases the value of Dsp(C)− (d/2)D(e). (De Bru-

jin’s inequality for Fisher information!)



Concluding remarks

• The proof is 35 pages long, contains methods from

different areas (even some complex function the-

ory). It has parts that go beyond the actual theo-

rem.


