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Prime Time

The Prime Numbers

One of the principal strategies by which we come to understand our physical
or conceptual world is to break things down into pieces, describe the most
basic pieces, and then describe how those pieces are assembled to create the
whole. Our goal is to understand the natural numbers, so here we adopt that
reductionist strategy and think about breaking natural numbers into pieces.

We begin by thinking about how natural numbers can be combined to
create other natural numbers. The most basic method is through addition.
So let’s think about breaking natural numbers into their most basic pieces
from the point of view of addition. What are the ‘elements’ so to speak with
respect to addition of natural numbers? The answer is that there is only one
element, the number 1. Every other natural number can be further broken
down into smaller natural numbers that add together to create the number we
started with. Every natural number is simply the sum of | +1 4+ 14+ L.
Of course, this insight isn’t too illuminating since every natural number
looks very much like any other from this point of view. However, it does
underscore the most basic property of the natural numbers, namely, that
they all arise from the process of just adding |1 some number of times. In
fact, this property of natural numbers lies at the heart of inductive processes
both for constructing the natural numbers and often for proving theorems
about them.

A more interesting way of constructing larger natural numbers from
smaller ones is to use multiplication. Let’s think about what the elementary
particles, so to speak, are of the natural numbers with respect to multipli-

21
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cation. That is, what are the natural numbers that cannot be broken down
into smaller natural numbers through multiplication. What natural numbers
are not the product of smaller natural numbers? The answer, of course, is
the prime numbers.

The study of primes is one of the main focuses of number theory. As we
shall prove, every natural number greater than | is either prime or it can
be expressed as a product of primes. Primes are the multiplicative building
blocks of all the natural numbers.

The prime numbers give us a world of questions to explore. People have
been exploring primes for literally thousands of years, and many questions
about primes are still unanswered. We will prove that there are infinitely
many primes, but how are they distributed among the natural numbers?
How many primes are there less than a natural number n? How can we
find them? How can we use them? These questions and others have been
among the driving questions of number theory for centuries and have led
to an incredible amount of beautiful mathematics.

New concepts in mathematics open frontiers of new questions and un-
charted paths of inquiry. When we think of an idea, like the idea of prime
numbers, we can pose questions about them to integrate the new idea with
our already established web of knowledge. New mathematical concepts then
arise by making observations, seeing connections, clarifying our ideas by
making definitions, and then making generalizations or abstractions of what
we have observed.

When we have isolated a concept sufficiently to make a definition, then
we can state new theorems. We will see not only new theorems, but also
new types of proof.

All proofs are simply sequences of statements that follow logically from
one another, but one structure of proof that you will develop and use in this
chapter and future chapters is proof by induction. You will naturally come
up with inductive styles of proving theorems on your own. In fact you may
already have used this kind of argument in the last chapter, for example,
in proving that the Euclidean Algorithm works. Inductive styles of proof
are so useful that it is worthwhile to reflect on the logic involved. We have
included an appendix that describes this technique of proof, and this may
be a good time to work through that appendix.

Fundamental Theorem of Arithmetic

The role of definitions in mathematics cannot be overemphasized. They al-
low us to be precise in our language and reasoning. When a new definition
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is introduced, you should take some time to familiarize yourself with its de-
tails. Try to get comfortable with its meaning. Look at examples. Memorize
it.

Definition. A natural number p > 1 is prime if and only if p is not the
product of natural numbers less than p.

Definition. A natural number 1 is composite if and only if # is a product
of natural numbers less than #.

The following theorem tells us that every patural number larger than 1
has at least one prime factor.

2.1 Theorem. If n is a natural number greater than 1, then there exists a
prime p such that pln.

To get accustomed to primes, it’s a good idea to find some.

2.2 Exercise. Write down the primes less than 100 without the aid of a
calculator or a table of primes and think about how you decide whether

each mumber you select is prime or not.

You probably identified the primes in the previous exercise by trial di-
vision. For example, to determine whether or not 91 was prime, you might
have first tried dividing it by 2. Once convinced that 2 does not divide 91,
you probably moved on to 3; then 4; then 5; then 6. Finally, you reached 7
and discovered that in fact 91 is not a prime. You were probably relieved, as
you might have secretly feared that you would have to continue the daunt-
ing task of trial division 91 times! The following theorem tells us that you
need not have been too concerned.

2.3 Theorem. A natural number n > 1 is prime if and only if for all primes
p < /n, p does not divide n.

2.4 Exercise. Use the preceding theorem to verify that 101 is prime.

The search for prime numbers has a long and fascinating history that
continues to unfold today. Recently the search for primes has taken on
practical significance because primes are used everyday in making internet
communications secure, for example. Later, we will investigate ways that
primes are used in cryptography. And we’ll see some modern techniques
of identifying primes. But let’s begin with an ancient method for finding
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primes. The following exercise introduces a very early method of identifying
primes attributed to the scholar Eratosthenes (276-194 BC).

2.5 Exercise (Sieve of Eratosthenes). Write down all the natural numbers
from 1 1o 100, perhaps on a 10x 10 array. Circle the number 2, the smallest
prime. Cross off all numbers divisible by 2. Circle 3, the next number that
is not crossed out. Cross off all larger numbers that are divisible by 3.
Continue to circle the smallest number that is not crossed out and cross
out its multiples. Repeat. Why are the circled numbers all the primes less
than 1007

With our list of primes, we can begin to investigate how many primes
there are and what proportion of natural numbers are prime.

2.6 Exercise. For each natural number n, define w(n) to be the number

of primes less than or equal to n.
1. Graph w(n) for n = 1,2,...,100.

2. Make a guess about approximately how large w(n) is relative to n. In
particular, do you suspect that 3,(7”) is generally an increasing function
or a decreasing function? Do you suspect that it approaches some
specific number (as a limit) as n goes to infinity? Make a conjecture
and try o prove it. Proving your conjecture is a difficult challenge.
You might use a computer lo extend your list of primes to a much
larger number and see whether your conjecture seems to be holding

up.

Mathematicians do not give out the title of “Fundamental Theorem” too
often. In fact, you may have only come across one or two in your lifetime
(the Fundamental Theorem of Algebra and the Fundamental Theorem of
Calculus come to mind). We might think of such theorems as somehow very
important. If so, we would be correct. What makes a theorem important?
One answer might be that it captures a basic relationship and that it is widely
applicable (o explaining a broad range of mathematics. We will see that the
Fundamental Theorem of Arithmetic certainly possesses these qualities.

We will write the Fundamental Theorem of Arithmetic in two parts: the
Existence part and the Uniqueness part. The Existence part says that every
patural number bigger than 1 can be written as the product of primes and
the Uniqueness part says basically that there is only one way to do so. For
example, 24 = 2% .3 =3.23%
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2.7 Theorem (Fundamental Theorem of Arithmetic—Existence Part). Ev-
ery natural number greater than | is either a prime number or it can be
expressed as a finite product of prime numbers. That is, for every natural
number n greater than 1, there exist distinct primes pi, pa...., pm and
natural numbers 1y, ra, ..., Fm such that

o= pi'l [752 .“])’/;;n'
The following lemma might be helpful in proving the Uniqueness part of

the Fundamental Theorem of Arithmetic. A lemma is actually a theorem, but
it is designed to be a step towards the proof of a more important theorem.

2.8 Lemma, Lef p and Gy, qa, ..., qn all be primes and let k be a natural
number such that pk = q1qa2---qn. Then p = q; for some i.

2.9 Theorem (Fundamental Theorem of Arithmetic—Uniqueness part), Le!
n be a natural number. Let {py, pa,..., pm} and {q1.q2. ..., qs} be sets
of primes with p; % p; ifi # jand ;i # q; if i # j. Let {ri,ra, ..., 'm}
and {t1, 12, ..., 15} be sets of natural numbers such that

— LA ) r
= pyrpy P

Ll 02 ty
— (/1 5/2 ”'q,s"‘

Then m = s and {p1,p2,.--. pm} = {41.q2. ..., qs}. That is, the sets
of primes are equal bul their elements are not necessarily listed in the
same order, that is, p; may or may not equal q;. Moreover, if p; = ¢;
then ri = t;. In other words, if ' we express the same natural number as
a product of powers of distinct primes, then the expressions are identical
except for the ordering of the factors.

Putting the existence and uniqueness parts together, we get the whole
formulation of the Fundamental Theorem of Arithmetic:

Theorem (Fundamental Theorem of Arithmetic). Every natural number
greater than | is either a prime number or it can be expressed as a finite
product of prime numbers where the expression is unique up to the order

of the factors.

Let’s take a moment to think through a little issue about our definition
of “prime.” Humans make decisions about what definitions to make. Let’s
think about the choices we made in defining “prime.” One notion of “prime”
is the inability to further decompose. Surely | meets this criterion. Yet our
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choice of definition of prime omits 1. What is the advantage to not choosing
to include 1 among the prime numbers? If 1 were called a prime, why would
the Fundamental Theorem of Arithmetic no longer be true?

The Fundamental Theorem of Arithmetic tells us that every natural num-
ber bigger than 1 is a product of primes. Here are some exercises that help
to show what that means in some specific cases.

2.10 Exercise. Express n = 12V as a product of primes.
2.11 Exercise. Determine the number of zeroes at the end of 251.

The Fundamental Theorem of Arithmetic says that for any natural number
n > 1 there exist distinct primes {p1, p2,.... pm} and natural numbers
{r1.7r2, ..., 'm} such that

g o !l 2 r
n=pypy oy
and moreover, the factorization is unique up to order. When the p; are

ordered so that py < py < -+ < p,; we will say that py' ps? -« pi" is the
unique prime factorization of n.

Applications of the Fundamental Theorem of Arithmetic

One application of the Fundamental Theorem of Arithmetic is that if we
know the prime factorizations of two natural numbers, it is a simple matter
to determine whether one divides the other. The following is a characteri-
zation of divisibility in terms of primes. There are lots of letters and lots of
subscripts, but once understood, this theorem makes sense.

2.12 Theorem. Ler a and b be natural numbers greater than | and let
Pl P pi be the unique prime factorization of a and let ¢ ' q5 -+ g
be the unique prime factorization of b. Then a|b if and only if for all i < m
there exists a j < s such that p; = q; and r; <t;.

Prime factorizations make it easy to prove some assertions that might
otherwise be more difficult.

2.13 Theorem. [f a and b are natural mumbers and a®|b?, then alb.

Prime factorizations can help us to find the greatest common divisor and
least common multiple of two natural numbers. Here are some examples.

2.14 Exercise. Find (31%-722.11°. 173,52 114 - 13%.17).
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2.15 Exercise. Find lem(3' - 722 11° 173,52 . 11* . 13% . [ 7).

After doing some examples, we instinctively seek the general pattern.
That is, we seek to make a general statement that captures the reason that
the method we used in the specific examples works.

2.16 Exercise. Make a conjecture that generalizes the ideas you used to
solve the two previous exercises.

2.17 Question. Do you think this method is always better, always worse, or
sometimes better and sometimes worse than using the Euclidean Algorithm
to find (a, b)? Why?

The following theorem requires a clever use of the Fundamental Theorem
of Arithmetic.

2.18 Theorem. Given n+ 1 natural numbers, say dy,da, ..., dyt1, all less
than or equal to 2n, then there exists a pair, say a; and a; with i # j,
such that a;la;.

The Fundamental Theorem of Arithmetic can be used to prove that certain
equations do not have integer solutions.

2.19 Theorem. There do not exist natural numbers m and n such that

Tm? = n2.

2.20 Theorem. There do not exist natural numbers m and n such that
24m3 = n3,

Up to this point we have been talking exclusively about natural numbers
and integers. Our insights into natural numbers and integers can actually
help us to understand more general kinds of numbers such as rational num-
bers and irrational numbers.

Definition. A rational number is a real number that can be wrilten as %
where ¢ and b are integers and » # 0.

Definition. A real number that is not rational is irrational.

The next theorems ask you to prove that certain specific numbers are
irrational.

2.21 Exercise. Show that /7 is irvational. That is, there do not exist

natural numbers n and m such that N7 = f)’;.
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2.22 Exercise. Show that /12 is irrational.
. 1. . .
2.23 Exercise. Show that 73 is irrational.

Having proved some specific numbers are irrational we take the usual
step of generalizing our insights as far as possible.

2.24 Question. What other numbers can you show to be irrational? Make
and prove the most general conjecture you can.

Let’s now return to the world of integers. The following was a theorem
we first proved in Chapter 1. Here we repeat the theorem with the idea that
the Fundamental Theorem of Arithmetic might help to provide an alternative
proof.

2.25 Theorem. Let a, b, and n be integers. If ain, bln, and (a,b) = 1,

then ab|n.
Integers are either divisible by a prime p or are relatively prime to p.

2.26 Theorem. Let p be a prime and let a be an integer. Then p does not
divide a if and only if (a, p) = 1.

Notice that 9(6 - 12) and yet 9 does not divide either 6 or 12. However,
if a prime divides a product of two integers, then it must divide one or the
other.

2.27 Theorem. Let p be a prime and let a and b be integers. If plab,
then pla or plb.

The following theorems explore the relationships among the greatest com-
mon divisor and various arithmetic operations. You might consider proving
them in at least two ways, one using the Fundamental Theorem of Arith-
metic and one using the techniques from Chapter 1.

2.28 Theorem. Let a, b, and ¢ be integers. If (b,c) = 1, then (a,bhc) =
{a.b) - (a,c).

2.29 Theorem. Let a, b, and ¢ be integers. If (a,b) = 1 and (a,c) = 1,
then (a,bc) = 1.

2.30 Theorem. Let a and b be integers. If (a,b) = d, then (5, g) = I.
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2.31 Theorem. Let a, b, u, and v be integers. If (a,b) = 1 and ula and
vlh, then (u,v) = 1.

The infinitude of primes

One of the most basic questions we can ask about prime numbers is, “How
many are there?” In this section, we will prove that there are infinitely
many. To prove that there are infinitely many primes, we need to show that
there are large natural numbers that are not the product of smaller natural
numbers. Our first observation points out that consecutive natural numbers
cannot share common divisors greater than 1.

2.32 Theorem. For all natural numbers n, (n,n + 1) = 1.

Can you think of a natural number that is divisible by 2, 3, 4, and 5?7 Can
you think of a natural number that has a remainder of 1 when divided by
2, 3, 4, and 57 If you think of systematic ways to answer these questions,
you will be well on your way to proving the following theorem.

2.33 Theorem. Let k be a natural number. Then there exists a natural
number n (which will be much larger than k) such that no natural number
less than k and greater than 1 divides n.

The previous theorem shows us how to produce natural numbers that are
specifically not divisible by certain natural numbers. This insight helps us
to find natural numbers that are not divisible by any natural numbers other
than themselves and 1, in other words, primes.

2.34 Theorem. Let k be a natural number. Then there exists a prime larger
than k.

The Infinitude of Primes Theorem is one of the basic results of math-
ematics. It was proved in ancient times and is recognized as one of the
foundational theorems about numbers. At first you might think, “Of course,
there must be infinitely many primes. How could there not be infinitely
many primes since there are infinitely many natural numbers?” But remem-
ber that the same prime can be used many times. For example, we can
construct arbitrarily large natural numbers just by raising 2 to large pow-
ers. So it is conceivable that some finite number of primes would suffice
to produce all natural numbers. However, in fact there are infinitely many
primes, as you will now prove.
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2.35 Theorem (Infinitude of Primes Theorem). There are infinitely many
prime numbers.

After you have devised a proof or proofs or learned a proof, it is satisfying
to reflect on the logic of the argument and celebrate and appreciate the
beauty or cleverness of the reasoning.

2.36 Question. What were the most clever or most difficult parts in your
proof of the Infinitude of Primes Theorem?

One of the principal ways that new mathematics is created is to take one
result and see whether it can be extended or variations of it can be proved. In
the case of the Infinitude of Primes, we can ask whether there are infinitely
many primes of a certain type. We begin by making an observation about
numbers congruent to 1 modulo 4, which then will help us to prove that
there are infinitely many primes of the form 4k + 3.

2.37 Theorem. /7,12, ..., Iy are natural numbers and each one is con-
gruent (o 1 modulo 4, then the product 11721y, is also congruent fo 1
modulo 4.

To prove the following theorem, remember the proof of the Infinitude of
Primes Theorem and see how the strategy of that proof might be adapted
to prove the following harder theorem.

2.38 Theorem (Infinitude of 4k + 3 Primes Theorem). There are infinitely
many prime numbers that are congruent to 3 modulo 4.

When you have proved the previous theorem, you will have forced your-
self to understand a technique of proving theorems about the existence of
infinitely many primes of a certain type. Now is the time to see how far that
technique can be pushed. In other words ask yourself how many theorems
like the preceding one are provable using a similar idea.

2.39 Question. Are there other theorems like the previous one that you can

prove?

In fact, the following much more general theorem is true. Its proof in its
full generality, however, is quite difficult and we will not attempt it in this
course.

Theorem (Infinitude of ak + b Primes Theorem). If a and b are relatively
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prime natural numbers, then there are infinitely many natural numbers k
Jor which ak + b is prime.

The previous theorem is often called Dirichlet’s Theorem on primes in
an arithmetic progression and is due to Lejeune Dirichlet (1805-1859).
An arithmetic progression is a sequence of numbers of the form ak + b,
k =0,1,2,..., where b is any integer and « is a natural number. It is a
sequence of numbers all of which are congruent to b modulo a. The study
of primes in arithmetic progressions is still an active field today. Consider
the following recent result due to Ben Green and Terence Tao.

Theorem (Green and Tao, 2005), There are arbitrarily long arithmetic
progressions of primes.

This means that for any natural number 1 there exists a prime p and a
natural number « such that p, p +a, p + 24, p +3a, ..., p + na are
all prime. As an example, an arithmetic progression of primes of length
five is found by choosing p = 5 and ¢ = 6, which yields the sequence
5,11, 17,23, 29. The longest known arithmetic progression of primes as of
July of 2004 has length 23 and is given by

56211383760397 + k44546738095860, k = 0,...,22.

Terence Tao was awarded a Fields medal in part for his work related to
this result. Fields medals, the mathematical equivalent of the Nobel prize,
are awarded once every four years to outstanding mathematicians under the
age of 40.

2.40 Exercise. Find the current record for the longest arithmetic progres-
sion of primes.

Primes of special form

The Targest known prime is of a special type known as a Mersenne prime,
which is a prime of the form 2" — 1. The theorems here show some features
of Mersenne primes and related primes.

2.41 Exercise. Use polynomial long division to compute (x™ —1)+(x—1).

2.42 Theorem. If n is a natural number and 2" — 1 is prime, then n must
be prime.
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2.43 Theovem. If 1 is a natural number and 2" + 1 is prime, then n must
be a power of 2.

Definition. A Mersenne prime is a prime of the form 27 — 1, where p is
. . k . )
a prime. A prime of the form 22° + 1 is called a Fermat prime.

2.44 Exercise. Find the first few Mersenne primes and Ferinat primes.

2.45 Exercise. For an A in the class and a Ph.D. in mathematics, prove
that there are infinitely many Mersenne primes (or Fermat primes) or prove
that there aren’t (your choice).

The distribution of primes

We now know that there are infinitely many primes, but in a sense that
information is a rather crude measure of how the primes appear among
the natural numbers. We could ask other questions such as roughly what
fraction of the natural numbers are prime? And we might wonder whether
the primes occur in some sort of pattern. To investigate how the primes
are distributed among the natural numbers, let’s begin by looking at some
ranges of natural numbers with the primes printed in bold:

1,2,3,4,5,6,7,8,9,10,11, 12,13, 14,15, 16,17, 18,19, 20, 21,

22,23,24,...,300,301, 302,303, 304, 305, 306, 307, 308, 309,
310,311,312,313,314, 315,316, ...,2025,2026,2027, 2028,
2029, 2030, 2031, 2032,2033, 2034, 2035, 2036,2037, 2038, . ..

What observations can we make? First, we may notice that the proportion
of bold numbers occurring seems to be getting smaller. That is, primes tend
to be more sparse as we move further out into the sequence of natural
numbers. We tend to see longer and longer runs of consecutive composite
numbers. In fact, there is no limit to the length of strings of composite
numbers.

2.46 Theorem. There exist arbitrarily long strings of consecutive compos-
ite numbers. That is, for any natural number n there is a string of more
than n consecutive composite numbers.

On the other hand, we still observe pairs of primes separated by just
one even number, such as 311 and 313, or 2027 and 2029. One of the
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most famous unanswered questions in number theory asks whether or not
this behavior continues indefinitely. I you have already settled the previous
question about Mersenne primes, then solving the following question will
give you another Ph.D.

2.47 Question (The Twin Primes Question). Are there infinitely many pairs
of prime numbers that differ from one another by two? (The pairs 11 and
13, 29 and 31, 41 and 43 are examples of such twin primes.)

Out of the first 24 natural numbers, 9 of them are primes—-that’s just a
little over one third. We saw how this fraction changes as n increases in
the Sieve of Eratosthenes exercise.

Suppose someone asked you to write down all the primes less than 100
million without the aid of a calculator or a computer. With a pencil and pa-
per, you would find that task to be tedious and prone to error; however, that
was the challenge facing mathematicians before the advent of modern com-
puting machinery. Surely one of the most amazing feats of prime-finding
before computers was completed in about 1863, when J.P. Kulik finished
his 20-year project of finding the least prime factor of every natural num-
ber up to 100 million. Our sadness in losing the volume of Kulik’s work
that contained the natural numbers between 12,642,600 and 22,852,800 is
somewhat lessened by the fact that his work was full of errors and that a
modern computer could reproduce the whole work in a matter of seconds.

The significance of computing lists of primes before the invention of
computers and even before Kulik’s work is that those lists allowed mathe-
maticians to gain some intuition about the distribution of primes.

As we observed above, the proportion of primes seems to slowly go
downward. That is, the percentage of numbers less than a million that are
prime is smaller than the percentage of numbers less than a thousand that
are prime. The primes, in some sense, get sparser and sparser among the
bigger numbers. That observation was greatly refined in the 1790s by Carl
Friedrich Gauss (1777—-1855), known by many as the Prince of Mathemat-
ics, and Adrien-Marie Legendre (1752—1833). They conjectured that the
number of primes less than the natural number 1, which is denoted by
m(n), is approximated by n divided by the natural logarithm of n. Using
computers, we can produce evidence that the proportion of primes less than
n becomes increasingly smaller as i1 increases. Table 1 also shows that the

ratio between 7 (n) and the fraction ]n’(’") gets increasingly closer to 1.
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ERECOENE= i) a0

10 | 4 4 4.3... 0.92104...

10% | 25 25 21.7... 1.15133...
103 | 168 168 144.7... 1.16054 ...
10* | 1229 1229 1085.7... 1.13199...
10° | 9592 09592 8685.8... 1.10443 ...
106 | 78498 078498 72382.4... [.08452. ..
107 | 664579 0664579 620420.7. .. 1.07121 ...
108 | 5761455 | 05761455 | 5428681.0... 1.06144 . ..
10° | 50847534 | .050847534 | 48254942.4 ... 1.05385...

Table 1. Prime Proportions

The formal statement of these observations is called The Prime Number
Theorem. We state it here, but the proofs of this theorem are difficult, and
beyond the scope of this book.

Theorem (The Prime Number Theorem). As n approaches infinity, the

number of primes less than n, n(n), approaches ﬁ that is,

7 (n)
lim ( )
n—c0 11/ In(in)

Finally, we mention here one more famous open question concerning
prime numbers.

2.48 Exercise. Express each of the first 20 even numbers greater than 2
as a sum of two primes. (For example: 8 =5+ 3.)

In a letter to Euler, dated June 7, 1742, Christian Goldbach (1690-1764)
claimed that every natural number greater than 2 was the sum of three
primes. It was convention at the time to include the number | as being
among the primes. The conjecture was re-expressed by Euler as follows.

Conjecture (The Goldbach Conjecture). Every positive, even number greater
than 2 can be written as the sum of two primes.

The Goldbach Conjecture has been verified by computer, as of June of
2000, for all even numbers up to 400, 000, 000, 000, 000, 000. As the even
numbers get larger, there seem to be more ways to write them as a sum of
two primes. For example, the number 100,000,000 can be written as the
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sum of two primes in 219,400 different ways. But no one knows how to
prove that in general all even natural numbers are the sum of two primes.
Perhaps some even number with 10 trillion digits is not the sum of two
primes. Until we have a general method of proof that will apply to all even
numbers, we will not know whether such a natural number exists or not.

2.49 Blank Paper Exercise. Afier not looking at the material in this chap-
ter for a day or two, take a blank piece of paper and outline the development
of that material in as much detail as you can without referring to the text
or 1o notes. Places where you get stuck or can’t remember highlight areas
that may call for further study.

From Antiquity to the Internet

Interest in the multiplicative properties of the natural numbers surely pre-
dated the works of Euclid (Elements, Books VII, VIII, IX), but it is here
that we find the first written study. For example, Proposition 20 of Book [X
gives the first known proof of the infinitude of primes. The ancient Greeks’
interest in the primes may have been further spawned by the connection
they shared with perfect numbers. A natural number is said to be perfect
if it is equal to the sum of its proper divisors. For example, the smallest
perfect number is 6, since 6=1+2+3. We list the first four perfect numbers.

6=22122-DN=142+3
28=2"12 1) =1+42+4+7+ 14
496 =212 = ) = 1 +24+4 + 84+ 16+ 31 + 62+ 124 + 248
8128 =27"127 = ) =14+ 2+ 44+ 8+ 16+ ---+ 2032 + 4064

In Book IX of his Elements Euclid proved the following: if for some n,
2% — 1 is prime, then 2771(2" — 1) is perfect. This established the link
between perfect numbers and primes of the form 2" — 1.

The serious study of perfect numbers and primes of special forms was
picked up again in the seventeenth century by the likes of Rene Descartes
(1596-1650), Pierre de Fermat (1601-1665), and Marin Mersenne (1588~
1648). In a 1638 letter to Mersenne, Descartes stated that he thought he
could prove that every even perfect number was of the form given by
Euclid’s theorem, but no proof was given. Also in a letter to Mersenne,
dated 1640, Fermat indicated he had proved the following: if  is composite,
then 2" — 1 is composite; but if n is prime, then 2" — I need not be prime,
with two examples being 2'7 — 1 = 2389, and 2% — 1 = 47 - 178481.
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In 1647 Mersenne gave the following list of 11 primes p for which he
believed 27 — | was prime as well: 2, 3, 5, 7, 13, 17, 19, 31, 67, 127,
257. He erred only by including 67 (and excluding 61, 89 and 107). To
this day primes of the form 27 — 1 are called Mersenne primes, and it is
still unknown whether infinitely many exist. In a posthumously published
paper, Euler finally succeeded in proving that all even perfect numbers are
of Euclid’s type, giving a one-to-one correspondence between Mersenne
primes and even perfect numbers. Curiously, it is not known if any odd
perfect numbers exist.

The search for new Mersenne primes continues to this day. In fact, anyone
with a home computer and an internet connection can join the Great Internet
Mersenne Prime Search (GIMPS). Mersenne’s list has only been increased
to contain 44 examples as of September, 2006, with the largest having over
9.8 million digits.

2.50 Exercise. Find the current record for the largest known Mersenne
prime.

There is a monetary award of $100,000 for the first person (or group) to
find a Mersenne prime with at least 10 million digits. So happy hunting.
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Pythagorean Triples,
Sums of Squares, and
Fermat’s Last Theorem

Congruences to Equations

The Law of Quadratic Reciprocity gives us a neat view of which numbers
are squares modulo a prime p. Information about squares modulo p can help
us to understand actual numbers and equations in addition to modular num-
bers and congruences. In this chapter and the next we turn from quadratic
congruences to quadratic (and higher order) Diophantine equations. We start
with a quadratic equation we should all have some familiarity with from
its connections to right triangles and the Pythagorean Theorem. Some of
the questions will lead us to ask which numbers can be written as sums of
squares, and the Law of Quadratic Reciprocity will help us find an answer.
Finally, we turn to one of the most famous recent results of number theory,
Fermat’s Last Theorem.

Pythagorean triples

The Pythagorean Theorem asserts that the sum of the squares on the legs
of a right triangle equals the square on the hypotenuse. Said another way,
the lengths of the sides of a right triangle always provide a solution to the
equation

X242 = 22
by substituting the lengths of the legs for x and y and the length of the
hypotenuse for z. In this section we consider the above quadratic as a
Diophantine equation, that is, we consider only its integer solutions.

99
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Definition. A triple of three positive integers (¢, b, c) satisfying a? +h% =

¢? is called a Pythagorean triple.

Due to the close relationship with right triangles, the values @ and b in a
Pythagorean triple will sometimes be referred to as the /egs, and the value
¢ as the hypotenuse.

There are no Pythagorean triples in which both legs are odd.

8.1 Theorem. If (u,b,c) is a Pythagorean triple, then at least one of a or
b is even.

The most famous Pythagorean triples are (3,4,5) and (5,12, 13), but
there are infinitely many. Let’s begin by just finding a few.

8.2 Exercise. Find at least seven different Pythagorean triples. Make a
note of your methods.

You may have discovered how to generate new Pythagorean triples from
old ones through multiplication. Namely, if (4. b,c) is any Pythagorean
triple and ¢ is any natural number, then (da, db, dc) is also a Pythagorean
triple. Pythagorean triples that are not simply multiples of smaller Pythagorean
triples have a special designation.

Definition. A Pythagorean triple (u, b, ¢) is said to be primitive if a, b,
and ¢ have no common factor.

There are infinitely many primitive Pythagorean triples, so let’s start by
finding a few.

8.3 Exercise. Find at least five primitive Pythagorean triples.

We saw earlier that no Pythagorean triple has both legs odd, but for
primitive Pythagorean triples, the legs cannot both be even either.

8.4 Theorem. [n any primitive Pythagorean triple, one leg is odd, one leg
is even, and the hypotenuse is odd.

It turns out that there is a method for generating infinitely many Pythagorean
Triples in an easy way. It comes from looking at some simple algebra from
high school. Remember that

(.\) + y)z = ,\‘2 -+ 2\V + ,)"2

and
(x — y)2 =x? - 2xy + yz,
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The difference between the two is 4xy. So we have a relationship that
looks almost like a Pythagorean triple, namely, one square (x + y ¥ equals
another square (x — y)? plus something that we wish were a square, namely
4xy. How could we ensure that 4xy is a square? Simple, just choose x
and y to be squares. This kind of analysis leads to the following theorem.

8.5 Theorem. Lef s and t be any two different natural numbers with s > 1.
Then
@251, (52— 1), (s +1%)

is a Pythagorean triple.

The preceding theorem lets us easily generate infinitely many Pythagorean
triples, but, in fact, every primitive Pythagorean triple can be generated by
choosing appropriate natural numbers s and 7 and making the Pythagorean
triple as described in the preceding theorem. As a hint to the proof, we
make a little observation.

8.6 Lemma. Ler (u,h,c¢) be a primitive Pythagorean triple where a is
the even number. Then f’%!-’» and % are perfect squares, sav, s* and 12,

respectively, and s and t are relatively prime.

So now we can completely characterize all primitive Pythagorean triples.

8.7 Theorem (Pythagorean Triple Theorem). Let (u.b,c) be a triple of
natural numbers with a even, b odd, and ¢ odd. Then (a, b, ¢) is a primitive
Pythagorean triple if and only if there exist relatively prime positive integers
s and t, one even and one odd, such that a = 2st, b = (5% — 12), and
c = (s> 412

The formulas given in the Pythagorean Triple Theorem allow us to in-
vestigate the types of numbers that can occur in Pythagorean triples. Lel’s
start our investigation by looking al examples.

8.8 Exercise. Using the above formulas make a lengthy list of primitive
Pythagorean triples.

We’ll begin by looking at the legs and then think about the hypotenuse
later.

8.9 Exercise. Make a conjecture that describes those natural numbers that
can appear as legs in a primitive Pythagorean triple.
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You might have come up with the following theorem.

8.10 Theorem. In every primitive Pythagorean triple, one leg is an odd
integer greater than | and the other is a positive multiple of 4.

This observation does not tell us which odd numbers are allowable or
which multiples of 4 occur, but in fact every odd number and every multiple
of 4 occurs as a leg in a Pythagorean triple.

8.11 Theorem. Any odd number greater than 1 can occur as a leg in a
primitive Pythagorean triple.

8.12 Theorem. Any positive multiple of 4 can occur as a leg in a primitive
Pythagorean triple.

To analyze what numbers can occur as the hypotenuse of a primitive
Pythagorean triple is a bit trickier. It amounts to investigating the general
problem of representing numbers as sums of two squares.

Sums of squares

The question we seek to answer is, for which numbers 1 does the Diophan-
tine equation
24y =n

have a solution? As usual we will first investigate the case of primes.
8.13 Question. Make a list of the first fifteen primes and write each as the
sum of as few squares of natural numbers as possible. Which ones can be

written as the sum of two squares? Make a conjecture about which primes
can be written as the sum of two squares of natural numbers.

Your conjecture likely singles out those primes that are congruent {o 1
modulo 4.

Theorem. Let p be a prime. Then p can be written as the sum of two
squares of natural numbers if and only if p =2 or p =1 (mod 4).

There are really two theorems here and we will state them separately
below. The first is a much simpler theorem to prove than the second.

8.14 Theovem. Let p be a prime such that p = a® + b? for some natural
numbers a and b. Then either p =2 or p =1 (mod 4).
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The fact that every prime congruent to 1 modulo 4 is expressible as the
sum of two squares is more challenging to prove. As you work to prove this
result in the next few theorems it is worthwhile to recall another theorem
you recently proved about primes that are congruent to | modulo 4. For
primes congruent to | modulo 4, —1 is a quadratic residue; that is, for any
prime p that is congruent to 1 modulo 4, there is some natural number «
such that ¢? is congruent to —1 modulo p. To prove the second theorem,
try applying the following lemma to a square root of —1 modulo p.

8.15 Lemma. Let p be a prime and let a be a natural number not divisible
by p. Then there exist integers x and y such that ax =y (mod p) with

0 < |x. 1yl < V.

8.16 Theorem. Let p be a prime such that p = 1 (mod 4). Then p is
equal to the sum of two squares of natural numbers.
(Hint: Try applying the previous lemma (o a square root of —1 modulo

r)
Knowing which primes can be written as the sum of two squares is a
great start, but that does not yet answer the question as to which numbers

can occur as the hypotenuse of a primitive Pythagorean triple. We need a
strategy for moving from primes to products of primes.

8.17 Exercise. Check the following identity:
(@ + b)e? + d?) = (ac + bd)? + (be — ad)?.

The preceding exercise tells us that the products of sums of two squares
are themselves sums of two squares.

8.18 Theorem. If an integer x can be written as the sum of two squares of
natural numbers and an integer y can be wrilten as the sum of two squares
of natural numbers, then xy can be written as the sum of two squares of

natural numbers.

Let’s try writing a few numbers as sums of squares of natural numbers.

8.19 Exercise. For each of the following numbers, (i) determine the num-
ber’s prime factorization and (ii) write the number as the sum of two

squares of natural numbers.
1. 205
2. 6409
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3722
4. 11745

8.20 Question. Which natural numbers can be written as the sum of two
squares of natural numbers? State and prove the most general theorein
possible about which natural numbers can be written as the sum of two
squares of natural numbers, and prove it.

We give the most general result next.

8.21 Theorem. A natural number n can be written as a sum of two squares
of natural numbers if and only if every prime congruent to 3 modulo 4 in
the unique prime factorization of n occurs to an even power.

Pythagorean triples revisited

We are now in a position to describe the possible values for the hypotenuse
in a primitive Pythagorean triple.

8.22 Theorem. If (a,bh,c) is a primitive Pythagorean triple, then ¢ is a
product of primes each of which is congruent to 1 modulo 4.

8.23 Theovem. If the natural number c is a product of primes each of
which is congruent to 1 modulo 4, then there exist integers a and b such
that (a, b, ¢) is a primitive Pythagorean triple.

Having satisfactorily analyzed the question of which squares are the sum
of two smaller squares, it is natural to ask the analogous question for higher
powers, and Pierre de Fermat did ask that question in what became known
as Fermat’s Last Theorem.

Fermat’s Last Theorem

There are infinitely many Pythagorean triples of natural numbers (u, b, ¢)
such that a® 4 h? = ¢?. A natural question arises if we replace the exponent
2 with larger numbers. In other words, can we find triples of natural numbers
(a,b,c)such that a®+5% = ¢ or a*+b* = ¢*, or, in general, @” +h" = c"
for n > 3? In 1637, Fermat claimed to be able to prove that no triple of
natural numbers («. b, ¢) exists that satisfies the equation a” + b" = ¢" for
any natural number n > 3. During his lifetime, Fermat probably realized
his “proof” was inadequate, but the question tantalized mathematicians for
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hundreds of years. Incremental progress was made. By 1992 it was known
that the equations ¢” + b" = ¢" had no natural number solutions for
3 < n < 4,000,000 (as well as many other special cases). But there are
infinitely many possible exponents larger than 4, 000, 000, so Fermat’s Last
Theorem was far from being resolved. But all the remaining exponents were
taken care of by the groundbreaking work of Andrew Wiles, which took
place some 350 years after Fermat first considered the question.

Theorem (Fermat’s Last Theorem, proved by Andrew Wiles in 1994). For
natural numbers n > 3, there are no natural numbers x, y, z such that
7 + '),n = "

We probably won’t find a proof of this theorem ourselves since it took
many high-powered mathematicians 350 years to do so. Instead, let’s look
at one case of this theorem which can be proved using a strategy known
as Fermat's method of descent. The method involves showing how a given
solution in natural numbers can be used to produce a “smaller” natural num-
ber solution. That new solution would imply the existence of a yet smaller
solution, and so on. Since any decreasing sequence of natural numbers must
be finite in length, the method of descent implies that there could not be a
solution to begin with. Let’s see how this strategy can be used to prove the
case of Fermat’s Last Theorem when the exponent is 4.

In fact, notice that the following statement is a little stronger than what
is called for in Fermat’s Last Theorem since the z is squared rather than
raised to the fourth power.

8.24 Theorem. There are no natural mumbers x, v, and z such that x* +
yt = z2,

(Hint: Note that if there were a solution x = a, y = b, and z = ¢, then
(a?,b?, ¢) would be a Pythagorean triple, which we could assume to be
a primitive Pythagorean triple by removing common factors. Can you use
the characterization of Pythagorean triples to find other natural numbers
d, e, [ such that d* + e¢* = f? where f is less than ¢? If you can do

that, how can you complete your proof?)

8.25 Blank Paper Exercise. Afier not looking at the material in this chap-
ter for a day or two, take a blank piece of paper and outline the development
of that material in as much detail as you can without referring to the text
or 1o notes. Places where you get stuck or can’t remember highlight areas
that may call for further study.
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Who’s Represented?

Representing numbers as the sum of two squares had immediate practical
relevance to the description of Pythagorean triples. But it is also a problem
that lends itself well to many different possible directions of generalization.
For example,

1. Which numbers can be represented as the sum of three squares; sum
of four squares; etc.?

2. Which numbers can be represented as the sum of two cubes; sum of
two fourth powers; etc.?

Mathematicians have given much attention to all of these questions. This
is another one of the many instances of simple sounding questions leading
to deep and important mathematics.

Sums of squares

Albert Girard (1595-1632) appeared to know as early as 1625 which num-
bers could be written as the sum of two squares, although a proof due to
Girard is lacking. Descartes proved in a 1638 letter to Mersenne that primes
of the form 4n + 3 could not be represented as a sum of two squares. Fer-
mat stated in a letter to Blaise Pascal (1623-1662) in 1654 that he had a
proof of the fact that primes of the form 4n + | were always the sum of
two squares. But a proof of Girard’s complete (and correct) observation
would have to wait for Euler, who gave a complete proof in two letters to
Goldbach dated 1747 and 1749.

What about representing numbers as the sum of three squares? In a letter
to Mersenne dated 1636, Fermat stated (again without proof?) that no integer
of the form §n+7 could be expressed as the sum of three squares. Mersenne
communicated the claim to Descartes who provided a proof in 1638. The
complete characterization is given here.

Theorem. A4 natural number can be expressed as the sum of three squares
of natural numbers if and only if it is not of the form 4" 8k + 7) for
non-negative integers n and k.

The proof of this theorem is due in large part to Legendre, but a key step
also requires Dirichlet’s work on primes in arithmetic progressions.

What about sums of four squares? Fermat stated that he had a proof
of the fact that every number is either a square or the sum of two, three,



“NumberTheory bev” — 2007/9/25 — 17:00 — page 107 — #117

8. Pythagorean Triples, Sums of Squares, and Fermat's Last Theorem 107

or four squares, although, as we now expect when dealing with Fermat, no
proof was communicated. Building on the work of Fermat and Euler, it was
Lagrange in 1770 who finally provided the proof of the following theorem.

Theorem (Four Squares Theorem). Every natural number is the sum of at
most four squares of natural numbers.

A key identity needed for Lagrange’s proof was due to Euler, who spent
more than 40 years trying to establish the Four Squares Theorem. Euler
established an amazing identity showing that the product of two numbers,
each of which can be expressed as the sum of four squares, is also a sum
of four squares, namely,

@? +a? +d? +a2)(bF + b3 + b+ b3)
= (a1hy + azhs + ashs + ashs)?
+ (a1h2 — aabi + azbs — ashs)?
+ (a1hs — aabg — asby + (14b2)2

+ (611/)4 -+ 612173 —azhy — £14/71)2.

Sums of cubes, taxicabs, and Fermat’s Last Theorem

Euler, in 1770, provided us with a proof of the first case of Fermat’s Last
Theorem by establishing that no cube is the sum of two cubes. Of the
numbers which can be expressed as the sum of two cubes, perhaps 1729 is
the most famous.

Suffering from tuberculosis and lying in a hospital bed in London, the
young Indian mathematician Ramanujan (1887—1920) was paid a visit by
his friend and mentor G. H. Hardy (1877-1947). Hardy remarked that he
had arrived in a taxicab numbered 1729, which he considered a rather dull
number. Ramanujan responded that 1729 is not dull at all. It is, in fact,
the smallest number that can be expressed as the sum of two cubes in two
essentially distinct ways,

1729 = 13 4 123 = 93 4 10°.

Said another way, there are (at least) four distinct integer points, namely
(1,12), (12, 1), (9, 10), and (10, 9), on the cubic plane curve

x4 p? = 1729,

Taking statements about numbers and transforming them into statements
about points on curves (or surfaces, etc.) is now a fairly common practice
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in the field of arithmetical geometry. For example, in studying whether the
number m is expressible as a sum of two cubes, the corresponding plane
curve is given by

x4 y3 = m.

This is another example of what is known as an elliptic curve. While
naturally arising when looking at the problem of expressing a number as the
sum of two cubes, elliptic curves have also played a much more central role
in the modern development of number theory. They are the central objects
under study in Andrew Wiles’ proof of Fermat’s Last Theorem.

In 1990 it was known that if (@, b, ¢) were a triple of natural numbers
satisfying an equation of the form

a? +h? =c”?,

where p is a prime greater than 2 (i.e., if the triple («, b, c) provided a
counterexample to Fermat’s Last Theorem), then the curve

y2 = x(x —a?)(x +b?)

would be an elliptic curve with some very strange properties. The precise
statement is that the curve would be semistable but not modular, although
the exact meanings of these words is beyond the scope of this book. Such
a curve was believed not to exist. More precisely, it was believed by many
(and was the content of the Shimura-Taniyama Conjecture) that «// elliptic
curves were modular. This conjecture is now known to be true. The first
major contribution to the proof of the Shimura-Taniyama Conjecture was
due to Wiles with the help of his student Richard Taylor. Wiles and Taylor
proved in 1994 that a/l semistable elliptic curves are modular, once and
for all confirming the truth of Fermat’s Last Theorem.



