ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let p be a prime.

- a) Let $f(x) = x^p x + 1 \in \mathbb{F}_p(x)$ and α be a root of f(x). Prove that $\mathbb{F}_p(\alpha)/\mathbb{F}_p$ is Galois and determine the cardinality of $\mathbb{F}_p(\alpha)$.
- b) Prove that $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ is not a simple extension.

Problem 2

Consider $f(x) = x^5 + 20x + 16 \in \mathbb{Q}[x]$.

- a) Determine the Galois group of f(x) over \mathbb{Q} (as a subgroup of S_5).
- b) Determine whether f(x) = 0 is solvable by radicals.

In the solution of this problem you may use without proof the following facts:

- i) the discriminant of f(x) is $2^{16} \cdot 5^6$,
- ii) a transitive subgroup of S_5 is isomorphic to one and only one of the following groups: \mathbb{Z}_5 , $F_{20} := \langle \sigma, \tau \rangle / \langle \sigma^5 - 1, \tau^4 - 1, \sigma \tau - \tau \sigma^2 \rangle$ (the Frobenius group of order 20), D_{10} (the Dihedral group of order 20), A_5 , S_5 .

Problem 3

Let p be a prime, $n \in \mathbb{N}$, and ζ_n a primitive n-th root of unity.

a) Prove that the Galois group of $x^p - 2$ is isomorphic to the group of matrices

$$\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a, b \in \mathbb{F}_p, a \neq 0 \right\}.$$

b) Prove that $\mathbb{Q}(\sqrt[5]{2})$ is not a subfield of $\mathbb{Q}(\zeta_n)$ for any $n \in \mathbb{N}$.

Date: August 16, 2023.