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Background: independent sets in regular graphs

If ∆(G) = d then α(G) ≥ n/(d + 1).

If triangle-free G has large enough average degree d then
α(G) ≥ n ln d/(100d) [Ajtai, Komlós, Szemerédi, ’81]

If triangle-free G is d-regular then α(G) ≥ nf (d) where
f (0) = 1, f (d) = (1 + (d2 − d)f (d − 1))/(d2 + 1) [Shearer ’91]
and improved result (different IC’s, same rec.) for large girth.

Such results extend to graphs G with ∆(G) = d .
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Random regular graphs

Gn,d is the uniform probability space of random d-regular
graphs on n labelled vertices.

a.a.s. means “asymptotically almost surely” (as n→∞)

Theorem [W., Bollobás]
Let G ∈ Gn,d . Fix g.

P(G has girth at least g)→ c
Number of cycles of length less than g is a.a.s. O(w(n)) for
any function w(n)→∞.

Bollobás: A.a.s. independent set size in the random case is at
most (2n log d)/d . Hence there are some large girth graphs
with no independent set bigger than this.
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Random results from deterministic

Random graphs are almost of large girth. Properties of large
girth graphs often translate to the random case.

Let G ∈ Gn,d .

Remove a set R of O(log n) edges, to get G′ of girth at
least g.
G′ has large girth and ∆(G′) ≤ d . So has an independent
set S of size at least cd ,gn (e.g. by Shearer).
Remove from S the vertices incident with R. Then a.a.s.
α(G) ≥ cd ,gn −O(log n).
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Better results for random case

Greedy algorithms find large independent sets in random
d-regular graphs.

Theorem [W, ’95]
Fix d ≥ 3 and ε > 0. Then G ∈ Gn,d a.a.s. satisfies

α(G) ≥ (β1(d)− ε)n

where β1(d) = 1
2

(
1− (d − 1)−2/(d−2)).

Proof outline: add vertices greedily. Analyse.
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Even better results for random case

Modify dumb greedy algorithm.
When selecting a new vertex v , pick it randomly from those
of minimum degree in the shrinking graph.
(“Degree-greedy”)

Analysis [W, ’95] gives a result β2(d) by solving differential
equations. Seems always better than all previous bounds.
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Even better results for random case (ctd)

d β0(d) β1(d) β2(d)

3 0.4139 0.3750 0.4328
4 0.3510 0.3333 0.3901
5 0.3085 0.3016 0.3566
6 0.2771 0.2764 0.3296
7 0.2528 0.2558 0.3071
8 0.2332 0.2386 0.2880
9 0.2169 0.2240 0.2716

10 0.2032 0.2113 0.2573
20 0.1297 0.1395 0.1738
50 0.0682 0.0748 0.0951
100 0.0406 0.0447 0.0572
→∞ → log d/d → log d/d ?



Going from random to large girth

It follows that random large girth regular graphs a.a.s. have
such large independent sets.

Other examples:

A random 3-regular graph a.a.s. has an independent
dominating set of size at most 0.280n

4-regular: 0.244n.
5-regular: 0.219n
etc.

BUT these don’t tell us about all large girth regular graphs.
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A greedy algorithm

Upper bound on max dominating set in all graphs G with
δ(G) ≥ d [Alon; folklore] :

Include each vertex of G in D independently with
probability p.

G has n vertices. Expected number in D is exactly np.

Expected number not in D and not “covered” is at most
n(1− p)d+1. Add these to D.

D is now dominating of expected size at most
np + n(1− p)d+1.

So some D is this small. Choose p to minimise.
E.g. this gives 0.527n if d = 3.
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Summary and question

Deterministic results for large girth can carry over to random
d-regular graphs.

However, greedy algorithms on random graphs often obtain
better results.

And from the result on max dominating sets:
Some greedy algorithms give useful results for all graphs.

Strategic question:
How can we strengthen known results on random graphs in
some class to cover all graphs in the class? (Or at least some
nice large subset of it.)
Cannot in general
BUT:
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For large girth graphs

Recall β1 from the Gn,d case:

Theorem [Lauer & W ’07]

Fix d ≥ 3 and ε > 0. If G is a d-regular graph with sufficiently
large girth then α(G) ≥ (β1(d)− ε)n.

Proof is by analysing the simple greedy algorithm performed in
a small number of ‘rounds’.

NOTE: for d ≤ 6, better results are known.

Similar result for maximal induced forests (Hoppen & W ’08).
These arguments used expectation only.
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New results

But what about the better degree-greedy algorithm?

We can show, in a general way, bounds for all d-regular graphs
of sufficiently large girth similar to the random case, with
respect dominating sets, independent sets and many other
objects.

The proof uses the random graph results, together with some
features of their proofs.
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Basic approach

We define a set of algorithms ( chunky LDA ). Such an
algorithm A(ε) produces output SET satisfying the following:

(i) Sharp behaviour for random input
When A(ε) is applied to Gn,d , a.a.s. |SET| = cn ± εn, c > 0.

(ii) Fixed expectation for large girth input
The expected size of SET is exactly bn when A(ε) is applied to
any d-regular n-vertex graph G of girth g ≥ g(ε).

Taking n→∞ gives b = c ± ε since Gn,d has girth g with
positive probability.

{(ii) , first moment principle} =⇒ all d-regular graphs of girth
≥ g(ε) must have a SET of size ≥ cn ± εn. (Now let ε→ 0.)
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Important features of chunky LDAs

We can compute the constant c and hence explicitly give
their performance.
We can approximate known powerful greedy algorithms
using chunky LDAs.



Definition of LDA (Local Deletion Algorithm)

Input G = G0.
For t = 1, . . . ,N, repeat the following Step t :
(i) Selection step : a selection rule Πt produces a (usually,
random) St ⊆ Gt−1 of seeds
(ii) Exploration step : for each seed v ∈ St , obtain a (bounded
diameter) subgraph ψv of Gt−1 containing v using a local rule L
(iii) Clash step : if ψv does not induce a tree or is adjacent to
some ψu, all its vertices are designated as clash vertices
(iv) Insertion step : add some subset of the vertices explored
(depending on the isomorphism type of the explored
neighbourhood) to an output set O. Delete all explored vertices
to obtain Gt . Optionally, can colour some vertices.



Local Rule

Repeatedly apply a “local subrule”

Can also (optionally) colour some of the vertices.
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Selection Rule, and Chunky LDA’s

Example of selection rule: Pick a random vertex of degree i .

In chunky LD algorithms the selection rule consists of
choosing each vertex of type j in step t as a seed
independently with probability pj,t . (Values predetermined.)



Using Chunky LDA’s

For a given local rule L there is an easily described system of
differential equations

y ′j (x) =
R∑

i=1

pi(x)yi(x)fj,i(y1, . . . , yR) (1 ≤ j ≤ R + 1)

such that
(i) we can construct chunky LDA’s with local rule L and whose
performance is described by the solutions of the d.e. system,
i.e. to within accuracy εn, when run on a random d-regular
graph.
(ii) the d.e. system also essentially describes their performance
on all d-regular graphs of girth at least some g(ε).



Deprioritising to get smoothness

In the degree-greedy independent set algorithm, the probability
a vertex is chosen depends on a global property (minimum
degree). So it is not a chunky LDA.

It can be deprioritised: instead of min degree, define functions
qi(x) such that the probability that a degree i vertex is chosen
at step t is qi(t/n).
We can choose q’s to mimic the behaviour of the
degree-greedy, when applied to random d-regular graphs.
These were given explicitly for a general class of prioritised
algorithms (satisfying certain technical conditions) [W 03].
Those deprioritised algorithms are amenable in the following
sense.
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Amenable deprioritised algorithms

A local deletion algorithm is an amenable deprioritised
algorithm if the selection rule is of the following type.

p̃i : [0,M]→ [0,1] is a piecewise Lipschitz continuous function,
for each possible vertex type i (1 ≤ i ≤ R), such that∑R

i=1 p̃i(x) = 1.

(i) A number i ∈ {1, . . . ,R} is chosen with
probability pi(t ,n) = p̃i (t/n);

(ii) a vertex v of type i is chosen uniformly at
random.



Chunkifying amenable deprioritised algorithms

Theorem [Hoppen & W ’14+]

For each amenable deprioritised algorithm A, and ε > 0, there
is a chunky LDA that has (up to O(εn)) the same behaviour on
regular graphs of sufficiently large girth as A does.
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Recycled results

All the deprioritised algorithms in [W 03] are amenable. So the
bounds found there for random d-regular graphs carry over to
all d-regular graphs with sufficiently large girth.

These include the best known guarantees for the size of
independent sets ∗, dominating sets , k -independent sets ,
k -dominating sets , k -independent matchings .

∗ For d ≥ 5: see later.



Some other results are easily deprioritised

Some of the existing results on random d-regular graphs were
obtained by degree-greedy type algorithms without
deprioritising.
By creating associated amenable deprioritised algorithms, we
have obtained the corresponding results for all large girth
d-regular graphs in the following cases:

Min and max bisection.
Min connected and weakly connected dominating sets.
Min power dominating sets in cubic graphs.



Improvements for the random case (and large girth)

A very early version of this work appeared in Hoppen’s thesis
(’08), obtaining the independent set result via expectation
arguments only (adapting Lauer & W)

In his thesis, Hoppen improved the results for max
induced forests using a new prioritised algorithm.



Improvements for independent sets
Kardoš, Král and Volec (’11) adapted the approach in
Hoppen’s thesis to obtain the lower bound 0.4352n for
max independent set in 3-regular graphs (previously
0.4328n).
Improved to 0.4361n by Csóka, Gerencsér, Harangi and
Virág using invariant Gaussian processes on the d-regular
tree. Their computer simulations suggest 0.438n as well.
Hoppen&W rederived the KKV result 0.4352n directly
using the prioritised approach, and used an improved
prioritised algorithm and similar analysis to get 0.4375n
(expressed as an integral of a rational function).

Fernholz (PhD, ’07, U Texas, Austin ) gives 0.43946n
(random case only)
Csóka (preprint ’16) 0.44533n (better prioritised algorithm).
4-regular similar.



Improvements for max cut

Kardoš, Král and Volec (’14) improved the lower bound for
max cut in 3-regular graphs to 1.33008n. Hoppen&W gave
a short proof using an amenable deprioritised algorithm.
Csóka (preprint ’16) 1.34105n (again, prioritised
algorithm).



Some of the remaining questions

Properties of other structures (e.g. Boolean formulae) of large
“girth” should follow in a similar way.

Are random regular graphs virtually indistinghuishable from
regular graphs of large girth?

What is the problem with chromatic number - why doesn’t the
random regular result carry over?

Conjecture: all 4-regular graphs of sufficiently large girth are
3-colourable.
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