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Regular graphs - ‘Uniform’ model

Gn.4 - probability space of d-regular graphs on vertex set
{1,..., n} with uniform distribution:

P(G)

1
= forall G e G,gq4.
’gmd’ n,d



Some properties of interest

What properties does G € G, 4 have with respect to
@ connectivity, subgraphs?
@ Hamilton cycles?
@ vertex and edge colourings?
@ large independent sets?
@ min and max bisections?
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A property Q holds asymptotically almost surely (a.a.s.) ina
random graph model if

P(Ghas Q) - 1asn— .



Framework of analysis of random regular graphs

Theorem [Bender, Canfield '78]
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Theorem [Bender, Canfield '78]

(dn)le1—a*)/4
(dnj2)120n/2g1n
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Configuration model presented by Béla Bollobas ('79) is
convenient for directly showing a.a.s. results.
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How to calculate with random regular graphs

... a random 3-regular graph.



By showing the probability of the graph being simple is
asymptotic to e('=9*)/4 we get the Bender-Canfield formula

(dn)1el1-d)/4
(dn/2)129n/2d1n

|gn,d| ~

since each simple graph corresponds to d!” pairings.



Basic facts on cycles

Theorem [W ’80; Bollobas '80]

Let G € G, 4. Let X; denote the number of cycles of length i.
Then X3, Xy, .. . are asymptotically independent Poisson random

variables with means E(X;) — ﬁ%x.




Closeup of a large random 3-regular graph:
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Theorem [Frieze and tuczak, '92]

Fix d > 3. Then G € G, 4 a.a.s. satisfies
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Independent sets

Let «(G) denote the independence number of G, i.e.

a(G) = max cardinality of an independent set of vertices in G

Theorem [Frieze and tuczak, '92]

Fix d > 3. Then G € G, 4 a.a.s. satisfies

o(G) = 2Iogd

n(1+0(¢))

where £ -+ 0as d — .

But this says nothing about d = 3 say.



Finding large independent sets

Greedy algorithms find large independent sets in random
d-regular graphs.



Finding large independent sets

Greedy algorithms find large independent sets in random
d-regular graphs.

Theorem [W, '95]

Fix d > 3and ¢ > 0. Then G € G, 4 a.a.s. satisfies
a(G) > (B1(d) —€)n
where $1(d) = %(1 —(d— 1)—2/(d—2))‘

Method: Build an independent set by randomly adding a vertex,
deleting all its neighbours from the graph, and repeating.



Finding even larger independent sets

The degree-greedy algorithm for finding an independent set in
a graph G:

Repeat:

Choose a random vertex v of degree §(G).
Add v to the independent set and delete v and its neighbours
from G.

Until:
G is empty.
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Finding even larger independent sets

The degree-greedy algorithm for finding an independent set in
a graph G:

Repeat:

Choose a random vertex v of degree §(G).
Add v to the independent set and delete v and its neighbours
from G.

Until:
G is empty.




Analysis

We actually apply the degree-greedy algorithm to the pairing
model. The remaining pairing remains random (subject to its
degree sequence).

Let Y; = Y;(t) denote the number of vertices of degree i (i.e.
degree counts) in the graph G; after t steps.

Deleting a vetex of degree k means that the endpoints of k
pairs have to be chosen.

The probability that the other end of a pair is in a vertex of
degree j is

no. of points in cells of size j  jY; + O(1)
total number of points m

where the total number of pointsis m =}, /Y.



Expected changes in the variables
Conditioning on the degree counts Y = (Yp, ..., Yy),

E<Y,-(t+ 1) = Yi(t) | Y s.t. 8(Gy) = r) = f,,(Y/n) + o(1).



Expected changes in the variables
Conditioning on the degree counts Y = (Yp, ..., Yy),

E<Y,-(t+ 1) = Yi(t) | Y s.t. 8(Gy) = r) = £,,(Y/n) + o(1).

Let Op, denote the operation performed when the minimum
degreeis r.

For degree-greedy independent sets algorithm, Op, is:

choose a random vertex v of degree r
delete v and its neighbours



Expected changes lead to a d.e.
By studying branching processes we can estimate the
proportion p, of steps for which Op, is performed (i.e.
d(G¢) = r) in any short segment — depending on Y/n.

This suggests the differential equation
d
e Z pe(¥)fi(

where
y~Y/n, x=t/n.



Expected changes lead to a d.e.

By studying branching processes we can estimate the
proportion p, of steps for which Op, is performed (i.e.
d(G¢) = r) in any short segment — depending on Y/n.

This suggests the differential equation

d
yl Zpr Y)fir(y

where
y~Y/n, x=t/n.

Comment: p,(y) can be discontinuous, causing phases
between non-smooth points, and yielding a system of
right-hand derivatives only.



degree-greedy on 3-regular graphs: solution

Solution of the differential equations:
17
Y3
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degree-greedy on 3-regular graphs: solution

Solution of the differential equations:
1_
Y3

04328

We can use a general theorem to show that the process
variables a.a.s. track close to the solutions of the differential
equations:



Differential equation method
Key ingredients:
@ Boundedness hypothesis:
[1Y(t+1) = Y(@)l < Go
@ Trend and Lipschitz hypotheses:
IE(Y(t+1) = Y(t) | Hr) — £(t/n, Y(t)/n)| = o(1)

where H; is the history of the process at time t, and f is a
Lipschitz function.

Conclusion: the differential equation Z}(’ = f(x,y) has a unique

solution with appropriate initial condition, and a.a.s.
Y(t) = ny(t/n) + o(n)

uniformly for 0 <t < Cn.



Lower bounds on independent set ratio

Bo: earlier known (from Shearer)
B1: simple greedy
B2: degree greedy

| d [ Bold) | Bi(d) | Be(d) |
3 0.4139 0.3750 | 0.4328
4 0.3510 0.3333 | 0.3901
5 0.3085 0.3016 | 0.3566
10 0.2032 0.2113 | 0.2573
20 0.1297 0.1395 | 0.1738
50 0.0682 0.0748 | 0.0951
100 0.0406 0.0447 | 0.0572

— oo || —»logd/d | — logd/d ?




More general issues

Bayati, Gamarnik and Tetali ['13] showed existence of a limiting
value for the proportion of vertices in a max independent set
(d-regular in general, d fixed).

Ding, Sly and Sun recently confirmed the predictions of
one-step replica symmetry breaking heuristics to find this limit
for d sufficiently large.
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Lower bounds for max bisection (or max cut) a.a.s. ( Diaz, Do,
Serna, W., 2003—-2007 ):

3-regular: 1.326n

4-regular: 5n/3

5-regular: 1.997n

etc.
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Lower bounds for max bisection (or max cut) a.a.s. ( Diaz, Do,
Serna, W., 2003—-2007 ):

3-regular: 1.326n
4-regular: 5n/3

5-regular: 1.997n
etc.

Complementary upper bounds for min bisection, i.e.
3-regular*: 0.174n

4-regular: n/3

5-regular: 0.503n

* there are more recent improvements on max cut in the
3-regular case
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Deprioritisation for smoother algorithms

dy, Zp, y)fi(y) has solutions y;(x).

Same solutions arise if we specify

P(op at time x is Op,) = pr(y(X)).

But the vertices of degree r might become exhausted,
prohibiting Op,.

So include an initial period creating vertices of all degrees.

The result is a deprioritised algorithm.



Deprioritised algorithms are convenient

Theorem [W, '04]

Provided the functions f; , governing the prioritised algorithm sat-
isfy certain simple conditions, there is a deprioritised algorithm
with behaviour governed by the same differential equation.




Deprioritised algorithms are convenient

Theorem [W, '04]

Provided the functions f; , governing the prioritised algorithm sat-
isfy certain simple conditions, there is a deprioritised algorithm
with behaviour governed by the same differential equation.

This has been convenient to use for a number of algorithms,
particularly the ones exhibiting phases.



Results on other problems

A.a.s. upper bound on minimum dominating sets
[Duckworth and W., ’06]. (Easiest to analyse using a
deprioritised algorithm.)

3-regular: 0.27942n
4-regular: 0.24399n
5-regular: 0.21852n
50-regular: 0.05285n



Results on other problems

A.a.s. upper bound on minimum dominating sets
[Duckworth and W., ’06]. (Easiest to analyse using a
deprioritised algorithm.)

3-regular: 0.27942n
4-regular: 0.24399n
5-regular: 0.21852n
50-regular: 0.05285n

Other results: k-independent sets, maximum induced
matchings, ...
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Chromatic number of random 4-regular graphs

Greedy colouring algorithm analysed by differential equations.

o P 26

(ii) (iii)

X

(iv) )

BUT colour the short odd cycles first, THEN be greedy.
AND stop with cn vertices uncoloured.



Theorem [Shi and W, '07]

X(Gna) =3 a.as.




Theorem [Shi and W, "07]

X(Gna) =3 a.as.

Similarly,
5-regular: 3 or 4
6-regular: 4

7-regular: 4 or 5



Just a few unsolved problems

What is the (limiting) size of the

@ largest independent set
@ max cut
@ min bisection

in a random 3-regular graph?

Is there a limiting size (scaled by n) in the d-regular case for
max cut and max/min bisection?



	Definitions

