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Regular graphs - ‘Uniform’ model

Gn,d : probability space of d-regular graphs on vertex set
{1, . . . ,n} with uniform distribution:

P(G) =
1
|Gn,d |

for all G ∈ Gn,d .
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Some properties of interest

What properties does G ∈ Gn,d have with respect to
connectivity, subgraphs?
Hamilton cycles?
vertex and edge colourings?
large independent sets?
min and max bisections?

A property Q holds asymptotically almost surely (a.a.s.) in a
random graph model if

P(G has Q)→ 1 as n→∞.
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Framework of analysis of random regular graphs

Theorem [Bender, Canfield ’78]

|Gn,d | ∼
(dn)!e(1−d2)/4

(dn/2)!2dn/2d !n

Configuration model presented by Béla Bollobás (’79) is
convenient for directly showing a.a.s. results.
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By showing the probability of the graph being simple is
asymptotic to e(1−d2)/4, we get the Bender-Canfield formula

|Gn,d | ∼
(dn)!e(1−d2)/4

(dn/2)!2dn/2d !n

since each simple graph corresponds to d !n pairings.



Basic facts on cycles

Theorem [W ’80; Bollobás ’80]
Let G ∈ Gn,d . Let Xi denote the number of cycles of length i .
Then X3,X4, . . . are asymptotically independent Poisson random
variables with means E(Xi)→ (d−1)i

2i .



Closeup of a large random 3-regular graph:



Independent sets

Let α(G) denote the independence number of G, i.e.

α(G) = max cardinality of an independent set of vertices in G

Theorem [Frieze and Łuczak, ’92]
Fix d ≥ 3. Then G ∈ Gn,d a.a.s. satisfies

α(G) =
2 log d

d
n (1 + O(ξ))

where ξ → 0 as d →∞.

But this says nothing about d = 3 say.
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Finding large independent sets

Greedy algorithms find large independent sets in random
d-regular graphs.

Theorem [W, ’95]
Fix d ≥ 3 and ε > 0. Then G ∈ Gn,d a.a.s. satisfies

α(G) ≥ (β1(d)− ε)n

where β1(d) = 1
2

(
1− (d − 1)−2/(d−2)).

Method: Build an independent set by randomly adding a vertex,
deleting all its neighbours from the graph, and repeating.



Finding large independent sets

Greedy algorithms find large independent sets in random
d-regular graphs.

Theorem [W, ’95]
Fix d ≥ 3 and ε > 0. Then G ∈ Gn,d a.a.s. satisfies

α(G) ≥ (β1(d)− ε)n

where β1(d) = 1
2

(
1− (d − 1)−2/(d−2)).

Method: Build an independent set by randomly adding a vertex,
deleting all its neighbours from the graph, and repeating.



Finding even larger independent sets

The degree-greedy algorithm for finding an independent set in
a graph G:

Repeat:
Choose a random vertex v of degree δ(G).
Add v to the independent set and delete v and its neighbours
from G.
Until:

G is empty.
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Analysis

We actually apply the degree-greedy algorithm to the pairing
model. The remaining pairing remains random (subject to its
degree sequence).

Let Yi = Yi(t) denote the number of vertices of degree i (i.e.
degree counts) in the graph Gt after t steps.

Deleting a vetex of degree k means that the endpoints of k
pairs have to be chosen.

The probability that the other end of a pair is in a vertex of
degree j is

no. of points in cells of size j
total number of points

=
jYj + O(1)

m

where the total number of points is m =
∑

i iYi .



Expected changes in the variables

Conditioning on the degree counts Y = (Y0, . . . ,Yd),

E
(

Yi(t + 1)− Yi(t) | Y s.t. δ(Gt) = r
)
= fi,r (Y/n) + o(1).

Let Opr denote the operation performed when the minimum
degree is r .
For degree-greedy independent sets algorithm, Opr is:

choose a random vertex v of degree r
delete v and its neighbours
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Expected changes lead to a d.e.

By studying branching processes we can estimate the
proportion ρr of steps for which Opr is performed (i.e.
δ(Gt) = r ) in any short segment — depending on Y/n.

This suggests the differential equation

dyi

dx
=

d∑
r=0

ρr (y)fi,r (y)

where
y ≈ Y/n, x = t/n.

Comment: ρr (y) can be discontinuous, causing phases
between non-smooth points, and yielding a system of
right-hand derivatives only.
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degree-greedy on 3-regular graphs: solution

Solution of the differential equations:

We can use a general theorem to show that the process
variables a.a.s. track close to the solutions of the differential
equations:
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Differential equation method

Key ingredients:

Boundedness hypothesis:

||Y(t + 1)− Y(t)|| ≤ C0

Trend and Lipschitz hypotheses:

||E(Y(t + 1)− Y(t) | Ht)− f (t/n,Y(t)/n)| = o(1)

where Ht is the history of the process at time t , and f is a
Lipschitz function.

Conclusion: the differential equation
d y
dx

= f (x ,y) has a unique
solution with appropriate initial condition, and a.a.s.

Y(t) = n y(t/n) + o(n)

uniformly for 0 ≤ t ≤ Cn.



Lower bounds on independent set ratio

β0: earlier known (from Shearer)
β1: simple greedy
β2: degree greedy

d β0(d) β1(d) β2(d)
3 0.4139 0.3750 0.4328
4 0.3510 0.3333 0.3901
5 0.3085 0.3016 0.3566

10 0.2032 0.2113 0.2573
20 0.1297 0.1395 0.1738
50 0.0682 0.0748 0.0951
100 0.0406 0.0447 0.0572
→∞ → log d/d → log d/d ?



More general issues

Bayati, Gamarnik and Tetali [’13] showed existence of a limiting
value for the proportion of vertices in a max independent set
(d-regular in general, d fixed).

Ding, Sly and Sun recently confirmed the predictions of
one-step replica symmetry breaking heuristics to find this limit
for d sufficiently large.
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Max number of edges crossing a balanced partition of the
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Lower bounds for max bisection (or max cut) a.a.s. ( Dı́az, Do,
Serna, W., 2003–2007 ):

3-regular: 1.326n
4-regular: 5n/3
5-regular: 1.997n
etc.

Complementary upper bounds for min bisection, i.e.
3-regular∗: 0.174n
4-regular: n/3
5-regular: 0.503n

∗ there are more recent improvements on max cut in the
3-regular case
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Deprioritisation for smoother algorithms

dyi

dx
=

d∑
r=0

ρr (y)fi,r (y) has solutions yi(x).

Same solutions arise if we specify
P(op at time x is Opr ) = ρr (y(x)).

But the vertices of degree r might become exhausted,
prohibiting Opr .
So include an initial period creating vertices of all degrees.

The result is a deprioritised algorithm.
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Deprioritised algorithms are convenient

Theorem [W, ’04]
Provided the functions fi,r governing the prioritised algorithm sat-
isfy certain simple conditions, there is a deprioritised algorithm
with behaviour governed by the same differential equation.

This has been convenient to use for a number of algorithms,
particularly the ones exhibiting phases.
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Results on other problems

A.a.s. upper bound on minimum independent dominating sets
[Duckworth and W., ’06]. (Easiest to analyse using a
deprioritised algorithm.)
3-regular: 0.27942n
4-regular: 0.24399n
5-regular: 0.21852n
50-regular: 0.05285n

Other results: k -independent sets, maximum induced
matchings, ...
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Greedy colouring algorithm analysed by differential equations.

BUT colour the short odd cycles first, THEN be greedy.
AND stop with cn vertices uncoloured.
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Theorem [Shi and W, ’07]
χ(Gn,4) = 3 a.a.s.

Similarly,

5-regular: 3 or 4

6-regular: 4

7-regular: 4 or 5
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Just a few unsolved problems

What is the (limiting) size of the

largest independent set
max cut
min bisection

in a random 3-regular graph?

Is there a limiting size (scaled by n) in the d-regular case for
max cut and max/min bisection?


	Definitions

