PRELIMINARY EXAMINATION: ANALYSIS—Part II

August 14, 2023

Work all 4 of the following 4 problems.

1. Harmonic and entire functions

(a) Consider a real-valued harmonic function u on \mathbb{R}^2 . Show that there exists a real-valued function v on \mathbb{R}^2 such that u + iv is entire on $\mathbb{C} \equiv \mathbb{R}^2$. Show that v is unique up to a constant.

(b) Consider f an entire function. Assume than $|f(z)| \ge c > 0$ on \mathbb{C} . Show that f is constant.

2. Assume that $\Omega \subset \mathbb{C}$ is a simply connected subdomain, and let \mathbb{D} be the open unit disk of \mathbb{C} . Let $f, g : \mathbb{D} \to \Omega$ be two one-to-one and onto holomorphic functions satisfying f(0) = g(0), and f'(0) > 0, g'(0) > 0. Prove that f(z) = g(z) for all $z \in \mathbb{D}$.

3. Let f be a meromorphic function in \mathbb{C} with finitely many poles, located at $\{z_j\}_{j=1}^J$. Prove that

$$\sum_{j=1}^{J} \operatorname{res}(f; z_j) = \operatorname{res}(g; 0)$$

where $g(z) := \frac{1}{z^2} f(\frac{1}{z})$. Here, $\operatorname{res}(f; z_j)$ denote the residue of f at z_j . It is defined by $\operatorname{res}(f; z_j) = a_{-1}$ if $f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_j)^n$ is the Laurent series of f at z_j .

4. Show that for any $z \in \mathbb{C}$:

$$\sin(\pi z) = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right).$$

[You can use without proof that $\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$.]